
Kybernetika

Jiří Vaníček
Software complexity as a software quality indicator (the three doubts and the light at
the end of tunnel)

Kybernetika, Vol. 33 (1997), No. 3, 333--356

Persistent URL: http://dml.cz/dmlcz/124710

Terms of use:
© Institute of Information Theory and Automation AS CR, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124710
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 33 (1 9 9 7) , N U M B E R 3 , P A G E S 3 3 3 - 3 5 6

SOFTWARE COMPLEXITY
AS A SOFTWARE QUALITY INDICATOR
(THE THREE DOUBTS AND THE LIGHT
AT THE END OF TUNNEL)

J I R I V A N I C E K

The known methods of program complexity measurement, based on flowgraphs is critized.
The new method of the complexity measurement for imperative programs, based on lucid
decomposition, is proposed.

Motto: It is not very reasonable to be an absolute optimist.

The light at the end of tunnel could be the spotlights

of an arriving train.

1. INTRODUCTION

1 .1. Software qual i ty s tandard iza t ion

The aim of the paper is to announce some new views and new results concerning
to the problem of measurement of software complexity, which is one of the most
significant indicators of software quality. The proofs of the theorems introduced on
the paper, detail discussion of the problem stated, and the examples the author try
and hope to publish on the separate monography.

In the International Standard ISO/IEC 9126 Software Product Evaluation - Soft
ware Quality Characteristics and Subcharacteristics, the software quality is defined
as the totality of characteristics of a software entity that bear on its ability to satisfy
stated and implied needs (see also general definition of quality in ISO 8402). The
following six quality characteristics are defined from the external point of view:

functionality as the extent to which the software in use provides function which
meet stated and implied needs under specified conditions;

reliability as the extent to which software in use maintains its level of performance
when used under specified conditions;

usability as the effort needed to use system containing software, and the user's
satisfaction with the software, under specified conditions;

334 J. VANIČEK

efficiency as the resources used by a system containing software in order to achieve
the required performance under specified conditions;

maintainability as the effort needed to make specified modification to software and

portability as the effort needed to transfer the software to another environment.

The modification of this definitions can be given from the internal point of view in
the terms of set of attributes of the software that influence the respective properties
of the software. The number of subcharacteristics is also defined.

In the two series of prepared standards:

1. Software Quality Chracteristics and metrics

• ISO/IEC 9126-1 Part 1: Quality characteristics and subcharacteristics

• ISO/IEC 9126-2 Part 2: External metrics and

• ISO/IEC 9126-3 Part 3: Internal metrics

2. Software Product Evaluation

• ISO/IEC 14598-1 General Overview

• ISO/IEC 14598-2 Planning and Management

• ISO/IEC 14598-3 Process for Developers

• ISO/IEC 14598-4 Process for Acquires

• ISO/IEC 14598-5 Process for Evaluators and

• ISO/IEC 14598-6 Evaluation Modules
the a t t e m p t to prepare the framework for the evaluation of quality of software prod
uct is given.

The level of various quality characteristics and subcharacteristics can be predicted
in the particular stages of the software life cycle, including the development phase
by various measurable entities of the software. More details about ISO/IEC J T C 1
standardization activities may be found in the Czech language in a less technical
form in Vanicek [22].

1.2. So f tware c o m p l e x i t y and its i m p o r t a n c e

Today more then 200 various measures for the quality indicators and predictors are
proposed. More then 100 of them are metrics for software complexity. It is clear
for everybody that the software complexity measures have the key role and a direct
influence to all quality characteristic mainly to software reliability, mainatainability
and portability and also to such important external variables as is for example the
effort needed for for the developing and implementation of the software. To have a
satisfactory measure for software complexity is therefore the main problem in the
software quality theory.

In the monography of Zuse [26] the detail list and in Zuse [28] the summary of
the complexity metrics is given and the analysis of the properties of the complexity
metrics from the measurement theoretic view (see Krantz et al [10], Luce et al [12]
and Roberts [20]) is reported.

Software Complexity as a Software Quality Indicator. . . 335

The results of Zuse analysis and also the analysis of many other authors turned
out that these metrics, including the sophisticated ones, often do not coincide with
the intuitive notion of program complexity and/or lead to serious problems when
the complexity of the combined program is to be determined from the complexity
of its modules by the natural concatenation rules. Also the practical experiences
with these measures points to the fact, tha t trivial measures, such as a number of
lines of source code of the program or Halstead [5] measures, often leads to the
better correlation of such external variables as the number of failures, the effort
needed for program development or maintenance, than these sophisticated complex
ity measures. The author of this paper believes that there are three main sources
of problems. Before describing these problems and explaining how to avoid them,
some basic abstract concepts should be recalled.

2. SOME THEORETICAL BACKGROUNDS AND CONVENTIONS

2 . 1 . G r a p h s

By the word graph in this paper we shall mean a simple directed graph, defined as
a ordered triple (N, E, <p), where N is a nonempty finite set of nodes, E a nonempty
finite set of edges and <p a total injective mapping from E into N x N. Sometimes
we shall identify the ordered pair of nodes (u,v) ~ N x N directly with the edge <p~x

if iome n ~ N such e ~ E tha t <p(e) = (u,v) E N x N exists. Using this convention
we shall also denote the graph as a ordered pair (N, E) only. The number of edges
\\{v E N : (utv) E E}\\ = outdeg(u), with the origin on the node u E N is called a
out-degree of the node u, the number of edges with its end on the node u E N the
in-degree of it E N and denoted by indeg(u).

The sequence of nodes (u = n\,n2, • • • ,nk = v) of the graph (N, E) we shall call
the path from u to v if for each j = 1 , . . . , k — 1 there exists a edge ej from n;- to nj+i
such that <p(ej) = (nj, n j+ i) . The graph (N, E) is said to be connected if for each
two nodes u,v ~ N there exists a sequence of nodes (mi = u, . .. ,mr = v) such that
for :ach i — 1 , . . . r — 1 there is an edge e; E E from m2- to m^+i: (v?(e») = (e*> e . + i))
or from m l + i to m;: (<p(ei) = (e;+i, e;)). The graph is said to be strongly connected
if for each two nodes u,v E N, there exists a path from u to v. It is clear, that the
connected graph is not necessarily strongly connected. The graph (N, E) we shall
call to be acyclic if for each u ~ N there exists no nontrivial pa th from u to u. All
nodes v E N such that there exists a edge e E E from u E N to v we shall call
children of the node u E N. For details see Behzad et al [2] or Nesetfil [14].

The ordered triple (N, E, r) we shall call a hierarchy if (N, E) is a connected and
acyclic graph, which has only one node r & N, called a root of the hierarchy such that
indeg(r) = 0. The nodes of the hierarchy, which have no children (outdeg(u) = 0)
we shall call ieafs of the hierarchy. If in the connected and acyclic graph (N, E)
each node v E N : indeg(v) < 1 (v has no more than one node u & N - parent of
v - , such that v is the child of u), then we shall call (N, E) to be a tree. Each tree
has a uniquely defined root node r, such that (N, E, r) is a hierarchy. But not all
hierarchies are trees as in a hierarchy can exist nodes, which are children of more
then one parent nodes.

336 J. VANÍČEK

2.2. Flowgraph of the program

A majority of the complexity metrices are based on the properties of so called flow-
graph of the program, which is defined as a (directed) graph (N, E) with a distin
guished start node s and terminal node t, with the following three properties:
(1) s is the unique node in N whose in-degrec is zero, (2) t is the unique node in
N whose out-degree is zero and (3) for any node v £ N there exists a path from s
to t, going through v. For each program its flow graph can be derived uniquely by
the simple algorithm, but different programs and also different program frames can
have the same flowgraph (the correspondence is not a bijection).

