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K Y B E R N E T I K A ČÍSLO 6, R O Č N Í K 6/1970 

Decomposition Translations and Syntax 
Directed Translation Schemata 

JlŘÍ KOPŘIVA 

Some important kinds of decomposition translation of context-free languages are concerned 
and proven not to give more than syntax-directed translation schemata. 

1. INTRODUCTION 

The notion of "well-translation" was introduced in [1] and [2]. Its further formal­
ization and properties are explored in [3], [4] and [5]. On the one hand, its relation 
to the special context-free grammars (namely LR(k) and LL(k) grammars, [3]), 
on the other hand, its realization on the pushdown automata (transducers, [3], [5], 
or assemblers, [4]) is studied. The method of formalization used in [3] bears some 
resemblance to the way to the semantics formalization of context-free languages 
due to E. T. Irons (e.g. in [6]). The method of formalization used in [4] and [5] 
is characterized by the authors to be a generalization of the notion of context-free 
grammars and has proven to be very useful as to getting interesting results concerning 
the existence of the hierarchy of syntax-directed translations depending on the maximal 
number of metavariables in a transcription rule on the one hand ([4]), and the con­
nection with the homomorphism of the word sets over a finite alphabet and other 
properties of translations, but also of the single languages (e.g. unambiguity), on the 
other hand ([5]). 

The original definition of the "well-translation" is contiguous to a mapping of the 
rule set of the input language grammar into that of the output language grammar 
while certain conditions are satisfied (cf. [1], [2]). After the phrase marker of the 
input sentence has been found the vertices of which are labelled by input grammar 
rules, the vertices are labelled by output grammar rules obtained with help of the 
mentioned mapping. Simultaneously the labelling of edges is changed properly and 
thus the phrase marker of the desired translation has been obtained. 

Let now a procedure, so called decomposition procedure, be given, which provides 



•*** a decomposition of each element of some set of phrase markers over the given input 
grammar. The elements of this decomposition are subtrees of the considered tree. 
If several mappings of the rule set of the input grammar are given instead of one and 
if we know which of them is to be used in transforming the just considered subtree, 
the decomposition transformation and decomposition translation have arised, which 
were introduced in [7] pursuant to the demand of linguists for the natural languages 
investigation. 

The question arises what kind of relation will hold between the decomposition 
trantlation and the well-translation (or the syntax-directed translation as its formaliza­
tion). The answer is given by theorem 3.1 for certain important decomposition 
procedures. 

2. DECOMPOSITION TRANSLATION 

Definition 2.1. A context free grammar (CFG) G is a system 

(1) G = (V Z, P, S), 

where Vand Z are disjoint finite sets of metavariables and terminal symbols, respect­
ively. S e Vis the sentence symbol. P is the finite set of rules r of the form A -*• x, 
the so called context-free rules, where A e V and a e (Vu Z)*. Then we write A = 
= Se(r), a. = m(r). If (A -> a) e P, {/?, y} c (Vu Z)*, then we write f$Ay => j?ay. 

The relation => is defined by a => a for each a e (V u Z)*, and whenever a => B and 
G G v / G 

P => y, then a => y. The language generated by G, denoted L(G), is {w | w e Z* A 

A S => w}. Then L(G) is a context-free language (CFL) and each w is its phrase. 

* * 
Note. Sometimes we shall write => and => instead of => and => , respectively, if G is obvious 

G G 

or will be constructed completely later. 

Definition 2.2. A sequence 

(2) ao,«i , . . . ,o_. 

of strings such that the following conditions hold: 

a) a ; e (V u Z)* for each i, 0 _ t _ m; 
b) a0 = S, a,„ e Z* ; 
c) af_, => a, for each /, 1 < i < m 

is called a derivation of the phrase a„, in the grammar (1). 



