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FUZZY ZERO, ALGEBRAIC EQUIVALENCE 
YES OR NO? 

M I L A N M A R E Š 

When some algebraic properties of fuzzy numbers and, more generally, fuzzy quantities 
are investigated then it appears useful to study more deeply the notion of "fuzzy zero" and 
of the additive equivalence derived from it. This was done, e.g. in [2], [3], [4], [5] and in 
some other related papers. 

In fact, the idea of fuzzy zero, and especially the concept of additive equivalence evi­
dently provoke some questions. Namely, if exactly this concept of fuzzy zero really reflects 
the intuitive vision of negligibility, connected with the zero. Further, if the equivalence 
concept based on such fuzzy zero is distinguishing enough, i.e., if elements equivalent in 
this sense are also similar regarding the common understanding of similarity. In this con­
tribution we briefly recall the necessary notions and discuss some aspects of the questions 
mentioned above. In this sense, the following paper does not offer new formal results but 
it summarizes discussion arguments regarding the usefullness and acceptability of a few 
notions derived to explain the behaviour of fuzzy quantities as algebraic objects. 

PART I : C O N C E P T S AND TOOLS 

1. BASIC C O N C E P T S 

In the whole paper we denote by R the set of all real numbers. 
By fuzzy quantity we call any fuzzy subset of R with membership function / j a : 

R -+ [0,1] fulfilling 

3^o G R : /-a(aro) = 1, (1) 

3xi, x2 £ R, xi < x2, Vz £ [x\,x2] : fia(x) = 0. (2) 

The set of all fuzzy quantities is denoted by IR. 
If a G IR then we denote by —a the fuzzy quantity with 

H-a(x) = Ha{~x) (3) 

for all x G R. If y G R then (y) is the degenerated fuzzy quantity with 

/-(y)(-v) = 1, V(y)(x) = Q f o r x ^ y . 
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There are two types of fuzzy quantities which deserve special attention. We say 
tha t a G IR is trapezoidal iff there exist real numbers a\, a0, a'0, a2 £ R, a± < a0 < 
a'0 < a2 such tha t 

y.a(x) = (x - ai) / (a0 - a\) for x € (<~i, UQ], 

= 1 for x G [a0,a'0], 
(4) 

= (x -a2)/(a'0 - a2) for x G [a'0, a2), 

= 0 for x (fc (ai, a2), 

where equality a\ = ao naturally implies fia(x) = 0 for x < a0, fia(a0) = 1, and 
a'0 = a2 implies f-ia(a'Q) = 1, jia(x) = 0 for x > a'0. Every trapezoidal fuzzy quanti ty 
a is fully characterized by the quadruple (ai,a0,a'0,a2). 

Trapezoidal fuzzy quantity a G IR characterized by the quadruple (a\,a0,a'0,a2) 
is called triangular iff ao = a'0. Then we also say that a is characterized by the triple 
( a i , a 0 , a 2 ) . 

Due to the representation principle [1] we define the sum of fuzzy quantities 
a © 6, a, b G IR, as fuzzy quantity with membership function 

Va®b(x) = sup (mm(fia(y), [*b(x - y)) , x G R. (5) 
yeR 

Analogously, the product of a, b G IR is a fuzzy quantity a 0 b with membership 
function 

HaQb(x) = sup (min(/ i a(y), fib(x/y)), x G R, x ^ 0, (6) 
y€R,y?0 

HaQb(0) = max( / i a (0 ) , /ifc(0)) 

If r € R, a G IR then the crisp product of r and a is the fuzzy quantity r-a= (r)(-)a, 

i.e. f o r a n y z G H ( ) _ , f ) [{ , Q 

( 7 ) 
= H(o)(x), i f r = 0. 

In the whole paper the equality symbol a = 6 for a, 6 C IR denotes the identity 
between membership functions, i.e. / i a(x) = fib(x) for all x E R. This strict 
equality does not correspond with the vague nature of fuzzy quantities, and it can 
be considered for a source of some difficulties. Then some kind of weakening of this 
equality relation is desirable, and a major part of this contribution is devoted to the 
discussion and verification of one of such weakenings. 