The intuitive meaning of the nodes on the flowgraph is that s is the starting point
and t is the terminal point of the program. Unconditional program statements are
those u with indeg(u) = outdeg(u) = 1, the predicate statements are those v with
indeg(v) = 1 and outdeg(v) > 1 and the fuse points on the control path are those
w with indeg(w) > 1 and outdeg(w) = 1. Sometimes it is conventional to represent
unconditional statements only by the edges of a flowgraph and so called reduced
flowgraph (N', E') in which all nodes u £ N with indeg(u) = outdeg(u) = 1 are left
out results. In this reduced flowgraph (N',E') there is

N' = {v £ N : indeg(v) -£ 1 V outdeg(v) -£ l h

and a set of its edges E' contain all pairs of nodes (u, v) for which there exists a
path from u to v in the graph (N, E), containing only the nodes being left out. Also
the mapping from programs into the set of its reduced flowgraphs is not a bijection.
For details see Zuse [26].

2.3. Measurement theory

The measure theoretic view is based on the theory of empirical and numerical rela
tional systems and scale. The more detail and complete presentation of this theory
can be found on Krantz et al [10] or Roberts [20].

Let A = (A, Hi,..., Hn,©i, • • •, ©m) be an empirical system, where A is not
empty set of objects, Ri,i = 1 . . .n, are some fcj-nary relations on A, and (Bj,j =
1 , . . . , m, are binary operations on A. Let B = (B, Si,..., Sn,»i,..., «m) be aformal
relational system, where B is, for example a set 3£ of real numbers (or real vectors)
and Si and *j the respective relations and operations on B. The measure fi is a total
mapping of A into B which is a homeomorphism, which means that it preserves all
relations and operations (Ri(ai,... ,ak,) <=> 5j(/ i (ai) , . . . ,/xajtJ) and [i(a 0 b) =

ji(a)*fi(b) for all i = 1 , . . . , m and all a,b,ai,..., ak, £ A). Then the triple (A, B,n)
is said to be a scaie. If two relational systems A and B are given, the representation
problem is the question of the existence of the measure /i such that (A,B, /i) is a
scale of a given type.

As a example we can imagine various priority relations Ri,..., Rn and various
concatenation operations © i , . . . , ©m on the set of empirical objects and the respec
tive inequalities and arithmetical operations between numbers which are the metrics
quantifying respective properties of empirical objects.

Software Complexity as a Software Quality Indicator. . . " " '

Let (A, B, /i) be a scale. A total mapping g of fi(A) into B is called an admissible
transformation if and only if (A, B, goyi), where go/j, is defined by (gofi)(x) = g(fi(x)),
is also a scale. Scales can be classified according to the admissible transformations.
For the software complexity theory, the following two classes of scales are of main
interest: (1) the ordinal scale, for which all strictly increasing function is an admissi
ble transformation, and (2) the ratio scaie, for which the admissible transformation
are the functions of the form g(x) = a • x, where a £ 9ft+ is a positive real number.
For the software complexity measures the following empirical relational systems and
scales are frequently used:

1. The reiational systems V* = (P*,*>:), and V = (P, y), where P* and P are
sets of all programs and all flowgraphs, respectively and *>:,>: the relations
"to be equally or more complex" for programs and flowgraphs, respectively. It
is clear that the relations •>:, y are weak orders on P* and P , respectively,
which means that the relations are reflexive and transitive, but it is possible
for two programs or flowgraphs that there exist P* and P* such that P**y
P*,P*-k y P* and P* ^ P* for programs, or there exist P\,Pi G P such
that P\ y Pi,P2 h Pi and P\ =£ Pi for flowgraphs. For such objects we
shall further use the notation P* tn P^ o r Pi ~ P2- There is a relation
9H = (y fl -<) as a subset of P* x P* or P x P is an equivalence on the set
P' (where P' = P* or P' = P) of all programs or flowgraphs in question
and generates a decomposition of P' into a factor set P ' | « of equally complex
programs or flowgraphs. The respective ordinal scales are (P*, (3£+, >, +),,")
and (P , (3?+, > ,+) , / i) , where 3£+ is the set of positive real numbers, > a
natural order on 3\!+ and // the complexity .neasure.

2. The additive relational systems (P*,*>•_:,©*) and (P,y,(&), where the two
relations have been described beforehend, and (g> and 0 are a concatenation
operation of two programs (for examples a sequence or a if then e l se com
bination of two program modules and two flowgraphs, respectively). The re
spective additive ratio scales are ((P*,*>^, 0*), (9£+, >, +), /i) and
((P, y, ©)> (3^+, >, +), A*), where + is a addition of real numbers in 3ft+.

3. FIRST DOUBT: PROGRAMS OR FLOWGRAPHS?

3.1. Theoret ical conditions for t ransparency of the compexity measures

The first weak point in software complexity measures is the following: Almost all
complexity metrics are based on the properties of flowgraphs. The respective re
lational system and scale are built in majority cases not on the set of programs,
but on the set of their flowgraphs. The reason why this is done is that flowgraphs
being matematically clear defined objects can be handled more easily and the con
catenation of flowgaphs is easy to define and is closed (for any two flowgraphs their
concatenation exists). For programs, this, of course, is not fulfilled without addi
tional consideration. If we investigate software measures based on flowgraphs, the
question, however, is whether it is sufficient to discuss them on the flowgraphs. Let
P* be a set of all programs written in a given imperative programming language

338 J- VANIČEK

(such as PASCAL, C, ADA, . . .) and •>- the complexity relation on P * and P, the
set of its flowgraphs. Let <fi be the mapping that maps every program to its Bow-
graph. The following conditions denoted P F 1 , P F 2 , P F 3 , P F 4 plays a fundamental
role (see also Zuse and Bollmann-Sdorra [27]):

• P F 1 : For all P*, P*, P'*, P{* £ P * :(<j>(P*) = <j>(P*) A <f>(P'*) = <f>(P_*) A
P*-k>_ P'*) =-> P*-k_z P * • (Programs with the same flowgraph may be substi
tuted for each other with respect to its complexity).

• P F 2 : For all P*, P'* £ P * : 4>(P*) = 4>(P'*) ^ P* & P* (there is
P * __ P'* A P'* __ P*). (Programs with the same flowgraph are equally
complex).

• P F 3 : For all P*, P*, P'*, P{* £ P* If d)(P*) = <j>(P'*), <f>(P*) = <j>(P_*)
and P * <g> P * and P ' * <g> P{* both exist, then <f>(P* <g) P*) = 0 (P ' * $ P !>).
(The flowgraph of combined programs depend only on the flowgraph of each
program).

• P F 4 : For all Q,Q' 6 P there exist P*, P'* £ P * with Q = <j>(P*),Q' = <f>(P'*)
such that P*®P'* exists. (The programming language is sufficiently rich, that
programs with any two flowgraphs can be combinated).

If -k>_ is transitive and F2 holds, then Fl holds. If *>_ is reflexive and Fl holds,
then F2 holds.

The following theorems have been proved for clarification of the situation:

T h e o r e m 1. Let ((P*>*<?*:,), (3^ + , >) , i>) be a scale. The relation __ on P such
that P**__ P'* & 4>(P*) __ <j>(P'*) for all P*, P'* £ P* and a mapping // from P to
3ft+ with ip = fio <f> such that ((P, __), (9^, >) , fi) is a scale, and such that both scales
have the same set of admissible transformations, exists if and only if P F 1 and PF2
hold.

T h e o r e m 2. If P F 1 holds then there exists a relation __ on P satisfying the
condition P * * >_ P'* <^ <f>(P*) X <j>(P'*) for all P*,P'* £ P * and such that for
every total mapping of P into 9£+ the following holds: ((P x , * > :) , (9?+, >) , /i ° 4>) l s

an ordinal scale if and only if ((P , __), (3ft+, >) , A4) is an ordinal scale.

T h e o r e m 3. Let • be some binary operation on $R+ and
((P * , * ^ , ®) , (5 f t + , >,.),</>) be a scale. If P F 1 , P F 2 , P F 3 and P F 4 hold then there
exists a relation __ and an operation 0 on P such that for all P*, P'* £ P * :
P * * >- P'* <=> <f)(P*) y <f>(P'*) and <j)(P* ® P'*) = <^(P*) © <f>(P'*), whenev
er P * ® P'* exists and there exists a total mapping /i of P into 3?+ such that
tf) — fi o <f>, ((P, >_, 0) , (Sft+, >,•),/-) is a scale and both scales have the same admis
sible transformations.