More generally the name derivation in G is used also for a sequence (2) satisfying 4U5 
a), c) and 

b') a0 e V 

or only a), c). (If necessary we speak of an a0 — derivation of am, e.g. an S-deriva-
tion.) , , 

Definition 2.3. Let (2) be an 5-derivation of a,„ e I* and let M be an oriented tree, 
the vertices of which are labelled by the rules of P of the grammar (l) and whose 
edges are labelled by the natural numbers in such a way, that the following holds: 

a) The root is labelled by a rule r such that J£(r) = S; 

b) let 

(3) X0 -> w0XlwiX2... w t_ tXkwk . ,. . 

be a rule of P, where Xt e V, wt e I* for each i, 0 < i' = k, k *g 0. Let (3) labels some 
vertex of M. Then exactly k oriented edges emit this vertex. Their labelling by the 
numbers 1, 2 , . . . , k shows their correspondence to the metavariables XlrX2, •,Xk 

of (3). The end vertex of the edge i is then labelled by a rule r with &(i) =? Xt, \ <; 

Then M is called a phrase marker of (2) (but also of the phrase a,„) over the gram­
mar (1). ! 

Note. If v is a vertex of M from the definition 2.3 then let <p(v) denote the rule 
labelling v. Also we denote L(M) = am. ,.D ,••;,, ••. 

Example 2.1. Let G = ({A, B}, {a, 6}, P. /i) be a CFG, where P = {/,, r2,;*-3, r4} and rj = 
= A -> aB, r2 = A -> b, r3 = B —> Aa, c4 = B -> 6. Let us consider the derivation 

(4) • . A => aB => aAa => aba . 

The generation tree of (4) (cf. [11]) is , , . , , -

A ' v ' : : l ' ' - • ' • > • • • • ' » 

• \ 
a B . • i , \ .• , : 

• \ . . . 
. 4 a . ' • • • , . . . . , < , 

I 

while the phrase marker of (4) may be drawn as follows: ,, ; , .;; ' ,, 

r , ' •! : . •' ; v > -•': ; . • • •< 

l i u . , : . , : , , : « . . r 
r3 

' . . 1 1 • • • ' - , ! , . J , .« 



Note 1. Such a mapping of the set of all the generation trees onto the set of all the phrase 
markers over the same context-free grammars that the tree and marker of the same derivation 
correspond each other is a one-one mapping. Thus the phrase marker describes fully the syn­
tactical structure. 

Note 2. The following property of the phrase marker will also be important in what follows: 
Context-free rules can be a part of a system which is more general than context-free grammar. 
E.g. some of these rules may be used only under certain conditions (cf. e.g. [9], [12]). Nevertheless, 
the phrase marker M describes the structure of L(M), though it cannot be said to be a phrase 
marker over a context free grammar. In such a case, the phrase marker does not show the condi­
tions underlaying the use of rules. In order that we may show these conditions we must have 
a more general tool (cf. e. g. [10] for context-sensitive languages). 

Note 3. A phrase marker can be used to describe the syntactical structure also in case we have 
the more general case of derivation, namely one satisfying a), b'), c) in the definition 2.2. 

Definition 2.4. Let KM be (here and also in the following text) the set of all the 
vertices of the tree M. Let M be a phrase marker and L such a subset of KM that it 
contains the root of M, and let v e L. Let us denote M(v) the maximal oriented subtree 
of M such that the following holds: 

a) uistherootofM(y); 
b) if w 4= v, w is a vertex of M(v), and w e L, then w is an end vertex of M(v) (i.e. no 

edge emits it). 

Then the set 

{M(v) \veL} 

is called a decomposition of M (induced by L). 

Note 1. It is obvious that 

U KM(») = KM 
Vf=L 

and KM(V) C\ KM(W) contains at most one element for v 4s w. Further, if w is a vertex of M(v), 
then the only path connecting in Mthe root of M with w goes through v (or ends here if w = v). 

Definition 2.5. Let h be such a mapping of P of (1) into P' of CFG G' = (V, A, P', S) 
that the following holds: if r e P is of the form (3), then 

(5) h(r) = X0 -+ w'0Zlw[Z2 ... w'k.^Zkw'k, 

where Xt = Zn^ for all i, 1 <J i ^ k, and 77 is a permutation of k objects (cor­
responding to the considered rule r and mapping h) and wj e A* for all i, 1 ^ i ^ k. 
Then h is called a "well-transformation" of G into G'. 

