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K Y B E R N E T I K A — VOLUME 31 (1995 ), N UM BER 3 , P A G ES 3 1 5 - 3 1 9 

A R E M A R K ON EXISTENCE 
OF STATISTICAL FUNCTIONALS 

IVAN M I Z E R A 

An analytical condition for existence of an upper hemicontinuous extension of a stat
istical functional is given. It is demonstrated that it can be interpreted in statistical terms, 
namely, as a positive breakdown point property. 

The use of statistical functionals. as a tool for establishing asymptotic properties of 
statistical procedures, can be traced back start ing from the article by von Mises [10] 
— for references reflecting the further development see Reeds [11] and Fernholz [3]. 
However, the present author owes a credit for introducing him into the field to Hajek 
and Vorlickova [4]. In Chapter 7 of this mimeographed lecture notes, intended to 
serve as an introductory statistics course, a concept of "naive statistics" is intro
duced: 

"By a naive statistics we shall call an approach to estimation of a parameter 
•d and its functions, based on the idea of replacing an unknown distribution 
law by a sample distribution law. . . . If X{ are realizations of random quan
tities X{, 1 < i < n, the sample distribution is defined to be a discrete 
distribution which assigns to every point Xj the probability of 1/n."1 

Compared to the references quoted above, which are concerned with technical ap
plications of statistical functionals, Hajek and Vorlickova [4] emphasize a statistical 
aspect of the functional approach: the use of functionals for construction of statisti
cal procedures. 

In this note, we try to demonstrate how certain existence conditions for statistical 
functionals — although at first sight of purely analytic character — interact with 
statistical properties of functionals under consideration (or, perhaps better said, 
with statistical properties of underlying statistical procedures). 

Particularly, the following problem is investigated: given a statistical functional 
T:V(X) ~~» Y with Dom(jT) C V(X), when does its extension to a larger domain 
(ideally to whole of V(X)) exist. By V(X), the set of all probabilities defined on 
the Borel sets of a Polish space X is denoted; Y is supposed to be a metric space. 

1 Translated from Czech by the author. 
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By B(A,e), the set of all points with distance less than e from A is denoted; if 
A = {x}, we write B(x,e). A functional is, roughly, a function T from V(X) 
to Y — the slightly unusual notation T:V(X) ~* Y is adopted because T in our 
framework is allowed to be multi-valued; hence, formally, a (statistical) functional 
is a function defined on all of V(X) with values in 2Y , the set of all subsets of Y. 
The brief look at some important fields of application — see Huber [7] for instance 
— provides a conviction that procedures which are either not defined at all, either 
not uniquely defined for certain arguments, constitute not just an exception. Multi
valued functions provide a convenient tool for covering these phenomena: the set of 
values can be empty or contain more than one element. Accordingly, the important 
sets connected with T are 

Dom(T) = {x £ X: cardT(x) > 0}, 

Uni(T) = {x <EX: card T(x) = 1}. 

The image of a set A C V(X) under T is defined to be 

T(A) = |J T(P). 
PeA 

To preserve an informal character of the notation, for x £ Uni(T) we identify T(x) 
with its single element, denoted also by T(x). 

Let T: V(X) ~» Y be a statistical functional. We say a functional T: V(X) ~* Y is 
an extension of T if Dom(T) C Dom(T) and T = T on Dom(T). In the most common 
case, Dom(T) = £(X), where £(X) is the set of all empirical probabilities; P G V(X) 
is an empirical probability if it is a sample distribution in the sense of Hajek and 
Vorlickova [4]: if d(x) denotes the point ("Dirac") probability concentrated in x, 
then P can be written as 

1 n 

P = д(xì,x2,...,xn) = - >]д(x i ) 
Гì f • 
n • 1 

1 = 1 

for some a?i, x2,..., xn EX. Usually, T arises from a sequence of estimators (our 
usage of this word embraces some other kinds of statistical procedures as well) 
tn: Xn —> Y which admit a functional representation 

tn(xi,x2, ...,xn) =T(d(x1,x2,.. .,xn)). 

A possible extension of T can be obtained using a concept of the asymptotic value 
— see Hampel [5]: T(P) is set to be too(P), where tOQ(P) is the set of points which 
are approached almost surely (or, alternatively, in probability) by any sequence 
tn(X\, X2,.. •, Xn) such that X\,X2, •.., Xn,... are independent random elements, 
identically distributed according to the law P. 

Although this approach is possible and in a sense minimal, in many cases it is 
more rewarding to use a (more) analytic approach: to seek an extension T which is 
continuous with respect to a topology r on V(X). Not only this approach fits to 
a rather well-studied realm, but it also yields a robustness property for underlying 
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estimators — qualitative robustness; see Hampel [5] or Huber [7]. Moreover, if r 
satisfies the law of large numbers — that is, for every sequence X\, X2, • • •, Xn,. .. 
of independent random elements, identically distributed according to the law P, 
d(x\, X2,..., xn) converges in r to P almost surely — then T(P) = t00(P). Finally, 
the continuity approach can be used also in more general situations regarding the 
initial domain Dom(P). For weak topology, the law of large numbers is implied by 
the Varadarajan theorem (see Parthasarathy [12]); for various topologies similar to 
that generated by the Kolmogorov distance, by suitable extensions of the Glivenko-
Cantelli theorem. 