2. P R O P E R T I E S AND PROBLEMS 

It is easy to verify (cf. [1], [2], [4] and other works) tha t for a, b G IR and r G R 

a 0 6 = 6 © a , a © (b © c) = (a © 6) © c, a © (0) = a, (8) 

and also 
r -(a ©6) = (r • a) ® (r -b). (9) 
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All these properties are useful. Their applicability would be much wider if IR is a 
group or linear space, it means if 

oe(-o) = (o), (io) 
{r1+r2)-a = (r1-a)e(r2-a) (11) 

for rx, r2 £ R, a £ IR. 
The fact that (10) and (11) are not generally fulfilled means a serious complication 

if some classical procedures with crisp numbers are to be extended to fuzzy numbers 
or fuzzy quantities. 

There are two possible reactions on the fact that IR is neither a group nor a linear 
space. We can either accept this fact and to respect the essential constraints of the 
arithmetics of fuzzy quantities. Or, we can re-consider the concepts and to ask if our 
demands are adequate to the nature of fuzziness. If we conclude that the processing 
of fuzzy quantities represented by (5) and (7) and reflected in (8) and (9) violates 
their fuzziness, it could be useful to suggest a weakening of some concepts. Wishing 
to do so we should study and discuss the relation between fuzziness and classical 
algebraic concepts. It was done, e. g., in [2], [3] or [4]. Here we briefly remember and 
re-consider the conclusions. 

3. ROOTS OF PROBLEMS AND FUZZY ZERO 

There are two equalities (10) and (11), which are not generally valid even if their 
validity can be desirable. The reasons of these two discrepancies are different. 

The situation can be relatively more simple regarding relation (10). It is paradoxal 
to demand strict equality between left-hand-side fuzzy quantity and the right-hand 
side crisp number. Hence, some weaker similarity relation can solve the problem. In 
fact, as the sum of a fuzzy quantity a and its opposite —a should be something like 
fuzzy zero, it is natural to base this similarity on the fuzzy zero concept. 

The interpretation of the fact that (11) is not valid is not as easy as the previous 
case. As shown in [3] and [5] neither the weaker similarity based on fuzzy zero can 
generally guarantee the distributivity of that type. It can help only in some special 
cases. This is very unpleasant as it means, e.g., that even very simple equality 
2 • a = a © a is not generally fulfilled. Nevertheless, the full distributivity, i.e. 
the fact that multiple addition of elements is equivalent to the multiplication by a 
natural number seems to be too connected with determinism or with quite limiting 
properties of the input elements (see [1]). 

As mentioned above, the remaining group property (10) and in some special cases 
also the distributivity (11) can be achieved if we use the specific properties of "fuzzy 
zero". To do it precisely it is necessary to introduce the following formalism (see 
[3], [2]). 

If y £ R, a £ IR then we say that a is y-symmetric iff for any x £ R 

^a(y + x) = fia(y-x). (12) 

The set of all y-symmetric fuzzy quantities is denoted by §y and by § we denote the 
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union 
§= U--V 

yeR 

One of especially significant types of y-symmetry are the O-symmetric fuzzy quan­
tities. Exactly they will be used to represent our idea of fuzzy zero. The O-symmetric 
distribution of possibilities gives balanced chance to both, positive and negative, 
values of the considered fuzzy quantity. Moreover, the O-symmetry possesses some 
other essential properties of the zero element. Namely, for any a £ IR, 

a © ( - a ) G § o , (13) 

and for a £ IR, s £ So also 
a © s £ S0 . (14) 

The first one of these two properties tends to some weaker form of the validity of 
the remaining group property (10). The second property (14) shows that this type 
of fuzzy zero has not only the additive properties of zero but it also has the strength 
of zero in the multiplication operation. Obviously, s = —s for s £ So, too. 