Note. In the original definition of the well-transformation (cf. [1], [2]) also a semantical de­
mand of the meaning conservation was formulated in a convenient way. Further there was there 



a proper mapping of V of G into (generally from V different) V of G'. This difference of meta­
variable denotation is unnecessary for our formal approach and after all, it would be cumbersome 
for the further formalization we want to reach. Also, on the contrary to [1] and [2], we have not 
two kinds of terminal symbols (namely proper and auxiliary ones), which are also unnecessary 
here. The verification of the meaning conservation is getting over the scope of this paper. It 
would force us into dealing with some method of context-free language semantics formalization. 
(The method developed in [8] seems to be useful in studying a generalization of syntax-directed 
translations, but this will be subject of another paper). 

Definition 2.6. Let h be a well-transformation of (l) into G' = (V, A, P', S) and 

let M be a phrase marker over G. For each v e KM let us replace <p(v) by h((p(v)) and 

simultaneously, as to the edge labelling, i is replaced by TI(i), where 77 is the permuta­

tion corresponding to (p(v) and h. The oriented labelled tree M = f(M) arising from M 

in this way is a phrase marker over G'. The mapping / of the set 9M of all the phrase 

markers over G into the set of all the phrase markers over G' is called a "well-trans­

lation". 

Note. If G is unambiguous, then the set of pairs 

(6) {(*, y) | 3 M ( M e SR A X = L(M) A v e L(f(M)))} 

is a mapping of L(G) into L(G'). But even if G is not unambiguous we define (not at variance 
with the definition 2.6): 

Definition 2.7. Let G, G' and h be the same as in the definition 2.6. Then the set (6) 

is called a "well-translation" of the CFL L(G) into the CFL L(G') (induced by 

the well-transformation h). 

Note. The process described in the definition 2.6 may be used also in case we have an "in­
complete" phrase marker M introduced in note 3 after the example 2.1. The result is then of 
course an incomplete phrase marker M describing the structure of a string in (V U A)*\ this string 
contains metavariables, viz. the same as L(M) does, and each of them in the equal number of 
occurrences as in L(M). 

Definition 2.8. F o r m _ 1 let hu ..., hm be wel l - t ransformat ions of (1) into context-

free g r a m m a r s G . , . . . , G„„ resp. , where Gt = (V, _ f , Ph S) for each i, 1 = i ^ m. 

Let M be a phrase m a r k e r over G a n d let 

(7) {M1 ; . . . ,M„} 

be a decomposition of M. Let j = j(i) be a function mapping {1,2, . . . , n} into 

{1,2 , . . . , m}. 

Holding each subtree Mt of (7) for an incomplete phrase marker (in the sense of 

the note 3 after the example 2.1) let us replace it by the corresponding Mt (using /i j ( j ) 

in the sense of the note foregoing this definition). At the same time, the mappings ht 



498 are supposed to satisfy the following implication: 

(8) , (KMp n KMq = {v} A <p(v) = r) =» (h,(p)(r) = *.„„(-)) 

, , •; -i . for all p , q, I ^ p , q ^ m . 

The phrase marker M arising from M in this way is called a decomposition trans­
formation of M. 

i Definition 2.9. Let 0> be a decomposition procedure, whose range is some set 9M 
of phrase markers over (1), i.e. a procedure yielding a decomposition of the form (7) 
for each M e SR-. Let further fcls..., nm be weell-transformations from definition 2.8 
and lastly let the corresponding function j(i) be given for each M 6 501. The mapping/ 
yielding the decomposition transformation M for each M e 5DJ on the strength of the 
corresponding decomposition and function j(i) is called a decomposition transforma­
tion of the grammar (1). 