T h e o r e m 4. If P F 1 , P F 3 and P F 4 hold then there exists a relation __ and oper
ation 0 on P such that for all P*, P'* £ P * : P * * y P'* & <f,(P*) >_ <j)(P'*) and
<j)(P* ® P'*) = (f)(P*) 0 <f>(P'*), whenever P * 0 P'* exists, such that for every total
mapping P into 3^+ the following holds: ((P * , * > : , <S>), (9^+, >, +) , At ° <b) is a ratio
scale if and only if ((P , h , 0) , (5R+ , > , +) , A*) is a ratio scale.

Software Complexity as a Software Quality Indicator. 339

T h e o r e m 5 . If P F 1 , PF2, PF3 and PF4 holds, then there exists >- and © on
P with P**y P'* & <f>(P*) y <f>(P'*) for all P*, P'* 6 P and with <f>(P* <g P'*) =
<j>(P*)@<l>(P'*) for all P* , P ' * € P * , whenever P*@P'* exists, such that the following
statements are equivalent:

• For all P*, P ' * G P * : (3 Q, Q l , Q2 6 P : (tf(P*) = Q o (0 , o Q2)) A (</>(P'*) =
(QOQ1)OQ2))=>P*KP>*.

. For all Q, Q i , Q 2 G P : Q o (Ql o Q2) * (Q o Qx) o Q 2 .

The conditions P F 1 , PF2 , P F 3 and PF4 therefore give the complete answer to
the question if it is possible to study only the complexity of a flowgraph. The
question whether these conditions are fulfilled or not is not a theoretical question,
but rather a question of the empirical observation and intuition of experts. There
are a strong grounds for the idea that these conditions are not fulfilled also for very
simple programs. In the case where we have reason to believe that some of the
assumptions P F 1 , PF2, PF3 or PF4 do not hold, flowgraph complexity does not
make sense anyway.

3 .2 . Short case d e m o n s t r a t i o n

For the clarification of our pessimism let us consider the following pseudo-pascal
p Dgram frames:

program P I ;
begin if c then P

else Q;
R

enr" PI.

program P2;
label L;
begin if c then begin P;

goto L
end

else begin Q;
L: R
end

end P2.

program P3;

label LI;

begin

if pi then begin SI;

while p3 do begin S3;

S4;

LI: S5;

S6

end

end

else begin S2;

if p2 then goto LI

else S8

program P4;

label LI, L2;

begin

if p then begin SI;

while p3 do begin S3;

S4;

LI: S5;

S6

end

L2: S7;

end

else begin S2;

if p2 then goto LI

340 J. VANIČEK

end else begin S8;
S7 goto L2
end P3. end

end
end P4.

It is clear that P^ has the same flowgraph as ?2, and P3 the same flowgraph as
P4, but probably everybody will consider the program P2 as more complex then PI
and P4 more complex as P3, even though programs P2, P3 and P4 are ugly.

4. SECOND DOUBT: SHOULD COMPLEXITY MEASURES REALLY BE
ADDITIVE?

4.1. Full additivity and extensive structures

The key problem in program complexity measure theory is the question of the
full additivity of the complexity measure with respect to such a concatenation as
is for example the sequential concatenation P\ @seq P2 defined by Pi @seg P2 =
begin Pi; P2 end and the selection combination P\ @seic P2 — i* Cthen Pi e l se P2.
In Zuse [26] and Zuse [29] and Zuse [30] it is proven, that for the existence of the
positive additional ratio scale, for programs and/or flowgraph, described in the Sec
tion 2, the necessary and sufficient condition is that (P,>z,@) is a so-called closed
extensive structure, (see Krantz et al [10]) which means that the following set of
axioms are satisfied:

• y is a weak order on P
• © is weakly associative operation on P (P\ @ (P2 @ P3) « (Pi 0 P2) © P3)
• (weak monotonicity): Pi y P2 <$ P\ © P3 y P2 © P3 <$ P3 © Pi h P3 © P2 for

a l l P i , P 2) P 3 G P
• (Archimedean axiom): If Pi y P2, than for any P3, P4 G P there exists a

natural number n, such that n o P\ @ P3 y n o P2 @ P4, where n o P is defined
by the induction: loP = P; (n + 1) o P = P © (n o P).

The last Archimedean axiom is the most problematic point in the closed extensive
structure demand. There are two equivalent formulation of this requirement:

The pair of elements (A, B) € P x P is called anomalous pair if A 96 B and
either for all natural number n there is

•

((n+l)oBynoA)A((n + l)oA y n o B)

or for all natural number n there is

(no A y (n + 1) o B) A (n o B y (n + 1) o A),

The requirment is that there do not exist any anomalous pair.

If we shall call the sequence A, A@A = 2oA, 3oA,... the standard sequence,
the Archimedean axiom says that every strictly bounded
(3B £ PV n : B y no A) sequence is finite.

Software Complexity as a Software Quality Indicator. . . 341

The closed extensive structure is called to be positive if in addition the property
Hi 0 P2 t Pi f o r aU Pi,P2 ~ P holds. The main theorem of Krantz et al [10],
Section 3.2, says that ((P, >-, 0) , (9£+, >, +),/-) is a scale, which means that for all
Pi, P2eP the following holds:

• (I) = Pi h P2 if and only if /i(Pi) > //(P2)

. (I I) : / / (P i0P 2) = /i(Pi) + /i(P2).

if and only if (P , X, 0) is a positive closed extensive structure. Another function 77
satisfies the conditions (I) and (II) if and only if there exists some c £ 3£+, such that

The problem is with the empirical validation of the Archimedean axiom, whether
the requirement, that very much simple problems in its the concatenation become
more complex, than one very unlucid and complicated problem, really describe the
situation in real life. For example if a very large, but structured program is more
complex to understand than the short one with some multiple entry, parallel or
overlapping loops.

4.2. Additivity or wholeness?

The second problem is if the additivity of the complexity measure really conforms
to the opinion of experts. Many authors, for example Weyuker [23], Prather [18]
aid Pressman [19], p. 324, suggest the property of wholeness, that says that the
complexity of the sum must be at least as big as the sum of complexity of the parts,
that is, n(P\ 0 P2) > fJ'(Pi) + /-(p2)- This opinion is also confirmed by the well
known so called COCOMO model (see Boehm [3]) in which the relation between the
effort E to write a program and L(P) which is the lenght of its code is estimated
by the equation E = a • L(P)h, where b > 0 is for various programs estimated by
numbers from che interval (1.05, 1-20), depending on the type of the program.

In all of referenced works of Zuse it is substantiated that wholeness is a require
ment without any empirical meaning, and thus, it is impossible to validate in the
terms of programs or its flowgraphs. The additive measure for program complex
ity is validated if the axioms of the closed extended structure is fulfilled, and for
such external variables, as is the effort or the number of faults in the program,
the transformation of the program complexity by means of strictly monotonic func
tion / from 3ft+ into 3£+ is suggested. This approach leads to now nonadditive
scales, where on 3ft+ a new operation O *s defined by a Q) b = f~l(f(a) + f(b)).
If, for example. f(t) = log(/), than O = •> where • is a multiplication on 3£+. If
f(t) = tanh_ 1(t) = log((l + 0 / (1 - 0) /2 , then a O b = (a + b)/(l + a • b) and we
obtain the addition of relativistic velocity. In Roberts [20] it is shown, that if such
a new scale ((P, <, 0) , (3ft, >, O)>/-0 is a l s o a ratio scale, then the function / must
have a form f(x) = axb for some a,b G 3£+. Therefore, this result gives an excellent
theoretical background for COCOMO formula.