The framework of multi-valued functions calls also for an extended concept of 
continuity. A functional T is called upper hemicontinuous at P G Dom(T) if for 
every e > 0 there exists a neighbourhood U of P such that T(U) C B(T(P),e). 
From the view of the current theory of multi-valued functions — see Aubin and 
Frankowska [1] — this is an "intermediate" definition: the stronger definition would 
use arbitrary open supersets of T(P) instead of ^-neighbourhoods, the weaker one 
demands T(P) to be only a set of limit points of T(U) while U is shrinking to 
P. We deal overwhelmingly with the case when T(P) is compact, in which all the 
definitions coincide. Note that if T(P) is a singleton, upper hemicontinuity reduces 
to ordinary continuity: more precisely, Pn —+ P and yn G T(Pn) imply yn —* T(P). 
Upper hemicontinuous functions are called also upper semicontinous; we prefer the 
prefix hemi- to avoid a possible confusion of C order with <. 

Every functional T possesses a trivial upper hemicontinuous extension: T(P) = Y 
for every P G V(X) \ Dom(T). Hence, we are interested rather in minimal upper 
hemicontinuous extensions. A functional T is called minimal upper hemicontinuous 
at P G Dom(T), if it is upper hemicontinuous and its value at P is minimal in 
this respect: there is no A C T(P) such that given any e > 0, there exists a 
neighbourhood U of x with T(U \ {P}) C B(A,e). 

Proposition 1. Let A be dense in Dom(T). A functional T:V(X) ~» Y, upper 
hemicontinuous at P, is minimal upper hemicontinuous at P if and only if for every 
y G T(P) there exists a sequence Pn G A such that Pn —* P and T(Pn) —> y. 

P r o o f . Straightforward. d 

Minimal upper hemicontinuous function is determined by its values on a set A 
dense in Dom(T). Quite often is Uni(T) dense in Dom(T). This slightly simplifies 
the picture. 

Proposition 2. Suppose that P G Uni(T). The following are equivalent: 

- the restriction of T to Uni(T) is continuous at P (as an ordinary single-valued 
function); 

- T is upper hemicontinuous at P; 

- T is minimal upper hemicontinuous at P. 

P r o o f . Straightforward. D 
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The necessary and sufficient criterion of Lechicki and Levi [9] — see also Lechicki 
and Levi [8], Hola [6] — employs the notion of subcontinuity. A functional is called 
subcontinuous at P £ V(X), if there exists an open set U C V(X) such that P £ U 
and T(U) is contained in a compact subset of V. (Note that P £ Dom(T) is not 
required.) 

P r o p o s i t i o n 3 . Let T:V(X) «>-» Y be a closed-valued, upper hemicontinuous 
statistical functional. An upper hemicontinuous extension T:V(X) -v> Y compact-
valued and minimal upper hemicontinuous at Dom(T) \ Dom(T) exists if and only 
if T is subcontinuous at each P £ Dom(T) \ Dom(T). 

P r o o f . Follows from the Theorem 1.8 of Lechicki and Levi [9]. • 

Now, suppose tha t the topology r on V(X) is generated by a metric — for 
instance, for the weak topology it can be the Prokhorov metric. If Y is compact, 
subcontinuity trivially holds at every point. In the case of noncompact Y, the 
breakdown point of T is usually defined to be 

s*T(P) — inf {e > 0: there is no compact K C Y such that T (B(P ,e ) ) C K) , 

in the functional setting — compare Hampel [5]. 

P r o p o s i t i o n 4 . A functional T is subcontinuous at P if and only if £j^(P) > 0. 

P r o o f . Straightforward. • 

The breakdown point is known to be a robustness property; here we can see 
tha t it also influences existence properties of statistical functionals. Thus, starting 
from a functional defined on empirical probabilities, we can expect tha t a agreeable 
extension exists if the functional exhibits positive breakdown point. However, the 
following should be noted. The usual finite sample breakdown point, as defined 
by Donoho and Huber [2], is evaluated for P empirical; among the empirical prob
abilities of the same size; and with respect to the total variation metric. Hence, to 
have positive breakdown point in the sense of the definition given above, one should 
elaborate a possible extension (of a possibly existing breakdown result): general P 
( that we want to extend on) should be considered; all empirical probabilities are 
allowed as contaminations; and, possibly, a different metric, say, one of those sat
isfying the law of large numbers, should be ivolved (the last point may be simply 
dictated by an unsatisfactory features of the total variation topology). Nevertheless, 
in many cases such an extension turns to be quite straightforward. 

Finally, it should be admitted tha t in a vast majority of cases, a suitable ex
tension can be found directly, using a surrounding statistical background. Neverthe
less, a purely existential criterion may be useful in more complex situations, which 
are of special interest particularly nowadays, in connection with introducing robust 
methods into more structured problems. 
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