Note. A question arises what are the properties of a decomposition translation being an 
analogy of the well-translation of CFL (cf. definition 2.7). The difficulty consists in what is 
a convenient description of both the input and output language, for we have only a subset of the 
whole set of all phrase markers on the one hand and more output CFG's on the other hand. All 
these grammars have the same common set of metavariables and also the same sentence symbol. 
The union of all terminal alphabets At might be hold for the output terminal alphabet and then 
also the union of all the rule sets Pt for the output rule set. But the output grammar arising in this 
way is not a priori a CFG for some restrictions follow from the construction of the decomposi­
tion transformation of a phrase marker as to the use of the context-free rules of Pt. 
, We shall see that for some important cases of decomposition procedures these restrictions 
may be formulated with the help of certain kind of "ordering" of the rule set and that do not 
go out the family of CFL's. 

Definition 2.10. Let G, and Gh hh 1 ^ i ^ m, be the same as in the definition 2.8. 
Let 9JI and / be the same as in the definition 2.9. Then the set (6) of pairs (x, y) is 

called a decomposition translation from L(G) into L(G'), where G' = (V, U At, 
m . i = l 

U Ph S) (more exactly a decomposition translation induced by the considered 
i = i 
decomposition transformation of G). 

3. TWO KINDS OF DECOMPOSITION TRANSLATION 

Definition 3.1. Let (1) and G' = (V, A, P', S) be CFG's such that there exists at 
least one well-transformation h of G into G' and at least one well-transformation 
of G' into G. Then every system H = (V, 27, A, R, S), where R is such a set of elements 
of the form A -* (a, /?, 77) that the following conditions hold: 

1. A -> (a, P, 77) e R => 3h (h is a well-transformation of G into G' A A -> j? = 
.= h(A -y a) A II is the permutation determined by h and the rule A -> a); 



2. A ~> a e P => 3£ 377(A - (a, ft 77) 6 R) A A -> /j e P ' 3 3a 377(A -* (a, jj, JI) e 

eR ) , 

is called a syntax-directed translation scheme(SDTS). The elements of R are called 
translation rules. 

Definition 3.2. A form of SDTS 77 from the definition 31 is a triple (y, <5, 77) where 

a) y e (V u I)*, <5 e (V u A)* ; 
b) the number of metavariables in the strings y and 5 must be equal, say k in eachj 

then 
c) 77 must be a permutation of k objects and 
d) for all i, 1 <j i <i fc, the ith variable of y (from the left) is the same as the 77(i)th 

variable of 5. 

Note. The right side of a translation rule is a form of H. We may omit the permutation in 
a form record if it is obvious which variables of y and 8 correspond. 

Definition3.3. Let (yu 5U 771) be a form of 77 from definition 3.1 and A the ith 
variable of y,; let A -> (a, ft, 77) be a translation rule of 77. Replacing the ith variable 
of yt by a and the Il^ijth. variable of 5t by /? we get a form (y2, <52, 772), where i72 

is the permutation such that variables of y. other than the ith correspond to the same 
symbol in <52 as in St and each variable of a corresponds to the variable of jS to which 
it corresponded according to 77. (The exact formal definition of 772 see in [4] or [5].) 
Then we write 

(yu^,n1)^(y2,s2,n2). 

Definition 3.4. Given an SDTS 77 as in definition 3.1 let us define the relation 

X by (y, 5, 77) => (y, <5, 77) and if (y„ 5t, 77,) => (y2, 52, 772) and (y2, 52, 772) 

=* (y3, <53, n3), then (yl5 <5X, 77j) J (y3, 53, 773). The set 

{(x, y)\xeS* AyeA* A(S,S)X(x,y)} 

is called the syntax directed translation (SDT) T defined by 77; the denotation is 
T(77). Finally we denote dom (T) = L(G) and range (T) = L(G'). We say also that 
G, C and P, P ' arised by a fission of 77 and R, resp. 