However the experiences of experts has shown that the growth of the effort can
not be estimated only from the effort for the components which are parts of the whole
software complex. There are two main objections against additivity of complexity
measures and derived general formulas like the COCOMO one:

342 J. V A N I Č E K

• If the number of components in the concatenation process is very large, the
growth of the effort is steeper, and the reliability of the concatenated compo
nent decrease more strictly.

• The growth of the effort and fall of the reliability is not only a function of
the complexity of the software components, but also depend very much on
the level of coupling between the components, which can be measured, for
example, by the amount of shared global data, number of parameters passed
between the modules, shared subordinate modules, and generally by so-called
fan-in and fan-out data flow complexity. See for example Ovideo [15], or Troy
and Zweben [21]. Therefore the complexity /i(Hi 0 P2) of the concatenation
cannot be only a function of two variables fJ-(Pi) and fJ.(P2) only, but as a
function of three variables fJ-(Pi), /t(E2) and some data flow and coupling
complexity 6(P±, P2) between Hi and P2. This point of view casts doubt upon
the additivity of complex measures and of course also the associativity axiom
for the concatenation operation.

4 .3. L i m i t e d e x t e n s i v e s t ructures , us ing local o r d e r e d s e m i g r o u p s

The first objection can be partially solved using the concept of concatenation op
eration, which is not closed, based on the theory of ordered local semigroups and
extensive structures with no essential maximum (see Krantz et al [10] Sections 2.2
and 3.4). The principle of this idea is that only entities which are not arbitrarily large
can be created. In the analogy if our problem is not to concatenatiate programs,
but rods, we can form a new rod a 0 b from rods a and b only if we have enough
room to do so. If our room is not sufficiently large, we can go into a corridor, and
when that fails we can go on a the campus walk, but sooner or later we are forced
to stop concatenating, and a classical theory of unlimited addition cannot actually
be performed due to the practical limitation of space.

In this alternative theory, we shall add the new relation B on P, such that
(P, Q) £ B denotes that P can be concatenated, and thus P 0 Q £ P exists. The
most sensitive problem is now the formulation of the Archimedean property with
these limited conditions. For this purpose the more convenient is the following
alternative formulation of the Archimedean axiom: Every strictly bounded standard
sequence is finite.

In this theory the following definition is proposed and the related theorem can be
proven for replacing of the unlimited addition condition for the existence of ordinal
additive scale:

Def in i t ion 1. Let A be a nonempty set, >̂ and B a binary relations on A (subsets
of A x A) and 0 a binary operation from B into A. Let us denote for P,Q £
A:PyQo(PyQAQ%:P). The quadruple (A, > . ,#,©) is a local extensive
structure with no essential maximum if and only if the following six axioms are
satisfied for all Hi, P2, P3 £ A:

1. The relation >̂ is a weak order on A.

2. ((P1.P2) € B A (Pi © P2,P3) £ B) -=> (P2,P3) £ B

A(Pi, P 2 © P3) £ B A (Pi © P 2) © P 3 = Pi © (P 2 © P3).

Software Complexity as a Software Quality Indicator. . . 349

3. ((P i , P3) e B) A (((P i , Pi) eB)=> ((P3, P2) 6B)A (P, ®P3_P3e P2))

4. Pi > - P 2 = > (3 Q E A : (P 2 , Q) < E I 3 A P i _P2®Q).

5. (P i , P 2) G / 3 ^ P i 0 P 2 > - P i .

6. Every strictly bounded (=Def 5 Q E A V n : Q > - p n) s tandard
(=Def Pn+i = n o P n for n = 1,...) sequence is finite.

T h e o r e m 6. Let (A, _, B, 0) be a local extensive structure with no essential maxi
mum. Then there exists a function fi from A into $t+ such that for all P\,P2 E A,
the following holds:

• (I) : P_P2 if and only if / i (Pi) > ^ (P 2) ;

. (II): (P i , P2) E B => / i (f t © P 2) = ^ (P i) + fi(P2).

If another function 77 satisfies (I) and (II) then there exists a c 6 !R+such that for all
nonmaximal Q e A there is r}(Q) = c • //(Q) (ratio scale property).

The present representation of ratio scale, in this classical sense, assumes that
there is no maximal element with respect to _. It is also possible to formulate a
similar theory if there exists some maximal element. Such an element Z E P is called
an essential maximum relative to _ and 0 if and only if it is maximal respective to
._ and there exists some P E P such that (Z, P) E B. In the definition of extensive
structure with essential maximum the last two axioms have to be replaced by:

• 5-Max. For all P\,P2 E P, (P i , P2) E B if Pi is not an essental maximum then

P i © P 2 >- Pi-

• 6-Max. If the standard sequence is strictly bounded by an element that is not
an essen ia l maximum, then the sequence is finite.

The set of all essential maxima can be characterized by equations Z « Z © P
for (Z,P) E B, and if Z and Z' are two essential maxima, then Z » Z''. The
restriction of the local extensive structure (P, _, B, ©) with some essential maxima
to (A', _',B', ©'), where A' is the set of all nonmaximal elements of A and _', B', ©'
the restrictions of _, B, ® to A' x A', respectively is an extensive structure with no
essential maximum. Two different strategies for the measures on the local extensive
structures with an essential maximum can be used:

• To ignore the maximal elements and leave the measure for these elements
undefined;

• If /i is an additive function on A ' and g a strictly increasing function from
(0,1) to 5ft+, to define $(H) = g~1(fx(P)) for nonmaximal P , and $(Z) = 1
if Z is any essential maximum. The $ satisfies the formula $ (P i © P 2) =
g~1(g(^(P\) + 3>(P2))) if Pi © P 2 y Z and if we introduce the convention
g(l) = 00, <7-1(oo) = 1 and t -f 00 = 00 for t E $1, then also for Pi « Z, where
Z is an essential maximum. To obtain the usual relativistic addition formula
for velocities, the choice is g = t a n h - 1 .

344 J. VANÍČEK

4.4. Independency conditions, decomposition facilities and program
coupling

The second objection is much more serious. It is directly connected with the principal
question whether the concatenation P © Q on the set P' of programs or flowgraphs
is transparent with respect to the relation » = (y D -<), (to be "equally complex")
or not. That means if a program consists of several modules whether it is possible
to compute the overall complexity from the complexity of the single modules. The
following theorems contain a complete answer to this principle question (see also
Zuse and Bollmann-Sdorra [27]):

Theorem 7. Let ((P', y, ©), (3?, >), n) be a ordinal scale on the empirical rela
tional structure (P', y, ©) and « = (y D -<). Then:

• The binary operation • on /-(P) C 3ft, such that fi(P, Q) = //(P)»/i(Q) for
P,Q eP' exists if and only if for all Pu P2, P 3 e P' Pi « P 2 => (Pi 0 P 3 «
P 2 © P 3) A (P 3 © Pi « P 3 © P 2) .

• The operation •, which is one to one in each variable exists if and only if for
all Pi, P 2 , P 3 e P' : Pi « P 2 <=> Pi © P 3 « P 2 © P 3 <=> P 3 © Pi « Ps 0 P2-

• The operation •, which is not decreasing in each variable exists if and only if
for all P i , P 2 , P 3 € P ' : Pi < P2 => (Pi © P 3 r< P2 © P3) A (P3© Pi ^ P3@P2).

• The operation •, which is strictly monotonic in each variable exists if and only
if for all Pi, P2, P3 G P ' : Pi ^ P2 <^ Pi © P3 ^ P2 © P3 <=> Ps 0 Pi ^ P 3 0 P2 •

A new, weaker concept, of independence in software complexity measurement
theory then of Weyuaker [23] can be proposed:

Definition 2. The relational system (P , ^ , ©) is said to be decomposable if and
only if there exists functions / : P —>• 9£, g : P —* 3? and F : f(P) x g(P) —> 3? such
that forall P, Q, R, S € P : P®B <R®S <=> F(f(P),g(Q)) > F(f(R),g(S)).
If the function F is strictly increasing in each variable, then this relational system
is said to be monotonically decomposable.