There are infinitely many O-symmetric fuzzy quantities forming a set closed re­
garding addition ©, product © and the crisp product. It means tha t for s\, s2 £ 
So, r eR 

s i © s 2 £ § 0 , s i 0 s 2 £ S o , r - s i £ § 0 , (15) 
(see [2], [3], [4]). 

If we deal with an infinite set of zeros which are in certain sense equivalent in 
their "zeroness" it could be useful to extend this equivalence to the whole set IR and 
to part IR into disjoint equivalence classes. This approach was used and discussed, 
e.g., in [2] and [3] and in some other papers. 

4. ALGEBRAIC EQUIVALENCE 

If we consider all O-symmetric fuzzy quantities for being equivalent representatives of 
fuzzy zero then it is possible to extend this principle to more general fuzzy quantities 
from JR. Namely, we can say that two general fuzzy quantities are equivalent if they 
differ in O-symmetric component, i .e. iff their differences can be represented by 
fuzzy zeros. 

More exactly, if a, b £ IR then we say tha t a is additively equivalent to b and 
write a ~ $ b iff there exist s i , s2 £ So such tha t 

a © s i = 6 © s 2 . (16) 

It is not difficult to verify (cf. [3]) tha t 

a~®a, a ~® b <==> b ~ e a, a ~ 0 b A b ~ $ c ==> a ~® c, (17) 

and tha t , moreover, , . _ / 1 Q \ 
a ~© 6 <^=> r • a®c~® r -b@c (18) 

for r £ R, r -£ 0, c £ IR. 
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Due to (17), ~® is a regular equivalence relation which parts IR into disjoint 
equivalence classes. If y £ R and a £ § then evidently 

(y) £ §y and a ~ e (y) <==> a £ S^. (19) 

It is easy to verify that every trapezoidal fuzzy quantity a £ IR characterized by 
the quadruple (ai, a0, a'0, a2) is equivalent to the triangular fuzzy quantity b charac­
terized by (bi,bo,b2) where 

b0 = (ao + a0)/2. 

h = ai + (a0 - a0)/2, 

h = a2- (a'0 - a0)/2, 

as a = b © s, where s is O-symmetric trapezoidal fuzzy quantity characterized by 
(si,s0,s'0,s2) fulfilling 

Si = s0 = (a0 - a'0)/2, 

si = s'0 = (a'0 - a0)/2, 

(i.e. s is a crisp interval [si,s2]). This procedure can continue, and b is generally 
equivalent to triangular c £ IR characterized by (ci,c0,C2) where 

b = c 0 s, 

s £ §o is triangular, characterized by (s~i,s~o,s2), 

so = 0, si =-m'm(bo-bx, b2-b0), s2 = min(60 - h, h — b0), 

co = b0, ci = 6i + S2) c2 = b2 -s2. 

The pair (c, s0s ) represents the maximal reduction of a to symmetric and "irregular" 
component (see [6]). 

It is discutable if this kind of equivalence is natural, i.e., if it reflects the intuitive 
feeling of similarity between fuzzy quantities. In the remaining parts of this paper 
we briefly deal with this question. 

PART II: ARGUMENTS AND DISCUSSIONS 

5. WHAT IS WRONG WITH EQUIVALENCES? 

The objections against the idea of additive equivalence can be grouped into three 
principal arguments. 

The first one is based on the intuitive idea of similarity between fuzzy quantities 
which really need not correspond with the one expressed by the relation ~®. Indeed, 
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fuzzy quantities a, b G IR such that 

Ha(x) = 1 for x e [-999, 1001], 

= x + 1000 for x G [-1000, -999], 

= - x + 1002 for arG [1001, 1002], 

= 0 for x <£ [-1000, 1002], (20) 

fib(x) = X foг x Є [0,1], 

= - x + 2 for x Є [1,2], 

= 0 for x<£ [0,2] 

are equivalent, and both of them are also equivalent to (1). The same is true for 
c, d G 1R such that 

/J,C(X) = - x + 1 for xG [0,1], 

= x - 1 for x<E [1,2], 

= 0 for x £ [0,2], 

fid(x) = |sin(x—1)| for x G [—7r + 1,7T + 1], 

= 0 for x g [ -7 r+ l ,7 r+ 1]. 