Note: Both dom (T) and range (T) is a CFL for each SDT T defined by some SDTS. If H 
is given as in definition 3.1, then R can contain two rules of the forms A -> (a, /?, 77) and /. -> 
->• (a, y?', /!'). Thus, generally, the mapping of the set of all the phrase markers over G onto the 
set of all the phrase markers over G' induced by SDTS His many-many. — Examples of SDTS's 
and SDT's see in [4] and [5]. 

Definition 3.5. Let G and G„ hh 1 <; i <; m, be the same as in the definition 2.8. 



Let 5 => a be a derivation, where a = w0X1w1X2 ... wk_1Xkwk, XtsV for all i, 

1 ^ i § fc, w; e I * for all i,0 = i ^ k,k> 0. Let M be a set of phrase markers M 

over G such that there exists a decomposition 

(9) {M0,Mu...,Mk} 

of M such that 

a) M0 is the (incomplete) phrase marker of the mentioned derivation S => a; 

b) for each i, 1 :g i *g fe, M ; is a phrase marker of a derivation X ; =*• /?;, where 

Pi e £*• 

Then (9) is called an index decomposition, the corresponding decomposition trans­
formation of G (where now Jf(i)'s are functions whose domain is {0, 1, ..., /<} and 
range is {1, ..., m}, cf. the definition 2.9) is called an index transformation, and a 
is called the index. 

Definition 3.6. Let G and G;, hh 1 g i g m, be the same as in the definition 2.3. 
Let W = {A! = S,A2, ..., Ak} £ V be a set of the so called selected metavariables. 
For an arbitrary phrase marker M over G, each decomposition 

(10) {MUM2,...,M„} 

of M induced by the set 

{v\veKM A $e{cp{v))eW} 

is called a decomposition in virtue of selected metavariables. For each M over G, 
let the corresponding function j(i) (cf. the definition 2.8) satisfies the following condi­
tion: If the roots of Mp and Mq of (10) are both labelled by rulles with equal left sides, 
then j(p) = 7(g). Then the corresponding decomposition transformation of G is 
called a transformation in virtue of selected metavariables. 

Note 1. The decomposition considered in the definition 3.5 has an equal number of elements 
for each considered M. On the contrary, the number of subtrees of the decomposition considered 
in the definition 3.6 is not bounded. Nevertheless, both kinds of transformations will be able 
to be investigated by the same convenient method. 

Note 2. As to the importance of the index transformation see [7]., The transformation in 
virtue of selected metavariables appears as a natural generalization of the index transformation. 
It enables us to translate in different ways such different parts of the input phrase that have been 
generated from different but in certain sense important metavariables; at the same time, these 
parts can be nested to an arbitrary depth. 

In order that the proof of the theorem 3.1, which is the substantiality of this paper, 
may be easier, we prove at first two lemmas. 



Lemma 3.1. Let CFG (l) be given and let 

^ = { A , = S,A2,...,Ak} S V . 

Let a sequence of rule sets 

P1,P2,...,P2k-i,P2k 

be given such that 

2k 

1) \JPj = P; 
j = i 

2) P 2 i _ , is the set of all the rules reP such that SC(r) = A, ; 
3) if re P2i, then Sf(r) £ W. 

Let L _ I* be a set of such strings that can be generated from S by a derivation 
(2) such that if for some j , 0 <. j < m, <Xj =~- ccJ+1 by means of a rule belonging to 
some set P 2 i _ 1 , I ^ i < k, then there is I ^ j such that the segment <xp <xj+1, ..., a, 
of the considered derivation satisfies the following properties: 

a) a,- e (I u W)* ; 
b) a, el* v (a, + 1 E ( i ; u W)* A a,+ 1 £ _ * ) , 
c) a, —- a r + 1 by means of a rule of P2ifor all t,j<t<.lifa,l$I* elsej < t < /. 

Then L is a CFL. 

Proof. The phrase marker of a derivation satisfying the above formulated proper­
ties has the following characteristic property: 

(I) The vertices of an oriented path emitting a vertex v which is labelled by a rule 
of P2 j_i and containing (but v) no vertex labelled by a rule of some P2J-U 1 <. j ^ k, 
are labelled only by rules of P2i. 