Definition 3. The relational system (P , -<, ©) is independent if and only if for all
P, Q, R, S e P : ((P@R<Q@R)<*(P@S <Q®S))A((R®P <R@Q)&
(S ®P<S ©Q)).

Definition 4. Let •< be a weak order on the set P . The subset A C P is called
to be order-dense with respect to -< if and only if for all P, Q € P : P -< Q there
exists some A e A such that Q -< A ;-< Q.

The following theorem can be proven:

Software Complexity as a Software Quality Indicator. . . .345

T h e o r e m 8. Let P be finite, countable or contain some finite or countable order-
dense subset with respect to a weak order -<. Then:

• There exists a total mapping // of P into (3?, >) such that P -< Q <w> l*{P) >
fi(Q) for all P , Q € P.

• (P j !_?)©) is monotonically decomposable if and only if it is independent.

The discussion at the beginning of this section leads to very serious doubts that
the conditions on Theorems 7 and 8 can be satisfied if the program modules, which
is to be combined are not fully independent. The effect of data sharing and control
links between the program modules leads to the conclusion, that with the exception
of the unrealistic situation of complete independency between concatenating soft
ware components the assumptions of Theorem 7 and the independency condition in
Definition 3 are not satisfied in the real world. Therefore the endeavour to create a
satisfactory complexity measure system for software on the base of binary concati-
nation operation of its modules is looked upon by the author with great pessimism.
The author has the conviction, that for the combination of software modules, the
trinary operation, such as the glue operation of directed graph by the additional
hierarchicaly superior node on which the coupling between the concatenating com
ponents is described, must be used. This principle will be described more clearly in
the last Section 6 of this paper.

5. THIRD DOUBT: IS T H E SENSITIVITY TO UNSTRUCTUREDNESS AT
AN A P P R O P R I A T E LEVEL?

5.1 . C y c l o m a t i c n u m b e r a n d der ived m e a s u r e s

For the comp^xi ty of individual software module many various measures, mostly
based on the analysis of flowgraphs is used (see for example Zuse [26], Zuse [28]).
The measures of Halstead [5] and similar measures for flowgraphs, such as number
of its nodes, are invariant with respect to the elementary operation to move the
node from one to the another place of the flowgraph. It is clear, tha t this type of
measures does not support the structural complexity of the software, which is in
strong contradiction with the experiences in software engineering.

To describe the complexity on the appropriate level, various measures are suggest
ed. The most primitive is the so-called Cyclomatic number by McCabe is defined
by /ic = \\E\\ — UNII + 2, where \\E\\ and | |N | | are numbers of edges and nodes,
respectively. This measure, which is equal to the number of linearly independent
paths in the strongly connected graph (to make a flowgraph strongly connected a
virtual edge T —> S had to be inserted), is sensitive to the number of predicates in
the program, but not to their relation, and therefore not against unstructuredness
and nesting depth.

The Essential cyclomatic number substracts from the cyclomatic number the
number of proper subgraphs with single-entry and single-exit nodes. This leads to a
reduction process of the graph G replacing such single entry and single exit structural
subgraph by a single node. The subgraphs concidered for this reduction are only

346 J. VANIČEK

the D-structured subgraphs (sequence; selection: i f - t h e n - e l s e or case; i teration:
while-do or r e p e a t - u n t i l) and not other general prime subgraphs with single-entry
and single-exit nodes. For the flowgraph which is D-structured, which means it is
built only using the listed constuctions, the essential cyclomatic number is equal to 1
and therefore the measure is too coarse. The second objection against this measure
is that it estimates the complexity of a relatively reasonable construction such as
the loop with multiple exit points with the same weight as absolutely unadmissible
control constructions, such as a multiple-entry loop or overlapping loops.

5.2. Interval ana lys i s and reducibi l i ty

Hecht [7] defines a measure based upon the interval analysis which measures the
nesting depth of loops. It is also used to estimate the effort of data flow analysis
algorithms in compilers (see Aho et al [1]). The interval 1(h) of the flowgraph G is
a subset of nodes constructed for a node h by the algorithm: 1(h) : = {h};
whi le there exists a node v ^ s, v £ 1(h), all predecessors of v are in 1(h) do

1(h) = 1(h) U h{v}
endwhile.

The node h is a header of the interval. For the partitioning G into a unique set
of disjoint itervals, the header nodes are selected by the algorithm:
c o n s t r u c t I(s);
w h i l e there exists a node h, which is not yet a member of any interval, and all its
predecessors are already members of some interval do

c o n s t r u c t 1(h)
endwhile.

The partit ion of a flowgraph G into intervals leads to the construction of a new
flowgraph 1(G) by the following rules:

• The nodes of 1(G) correspond to the intervals of G.

• The start node of 1(G) is the interval of G that contain the start node of G.

• In 1(G) there is an edge from the interval U to the different interval V if and
only if in G there is an edge from some node in U to the header of V.

The flowgraph in the sequence G, 1(G), I(1(G)),... is the limit flowgraph if it is
equal to its interval partit ion. The flowgraph is called reducible by intervals if its
limit graph is trivial (single node without self-loop). Every flowgraph which is not
reducible contains some multiple-entry loop and therefore is not D-structured. On
the other hand, multiple-exit loops are reducible, and so are some other unstructured
flowgraphs; for example abnormal selections of path (jumps between the branches
on the selection) are also reducible. Also some more complicated unstructural con
structions which are not use loops, for example the construction of Yourdon [25]
and other constructions listed by Williams [24], are reducible. Reducibility is there
fore weaker condition than D-structuredness and also BJ-structuredness, sometimes
called semistructuredness (structuredness with respect to Dijkstra constructions and
the Bohm-Jacopiny construction of the loop with multiple exits - e x i t or q u i t in
the backtracking dictionary). For reducible flowgraph G the measure mdsi(G), de
fined as a interval derived sequence length can be used. This measure is sensitive

Software Complexity as a Software Quality Indicator. . . 347

to nesting depth of natural loops and admits multiple-exit loops, is not defined for
multiple-entry loops, but it is inconveniently tolerant with respect to some other
unstructural constructions than multiple entry loops ^for example the construction
of Yourdon [25]). For irreducible flowgraphs, this measure does not have any tools
for classifying the degree of unstructuredness on more levels then two.

Many other complexity measures are used to try to estimate the level of nesting
complexity and unstructuredness in an appropriate way. For example for each node
v of the flowgraph G the set of all paths from all successors of v to the terminal node
have a uniquely defined node inf(i>) called the greatest lower bound of v. The set of
nodes on all paths from v to inf(t>) is called the context of v. For all nodes on the
context of node v some additional complexity can be defined for example by Harrison
and Magel [6]. Piwowarski [16] has combined this kind of additional complexity
measure with the modified McCabe complexity and has worked out some measure,
which is relatively fine and sensitive to unstructuredness. Howewer, these measures
are not able to distinguish sufficiently the various kinds of unstructuredness, and
it seems to the author that the penalty for unacceptable unstructuredness is not
sufficiently severe in this class of measures.

5 .3 . V e c t o r c o m p l e x i t y m e a s u r e s

Also, some non-scalar measures are used, such as the predicate nesting vector which
ontains three parts: (1) The predicate execution number, which shows for each node

v nesting depth of predicates that determine the execution of v; (2) The number of
loop predicates, which is the number of loops vhich contain v; (3) The degree of
unstructuredness, which quantifies the unstructuredness of the context, described in
the last paragraph. If we add the predicate node p itself to its own range which is
the difference for non-loop predicates, we reach the extended context extcont(v) of
the node v. basically, two predicates p and q are structured with respect to each
other if every path from p to extcont(q) enters this extended context at exactly one
node entry(q). Such a three part vector measure is of course not convenient from
the point of view of measurement theory and additivity.

We can close this section with the conclusion tha t besides the general problem
whether or not it is sufficient to investigate flowgraphs in place of programs or not,
today there is not a flowgraph complexity measure available which is able to support
on a satisfactory level the commonly-accepted view of program complexity.