Evidently a ~ 0 (1) or b ~ $ c and b ~® d however different they are. But, on the 
other side, none of them is equivalent to e G IR, 

fie(x) = 1 for x G [-999, 1001], 

= ax+ (3 for xG [-1000.01,-999], 

= - x + 1 0 0 2 for xG [1001, 1002], 

= 0 for x £ [-1000.01, 1002], 

with a = (1/1.01), /3 = (1000.01/1.01), in spite of the fact that real difference 
between a and e is purely negligible. Hence, the equivalence ~® on one side forms too 
wide equivalence classed and, on the other side, ignores some very close similarities. 

The second objection which can be given against ~® is that even symmetric and 0-
symmetric noise is a significant characteristic of fuzziness. It describes its extent (or 
dispersion) and in this sense ignoring this component of a fuzzy number we neglect 
an important information about it. Really, equivalence between a G IR given by (20) 
and (1) means that one remarkable property was not taken into consideration. 

The third objection is of rather different sort. The universality of ~® is not as 
wide as it could seem to be if we know (18). In fact, the additive equivalence is 
completely useless if we have to multiply fuzzy quantities. It is not preserved by 
multiplication (except the very special case of multiplication by 0-symmetric fuzzy 
quantities - cf. (14)), and it does not guarantee the group properties of multiplication 
(see [3]) or, generally, the distributivity (see [3] and [4]). 
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6. WHAT IS EQUIVALENCE GOOD FOR? 

In spite of the objections mentioned above there are also a few reasons which moti­
vate the suggestion of the additive equivalence ~®. Let us remember them. 

First, as already mentioned above, the crisp zero (0) as result or component of 
calculations with fuzzy numbers is not adequate to their character. It does not allow 
to rely on the group property of a 0 (—a) being zero-valued but, what is worse, it 
implements the crisp view and crisp demands into the processing of fuzzy quantities. 
The additive equivalence ~ $ is a logical consequence of interpreting 0-symmetric 
quantities as fuzzy zero, and of the fact that for any a £ E the sum a 0 (—a) is 
0-symmetric. 

Consequently, and it is the second argument for introducing ~ $ , the fact that 
a = 6 implies a ~ 0 6, together with (8) and (13), means that the set IR with op­
eration 0 forms an additive group where the equivalence ~ $ is considered instead 
of the equality. Group properties are useful and widely exploited in many algo­
rithms. Their, even weakened, validity has attractive consequences for the effective 
processing of fuzzy data. 

Moreover, due to (14), also the product of any a £ IR and fuzzy zero is fuzzy 
zero, i.e. it is equivalent to (0). 

The additive equivalence does not generally guarantee the validity of the distribu-
tivity (11) in a weaker form 

( n + r2)-a ~ 0 ( n -a)®(r2-a), n , r2 € R, a € IR. (21) 

Nevertheless, (21) is fulfilled for some classes of fuzzy quantities. The fact that 
it is true for a £ § (i.e., for a being y-symmetric for some y £ R) is not very 
significant. Evidently, if we ignore the 0-symmetric components of fuzzy quantities, 
and if a £ §y , i.e. a = (y) 0 s, for some y £ R, s £ §o then (21) reflects the 
distributivity for crisp (y), only. 