Now, we shall ensure that two rules r e P2i, r' e P2j, where i 4= j , need not be 
used in any derivation close upon each other. This can be reached by introducing 
new metavariables in the following manner: For each /, 1 <. i <. k, let the metavari­
ables of 

V - W~{Bu...,Bt} 

be replaced in the rules of P2 i_i u P2i by the metavariables B\l>,..., B\'\ and at the 
same time 

{B['\ ..., 5(,"} n {B[», ..., B(/>} - 0 for i + j . 

Let 
A: 

V = W^\J{Bf,...,B^} 
; = i 

and let P ' be the set of all the rules obtained from the rules of P by the mentioned 
replacing of metavariables. 



Now, we label the vertices of all such phrase markers over G that satisfy (I) by the 
corresponding rules of P' instead of those of P. At the same time, we have to ensure 
the conservation of (1), for the original sets P2i, 1 ^= i = k, need not be pairwise 
disjoint. Thus we get a one-one mapping of the set of all such phrase markers over G 
that satisfy (I) onto the set of all phrase markers over G' = (V, I, P', S), and L = 
= L(G'). The lemma is proven. 

Lemma 3.2. Each decomposition translation induced by an index transformation 
is also a decomposition translation induced by a transformation in virtue of selected 
metavariables. 

Proof. Let T be a decomposition translation from L(G) induced by the index 
transformation of the definition 3.5. At first, we add new metavariables S, Yu ..., Yk 

to the set Vof CFG G and put 

F = Vu{S,Y1,...,YJ 

(S, Y1;..., Yk are supposed not to belong to V). Also, the rule set P of G will be com­
pleted by new rules; let us denote a = w0Yt ... wk_1Y/cwt (cf. a in the definition 3.5) 
and put 

P = P u {S -> a} u {7; -> P | 1 = i = k A (Xt -> 0) e P} . 

Note that all Xh 1 = i — k, need not be distinct; nevertheless, for the sake of simpli­
fication, all Y;, 1 j£ i :g k, are supposed to be distinct. 

To each M e 9ft with a decomposition (9) let the phrase marker M be conformed 
in the following way: 

a) the root of M is labelled by the rule S -> a; 
b) the maximal subtree M ; of M such that its root is the end vertex of the edge i 

emitting the root of M differs from M ; only by the labelling of the root: if the root 
of M ; is labelled by Z ; -> 0, then the root of M ; is labelled by Y; -> p. 

Obviously 

1. {M I M e 9ft} is the set of all the phrase markers over the grammar G = 
= (V, I, P, S) and 

2. {M0, M,, ..., Mk} is a decomposition of M induced by the set 

{v | &(cp(v)) = Sv 3/(1 = i = k A &(cp(v)) =T ; )} . 

From the foregoing it ensues M 0 looks as follows: it has its root (labelled by the 
only rule r with S£(r) = S) and k edges emmiting this root; the end vertex of the edge 
which is labelled by i is labell :d by a rule of the form Y; -> jS, for all i, 1 _ i :£ k. 

Now, we define the grammars Gj and the well-transformations h~j of G into G} 

for each J , 1 g j <j m. According to the definition 2.8, all these Gj must have the 



common set V of metavariables. Further 

(i) for each reP and each j , 1 ̂  j ^ m, if r' = hj(r), then r' = hj(r). 
(ii) Let J1 = y'(0); let M0 be the phrase marker corresponding to M0 by ht and let a' 

arises by the replacing of each Xt in L(M0) by Y„ for 1 _ i ;g fc. Then 

E.(S -> fi) = S - • a ' . 

For j =f= f, let /^(S -» a) be arbitrary (it will never be used in any derivation). 

(iii) Let 1 ̂  i g k; let us put t = j(i). Then 

V(Y, - j?) (((7, - j?) e P A h,(Z,. -* j8) = X, - /?') = nt(Yt ~> fi) - Y£ -+ /?') . 