6. THE A T T E M P T T O AVOID PROBLEMS. T H E LUCID HIERARCHY
AS A PROGRAM MODEL

6 .1 . P r o g r a m hierarchy

After the critique in the last three sections we shall try to offer a new way for
the study of program complexity, based on the theory of Langefots [11] of lucid
structures and top-down design, and the principles of hierarchical design of software
from Jackson [9]. The general idea of this a t tempt is the decomposition of the
complicated and unlucid problem, which is difficult to understand in its entirety into

348 J. VANÍČEK

several lucid problems using given methods of decomposition, with the limitation
for the number of components into which the decomposition is realized in that one
level. If the number of components is too large, it is necessary to arrange the
decomposition procedure into several levels in such a way, that each decomposition
is lucid. The measure of program complexity is the man's effort which is needed for
this decomposition and for the understanding of each part.

Jackson [9] proposes for a D-structured programs' design a graphical represen
tation as directed graph, which is a tree with nodes or edges colored depending
on the decomposition rule used (sequence, selection or iteration). The root of this
tree is the whole program, and leafs are individual statements. Unfortunately this
simple model cannot be directly used for such programs, which contain subroutines
and/or functions, which are called in several points, loops with multiple exits, recur
sive subroutines. It is also not applicable for unstructured (irreducible) programs.
Therefore the generalization of the tree structure to the more general notion of pro
gram hierarchy is necessary. Some ideas of the proposed a t t e m p t are based also on
P h . D . thesis of Dvorak [4] and Pospisil [17].

Let us suppose, that the relation of subroutine calls is acyclic, and there does not
exist any subroutine, without any call, and accessable only by g o t o statement into
this subroutine. Let us further assume that the recursive procedure definition can
be transformed using the transcription rule: DefRec —• HEAD i f P t h e n OUT e l s e
In, where HEAD, OUT, IN are nonterminals, generating the heading, the sequence
of statements which does not contain a recursive call and the statements which may
contain the internal call, respectively. Program, subroutines, recursive procedures
(further abbr. recursions), blocks, loops, selections, subroutine and function calls,
exits, and all other j u m p s which can occur in program, will be called actions. The
entire program is the action of the hierarchical level zero. For all actions of the
level i, the following holds: Each successors of this action in its decomposition, its
children, with except of subroutines and recursions have the level i + 1. The level
of the subroutine and recursion is defined as min(j i , J2, • • • ,jn), where j \ , . . . ,jn are
levels of the action's call. Let us assume that the natural order -< of the set A of
all actions, which is generated by the order in which they are listed in the program,
is given. If we use an (ordered) graph terminology to describe the decomposition
of the program action as an edge on the graph, the program decomposition can be
investigated as a hierarchy with the nodes ordered by this natural order in which
statements are listed in the source program text (so called ordered hierarchy). The
following definition is proposed for the formalization of our situation:

D e f i n i t i o n 4. The quadruple (A,7i,r, E) is called to be a program hierarchy if
and only if (A,7i,r) is a ordered hierarchy with the natural order -<, A is the set
of action of the program r, 7i is the decomposition relation on the set of program
actions and S is a subset of A x A and if and only if the following holds (intuitive
meaning is described in italics):

1. The decomposition A = VQ U Snu BCU ST U SQU SCU W7i unVUSCU
nVunOuniunCuEXU QT is given.
(VQ = {r} denotes a whole program, Sn the set of all subroutine nodes, BC

Software Complexity as a Software Quality Indicator. . . o49

blocks of code with local data structure declarations, ST simple statements,
SQ sequence decompositions, S£ selections (i f then e l s e or case ,) Wn
while loops; nV repeat loops, SC subroutine calls, nV recursion defini
tions, nO the subtrees of the recursion without internal call, nX subtrees of
the recursion contained its internal call, nC internal recursion calls, £X e x i t
(q u i t) statements from loops and QT other (unstructural) goto statements.)

2. If we denote (A,n') the restriction of the graph (A,n) to the set of edges
n' = {(u, v) e n : u £" SC}. Let E C A x A be a relation on A (the set of
edges, which is to be added to the structurogram or r if r is not D-structured)
such that the following for all (a\, a2 £ A A (a\, a2) £ S) holds:
(Natural limitation of unstructural decompositions, described by the set S : All
jumps are allowed in the main program and inside subroutines only, and are
leafs on the hierarchy, and from such a leaf only one edge is allowed, and is
allowed only to some predecessor of this edge on the hierarchy.)

• There is a\ £ £X V a\ £ QT.
• Then exists a connected component of (C, He) of (.4, H') such that a i , a2 £

C.

• If a2 is a root of connected component (C,Hc) and c\ £ C, then c\ £ £X.

• If exists 03 £ A such that (a\ ,a3) en, then (a\, a3) £ S.

• If a\ e £X, then a2 is preccessor of a\.

• There exists some a3 £ A such that [a3, a2) £ H.

3. For all a\, a2, a3, £ A holds:
(Natural conditions for structured decomposition: It is only one root program;
if the program is the set of modules, the virtual root action for its collection
shall be added; each cycle have only one child, its body; recursions have two
children, one without and the second with the recursion call; the subroutine
call has only one child, which is a subroutine or recursion; simple statement,
internal recursion call, exit and goto statement are leafs.)

• VQ = {r}.
• a\ e WnunV A (a\,a2) en,(a\,a3) en=>a2 = a3.
• (a\ e nV A (a\, a2) £ H A (a\, a3) £ H A a\ -<< a3 in the natural order

•<) => ({b e A : (a\, b) e n} = 0 A a2 £ no, a3 e nx).
• (a2 enounx A (a\,a2) £n) =>a\ env.
• (a\ eSC A (a\,a2) en A (a\,a3) en) =>(a2 = a3 A a2 eSnunV).
• (a\,a2)en A a2esnunv) ^a\esc.
• a\eSTunCu£XuQT ^ {(b:(a\,b) £ H} = 0.

The set T = ST U SC U nC is called the set of function nodes, the set V =
Wn U nV U S£ U nV the set of decision nodes. The set of all nodes which are
neither function nor decision nodes is called the set of virtual nodes and is denoted
by V. The set of all children of conditional nodes we shall call the set of conditional
nodes and denote by C. It is clear that TUVUV = A, but each of its sets can have
a non-empty intersection with C. The program hierarachy is called to be complete

,50 J. VANÍČEK

if each leaf of the hierarchy (A,7i,r) is an element of the set of functional nodes
T = STUSCU71C.

Not all types of constructions in the program have to be used. If the progamming
language does not have enough tools for some structured constructions, but some
standard constructions using goto, which corresponds to such costructions as w h i l e ,
r e p e a t , c a s e , e x i t , . . . c a n be identified, such usage of goto s tatement can be
considerred as a respective structural construction.

The concept of program is not formalized in this paper. However for each imper
ative programming language some formal grammar for program frames (programs
without type and d a t a descriptions) can be given, and transcription rules which
transform the program text in an algorithmic way into the program hierarchy can
be proposed. Such an algorithm takes a linear course through the program text,
and using the stack for the initialized but not yet finished program actions. The
concrete implementation of such a algorithms for various programming languages
have been developed by fellow workers and students of the author. The output of
such an algorithm is the program hierarchy a dynamical data structure.

6 .2 . P r o g r a m s c h e m a and t rans format ion o f p r o g r a m hierarchies

For all complete hierarchies, the concept of program schema, which is analogy of this
concept from Zohar Manna [13], can be defined, in which to each function node cor
responds some function action, and to each conditional node some predicate action.
Our schema is howewer more rich, as it contains also abstract nodes, corresponding
to some "virtual" actions which are realized, according to the Dijkstra's philosophy,
by means of its subordinate components.