It is much more significant to note that (21) is fulfilled for trapezoidal a (see [5]). 
The class of trapezoidal fuzzy quantities is relatively important by itself, but the fact 
mentioned in the previous sentence, combined with (18) means that the distributivity 
(21) is fulfilled also for any a £ IR which is additively equivalent to some trapezoidal 
6 £ IR. Indeed, if a ~® 6 for a, 6 £ IR, 6 trapezoidal then a 0 s\ = 6 0 s2 for some 
«i) s2 £ §o, and 

(ri -f r 2 ) - a ~ e ( n + r2)-a@ (rx + r2)-sx = (n. +r2)-(a® s{) 

= (ri -f r2)-(6 0 s2) ~ e (ri -f r2)-6 ~ e n - 6 © r 2 - 6 ~® rx b 0 n s2 0 r2-6 0 r2-s2 

= ri(6 + s2) 0 r 2 ( 6 + s2) = n -(a 0 si) 0 r2 -(a © si) ~® r t a 0 r2-a, 

where (18) and (9) were used. The set of fuzzy quantities which are equivalent to 
a trapezoidal one is quite rich, and it can cover very large class of eventual applied 
problems. On the theoretical level the previous conclusion means that the class 
of fuzzy quantities IR C IR which are equivalent to trapezoidal fuzzy quantities 
forms a linear space with the additivity operation 0 , with the multiplication by 
real number represented by the crisp product, and with the additive equivalence ~® 
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used instead of equality. This formal but for theoretical purity essential conclusion 
represents an impor tant argument for considering the equivalence ~ ® . 

Omit t ing symmetric component of fuzzy quantity can be interpreted and in some 
cases justified by the need to reduce the extent of fuzziness cummulated during its 
processing. It is evident and well known tha t the addition of fuzzy quantities gener­
ally increases the support of their membership functions and after a few additions 
of fuzzy quantities the extent of possible values of the output quantity may be too 
large. Part i t ion of such quanti ty on 0-symmetric and non-symmetric component (cf., 
e- g-> [6]), and omitt ing the 0-symmetric one can limit the support of the membership 
function to an acceptable and manageable extent. This procedure is especially ef­
fective in the case of trapezoidal fuzzy quantities or fuzzy quantities from IR which 
can be reduced to triangular core, as mentioned in Section 4. 

The last consequence of the additive equivalence, namely the reduction of fuzzy 
quantities to their non-symmetric "core" (cf. [6]) can be especially useful for the 
defuzzyfication of results of some complex procedures. For the trapezoidal quantities 
this reduction is quite effective. 

7. CONCLUSIVE REMARKS 

It is not easy to weight the arguments summarized in the previous two sections in 
order to formulate some balanced evaluation of the additive equivalence concept. 
Each equivalence which is not the strict identity stresses some features of the con­
sidered objects, and suppresses some others. It is the mat ter of actual application 
or of specific theoretical problem being solved, to decide whether the given type 
of equivalence reflects the very type of similar features or not. The formally very 
different but in its proper nature analogous problem appears in the L2 functional 
spaces regarding the equivalence of their elements through the almost everywhere 
equality. 

In our case the suggested type of additive equivalence stresses the formal algebraic 
properties and, consequently, it is especially adequate to the formulation and solution 
of general theoretical problems. In practical applications, may be, the similarities 
illustrated in Section 5 by fuzzy quantities a and e can appear more important . But, 
in such case, it is necessary to accept some serious theoretical difficulties whenever 
classical algebraic methods should be used. 

Analogous approach can be accepted regarding the decomposition of some fuzzy 
quantities into 0-symmetric and irregular component. Generally, every a £ IR can 
be parted into a sum 

a = b®s, s G § 0 , 6 e I R . (22) 

Where, in some extremal cases, may be s = (0) or b = (y), y E R (cf. [6]). It is 
possible to interpret s as a regular, symmetric or balanced component of a, and b as 
its irregular, unbalanced "core". Each of them represents another type of fuzziness, 
and it depends on the actual application or problem, which one of them is considered 
for being significant. Generally, such decomposition decreases the extent of the 
supports of the membership functions as mentioned in Section 6. Independently 
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of the importance of particular components of a in (22), the possibility of such 
decomposition opens an interesting view on the structure of fuzziness. 
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