For complete program hierarchies and corresponding program schemas, extended
program hierarchy and extended program schema respectively, can be defined in
natural way. For the given input data sequence XJ\fV the interpretation of the pro
gram schema (in the terminology of Zohar Manna, more precisly the interpretation
of program schemas signature) can be described. The interpretation is intuitively
clear, but its formal description is relatively time-consuming, due to the variability
of action items and various rules for selecting the successor of the given node de
pending of its type. However, such a formalization using the concept of the so-called
successor depending of the given set of currently inappropriate nodes was given.
The sequence of nodes (r, <-i, ci2,...) called a control path can be derived, and for
the given input is uniquely defined. The corresponding sequence (pi,P2, • • •), where
Pj} j = 1 , . . . is the corresponding function action for functional nodes and is the
empty set 0 for other nodes is called the computing history for all the given input
XMV. Two program schemas VS\,VS2 with the same signature and its interpre
tation are called to be functionally equivalent, if they have the identical computing
history for each admissible input. The complete program hierarchy 7i\ is said to be
transformable to the complete program hierarchy H2 (or H2 to be a transformation
of Tii) if and only if H2 is a extension of Hi and for each program schema of Hi there
exists its extended program schema which is functionaly equivalent to the original
one.

Software Complexity as a Software Quality Indicator. . . 351

The following special type of program hierarchy transformation will be used in
the last subsection. Let v £ A be a node such that two edges u, w £ A exists such
that (u, v) £ H and (w, v) £ S. Let us make a copy of the node w and of the whole
subtree with the root w and add this copy into the program hierarchy as a successors
of the node w. If we now use the goto statement (if the set of nodes which have
been copied coincide with the set of all successor of the youngest common predecessor
inf(w,v) of the nodes v and w, exi t can be used) to the first successor of copied
nodes which have not been copied, the computation history will be preserved. This
method of transformation is called the transformation by means of node copies.

6.3. Complexity measure for well-designed programs

Definition 5. The program hierarchy and each its program schema is called well-
designed if and only if using the notation from the Definition 4 the following holds:

(u,v) £ S => u £ EX.

For such program hierarchies there is QT = 0.

Definition 6. Let (A,7i, r, S) is the program hierarchy, x E A a, node and T(x) =
(T,K,x) the subtree of the hierarchy (A,7i U S, r) which contain only the node x
and its children on the relation H U S. This subtree is called a realization of the
action x. Let k be a natural number, called th^ level of lucidity. The realization of
the action x is called k-lucid if and only if | j A" 11 < k, where ||A'|| is the number of
edges on the realization T(x) = (T, K, x) of the action x.

The numb r k (level of lucidity) should be considered as a psychological limitation
for the understanding of the entire decomposition of the action x. If this limitation
is exceeded, the additional transformation on the next hierarchical level is necessary.
The choice of the constant k is an open question; however our experience leads to
the strong opinion, that k should not be very large and surely should have only one
decimal digit. Perhaps, the choice k in the interval from 5 to 7 (7 for experienced
professionals) is recommendable.

Now we are able to define the decomposition complexity for the realization of
each action.

Definition 7. Let T(x) be the realization of a action x and \K\ the number of

edges on the realization T(x) = (T, K, x). The decomposition complexity DC(x) of

x is defined by:

• If IIKH = 0 then DC(x) = 0.

• If IIKH = 1 then DC(x) = 1.

• If UKII > 1 then

DC(x) = (\\K\\ + k - 3)div(fc - 1) = trunc((||K|| + k - 3)/(]fe - 1)),

352 J. VANÍČEK

where k is the level of lucidity and div the operation of integer division with the
truncation of the remainder.

This formula counts the minimal necessary number of lucid realizations, which
are functionally equivalent to the given realization ofT(x), which can be generally
unlucid.

Sometimes it can be useful to count a decomposition complexity in such struc
tures, which have been unnecessarily decomposed with respect to lucidity, as less
complex than follows immediately from this definition. For this porpose the following
definition can be used:

Definition 8. Let T(x) be the realization of a action x and DC(x) the decompo
sition complexity of x defined in Definition 7. Let C be some order on the set of
action with the following properities:

• if u is a successor of x, then u d x.
• if u, v are both children of the same action x and DC(u) < DC(v), then u \Z v.

It is clear that such an order exists, but in general is not uniquelly defined. Let us
define a new reduced decomposition complexity (more precisely reduced decomposi
tion complexity with respect to C.) RDC(x) for all actions step by step by the order
E as follows:

• (DC(x) > 1 V DC(x) =0)=> RDC(x) = DC(x)

• If DC(x) = 1, let (ui,U2,...) be children of x in the selected order (Z and
n max the maximal index such that

E(x)+]Г ЦГ(tiť)ił < *,
t=i

where fT(z)j| denotes the number of edges on the realization T(z) of the ac
tion z. In this case we shall define RDC(x) = 1 and RDC(ui) = 0 for all
i = 1,.. .nmax. If such a sequence of children does not exist, we shall put
RDC(x) = DC(x).

T h e o r e m 9. There exists an algorithm for the generation of the complete program
hierarchy for each program or program frame and to compute for this program
hierarchy the decomposition complexity (or reduced decomposition complexity) for
each lucidity level k, given by natural number.

Now we are able to propose the global complexity measure for each well-designed
program hierarchy by the formula:

T((A, H, r, H)) = a . £ DC(x) + 0.]T TC(x) + J.J2 IC(x) + 6.]T EC(x),
x£A x£A x£A x£A

where

Software Complexity as a Software Quality Indicator. . . 353

• DC(x) is the decomposition complexity of action corresponding to the node
x, defined by the Definition 7. If it is appropriate this term can be replaced
by the reduced decomposition complexity RDC(x), which is defined on the
Definition 8.
This contribution is zero if x is the leaf in the program hierarchy.

• TC(x) is the natural number defined depending on the set of various types
of nodes in the program hierarchy. One of various possible suggestions for
example is:

* TC(x) = 0 for x € Vn U Sn U BC U ST
* TC(X) = i for x e sc u nv u no
* TC(x) = 2 for x G WH (or TC(x) = 2 -f- c, where c is the number of

nodes in WH U nV U nC U 72.J on the shortest path from the root r
and node x)

* TC(x) = Z ior x £ nV unC unT (or TC(x) = 3 + c, where c is
determined as before)

* TC(x) = 4 for x E £X (or TC(x) = 4 4- c, where c is the number
of nodes in WH unV unCunT on the shortest path from the
youngest common predecessor inf(.r,y) of x and y, where (x,y) € S
is the corresponding exit relation — c is the depth of the exit.)

But this evaluation is dependent on subjective taste and can be the subject of
discussions.

• IC(x) is the internal complexity of the functional and decision node x, which
can be measured by some formula of the Halstead [3] type counting the number
of elementary items on the statement and on the predicate, which is necessary
to compute in the respective node.
This contribution is of course equal zero on virtual nodes.

• EC(x) is the external complexity of the node x which can be measured by
the ammount of fan-in and fan-out data, including parameters and global data
using some appropriate measures from Henry and Kafura [8] or others listed
on Zuse [26]).
This contribution can be very significant in the root node VQ = {r}, where it
describes the complexity of data input and output of the program and in virtual
nodes in V C A such as subroutines or blocks, where cohesion and coupling
can be taken into consideration.

• a, (3,7, 6 € 3ft a r e nonnegative real numbers which can be considered as weights
for the individual views for the global complexity of the program, depending
on preferences.

The concept of global complexity has the sense only for entire real programs with
data structures and statements, not for program frames. If our choice is 7 = 8 = 0 a
global complexity can be called the structural complexity of the program hierarchy
and denoted as

n((A,H,r,Z)) = a.YJDC(x) + {3.YJTC(x).
x&A x£A

354 J. VANÍČEK

This measure can be used not only for entire program but also for program frames.
If our choice is a = 0 = 6 = 0, y=lora = f3 = y = Q, 6=1 the words internal
or external complexity of the program can be used, respectively.

6.4. C o m p l e x i t y for n o t wel l-des igned p r o g r a m s

As it has been demonstrated in the last section the unstructuredness can have a
drastically different influence to the program complexity and lack of understability,
depending on the context in which the unstructural goto s tatement is used. There
fore it is not a way to solve the problem on a adequate level for programs which are
not well-designed using some general penalty constant for TC(x) when x £ QT.

To solve the problem in the case when QT ^ 0 and there exists some (u,v) £ £
such that u 6 QT, we propose transformation by means of node copies, mentioned
at the end of Subsection 6.2, be used. The following theorem can be proved:

T h e o r e m 10 . For each not well-designed program with the program hierarchy 7i
and its program schema there exists a transformation into the well-designed pro
gram hierarchy 7i' such that this hierarchy is well-designed, and 7i and 7i' and
respective program schemas are functionally equivalent. Such a program hierarchy
transformation can be realized by an algorithm. *

The formal description of the algorithm is relatively long and complicated. The
two different cases, the j u m p back and the j ump ahead with the respect to the rela
tion of the left way through the hierarchy, should be separated. Roughly speaking,
the idea is to copy whole subtree of the target of unstructural go to s tatement by
means of a node copy transformation in a different context.

Now we are able to define a decomposition complexity and also the structural
and global complexity for not well-structured program hierarchies by the equation

Ct(7i) = Q(7i'), T(7i) = T(7i'),

where 7i' is the well-designed functional equivalent transformation of 7i from the
Theorem 10. And Q(7i') and if needed, also T(7i') is to be computed using the
formulas in Subsection 6.3.

This method gives the adequate penalty to such unstructural constructions as
is for example multiple entry or overlapping loops, which coincides to the general
intuitive feeling of experts.

6.5. A brief e s t i m a t i o n o f t h e p r o p o s e d m e t h o d

The proposed method has been implemented for several program languages and
sample programs with the relatively good results. The obtained complexity measure
values are able to distinguish in a very subtle way the programs with respect to
understability of its function from the program code, and the results are, in our
opinion, not comparable with any complexity measure proposed before.

The open question of course is the choice of the weight coefficients (a, (3, j and 6)
between structural, internal and external complexity and between the contribution

Software Complexity as a Software Quality Indicator. . . 355

of various types of nodes on the program hierarchy. Our present recomendation is to
use this flexibility of the proposed method for the tuning of the proposed metrics to
our subjective intuitive feeling for the complexity, which may be different for various
groups of experts. On the other hand, our experience leads to the opinion, that the
proposed complexity measure is not very sensitive with respect to the choice of the
lucidity level constant k. Its choice, of course, is also in question.

The main limitation of the proposed measure is the absence of the da ta complexi
ty review in the method. The measure is also oriented mainly to classical imperative
programming languages and is probably not adequate for the measure of complexity
of programs written in object-oriented languages. However, the object-oriented soft
ware complexity measures are, as is shown for example in Zuse [29], in the present
time only in the beginning stages and cannot be considered satisfactory.

The autor submits the method as a modest contribution for the effort to design an
adequate complexity metrics for software on the prepared standard or technical re
port ISO/IEC 9126-3: Information Technology. Software Product Evaluation. Part
3: Internal metrics. This contribution in slightly modifyied form was recorded as
ISO/IEC, JTC1, 7/6-Dub-12 by the working group ISO/IEC, JTC1, SC7, WG6
"Information Technology. Software Engineering. Evaluation and Metrics", on its
Dublin meeting on November, 1995.

(Received December 21, 1995.)

REFERENCES

[1] A. V. Aho, R. Sethi and J. D. Ullman: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA 1986.

[2] M. Behzad and G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon,
Boston 1971.

[3] B. W. jJoehm: Software Engineering Economics. Prentice Hall, Englewood Cliffs 1981.
[4] L. Dvorak: Program Complexity Measurement (in Czech). Ph.D. Thesis. CVUT FEL

& CSAV, Praha 1987.
[5] N.H. Halstead: Elements of Software Science. First edition. Elsevier, North Holland,

New York 1977.
[6] W.A. Harrison and K.I. Magel: A complexity measures based on nesting level.

SIGPLAN Notices 15(1981), 3, 63-84.
[7] M.S. Hecht: Flow Analysis of Computer Programs. Elsevier, North Holand, New York

1977.
[8] S. Henry and D. Kafura: Software Metrics based on information flow. IEEE Trans.

Software Engrg. 7(1981), 5, 510-518.
[9] M. A. Jackson: Principles of Program Design. Academic Press, London - New York-

San Francisco 1975.
[10] D. H. Krantz, D. R. Luce, P. Suppes and A. Tversky: Foundation of Measurement.

Vol. 1. Additive and Polynomial Representations. Academic Press, San Diego 1971.
[11] B. Langefors: Theoretical Analysis of Information Systems. Studentlitteratur, Lund

1973.
[12] D. R. Luce, D. H. Krantz, P. Suppes and A. Tversky: Foundation of Measurement.

Vol. 3. Representation, Axiomatization and Invariance. Academic Press, San Diego
1990.

[13] Z. Manna: Mathematical Theory of Computation. McGraw Hill, New York 1974.

356 J. VANÍČEK

[14] J. Nesetfil: G r a p h Theory (in Czech). Mathemat ica l Workshop S N T L 13, P r a h a 1979.
[15] E . I . Oviedo: Control flow, d a t a flow and programmers complexity. In: Proc. o f C O M P -

SAC80, Chicago 1980, pp. 146-152.
[16] P. Piwowarski: A nesting level complexity measure. S I G P L A N Notices 17 (1982),

9,44-50.
[17] J. Pospisil: P r o g r a m Structure Complexity Measurement (in Czech). P h . D . Thesis.

V U T Brno 1988.
[18] R. E. P r a t h e r : An axiomatic theory of software complexity measure. C o m p u t . J. 27

(1984), 4, 340-347.
[19] R. S. Pressman: Software Engineering: A Pract i t ioner ' s Approach. McGraw Hill, New

York 1992.
[20] F . S . Roberts : Measurement Theory with Applications to Decisionmaking, Utility,

and the Social Sciences. Encyclopedia of Mathemat ics and its Applications. Addison
Wesley, Reading, M A 1979.

[21] D. Troy and S. Zweben: Measurement the quality of s t ructured design. J. System
Software 2 (1 9 8 1) , 113-120.

[22] J. Vanicek: It the software s tandardizat ion possible (in Czech)? Magazfn CSN 10
(1995), 205-210 and 11 (1995), 225-228.

[23] E. J. Weyuker: Evaluation software complexity measures. I E E E Trans . Software Engrg.
14 (1989), 9, 1357-1365.

[24] M . H . Williams: Flowchart schemate and the problem of nomenclature . J. C o m p u t .
26(1983) , 3.

[25] E. Yourdon: Techniques of Program Structure Design. Prentice Hall, Englewood Cliffs
1975.

[26] H. Zuse: Software Complexity - Measures and Methods . De Gruyter Berlin - New
York 1991.

[27] H. Zuse and P. Bol lmann-Sdorra : Measurement theory and software measures. In:
Formal Aspects of Measurement (T . Denvir, R. Herman and R. Whitty, eds.), Work
shops in Comput ing , Springer-Verlag, Berlin 1992, p p . 219-259.

[28] H. Zuse: Complexity metrices/analysis. Software complexity metrics/analysis . In: En
cyclopedia of Software Engineering (J . J. Marciniak, ed.), Vol. I. Wiley, New York 1994,
pp. 131-166.

[29] H. Zuse: Foundat ion of the validation of object-oriented software measures. In:
Deutsche Universitatsverlag DUV, Gaber-Vieweg-Westdeutscher Verlag, Berlin 1994.

[30] H. Zuse: Foundat ion of validation, prediction of software measures. In: Proc. of the
Annual Oregn Workshop on Software Metrics, Silver Fall S ta te Park 1994, pp. 1-16.

Doc RNDr. Jiří Vaniček, CSc, Katedra inženýrské informatiky, Stavební fakulta ČVUT

(Department of Informatics, Faculty of Civil Engineering, Czech Technical University),

Thákurova 7, 11629 Praha 6, and Úřad pro státní informační systém (The Office for

the State Information System), Havelkova 22, 13000 Praha 3. Czech Republic

		webmaster@dml.cz
	2012-06-06T07:48:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