For j 4= t let £/(Y. -»/?) be arbitrary (they also will never be used in any derivation.) 
For each j , 1 5S j <s m, let us put 

G, = (V, A p Pj, S), 

where Pj is the set of all the rulles obtained from P by means of h} according to (i), 
(ii) and (iii). 

The corresponding decomposition transformation of G is obviously a transforma­
tion in virtue of selected metavariables, viz S, Yu ..., Yk and the decomposition trans­
lation of L(G) induced by this transformation is identical with T The lemma is 
proven. 

Theorem 3.1. Let T be a translation induced by a transformation in virtue of 
selected metavariables. Then there exists an SDTS H such that T = T(H). 

Proof. Let T be the translation of L(G) induced by the transformation of the 
definition 3.6. For each i, 1 ^ i g k, let us define 

(11) P2i_1 = {hm(r)\rePA<?(r) = Ai}, 

(12) P2i ={hM(r)\rePA*(r)tW}. 

Let 9M be the set of all the phrase markers over G, M e 9M, and M the corresponding 
decomposition transformation of M. 

Among the derivation that M is the phrase marker of, let us choose such one, 

(13) a0, a t , . . . , a. 

that the following condition holds: 

(II) for each i, 1 ̂  i g s, if a ,-! =g> a, by means of a rule r with £C(r) e W, then 

« i . , e ( l u Wf. 

Then, in getting through the derivation (13), separate subtress of (10) are con­
structed in such a way that the "whole" subtree Mp is obtained (except such vertices 



414 that are roots of another subtrees) before any other Mq is started to be constructed. 
This implies the derivation (13) is splitting in a sequence of segments of the form 

(14) ap, ap+1,,.., as, 0 ^ p S 1 ^ s» 

satisfying the following conditions: 

1. <xpe(27u W)* A ap$Z*; 

2. aq G S* v aq+1e (I u W)* A aq+1 $ 1* ; 

3. only rules r with jSf(r) $ W are used in oe; => a1+1 for all i, where p < i <, q 

if a4 ^ r*, else p < i < q. 

Let us formulate once more the important properties of the mappings hj, which will 
be used in what follows: 

(15) 

Given an arbitrary reP, then for each j , 1 <. j <. m, 
a) .S?(r) = £e(hj(r)) and 
b) ^ ( r ) , &(hj(r)) contain the same metavariables and each of them with 
an equal number of occurrences; the corresponding permutation determines 
then which occurrences correspond each other. 

Thus we can construct a "derivation" (in G' of the definition 2.10) 

(16) Po,Pi,.-,P, 

by induction on the basis of (13) in the following manner: we put P0 — a0(= S). 
The following two properties (i) and (ii) hold for the strings a0 and P0 trivially: 

(i) they contain the same metavariables and each of them in an equal number 
of occurrences; 

(ii) if both strings contain q metavariables, then there exists a permutation II of q 
objects which determines their one-one correspondence. 

Let in (13) and (16) at and fit resp. have been obtained, for some i, 0 <, i < s. 
Let (i) and (ii) hold for these at and /?; and let 77 be the permutation mentioned in (ii). 
Let p <. i <. q, i.e. a,- is one member of (14), and let (14) be supposed to yield the 
subtree Mz of the decomposition (10). If at => ai+1 by rewriting the rth metavariable 
in at by means of the rule r, then let fjt => Pi+1 by rewriting the 77(f) th metavariable 
in Pi by means of the rule hJ(z)(r) . (15) implies then (i), (ii) hold true also for a i + 1 

andj? i + 1(cf.e.g. [7], p. 301). 
Thus, to each segment (14), a segment 

(17) PP,PP+i,-;P< 



of the derivation (16) corresponds and satisfies the following properties (where A = 415 

= lU): 
i = l 

V. P„e(Au Wf A Pp£A*; 
2'. PqeA* v pq+le(Au W)* A pq+1$A*; 
3'. if Pp => pp+1 by means of a rule of P2j-i, then only rules of P2j are used in 

Pi =*• Pi+i f°r all i, where p < i < q if fiq £ A*, else p < i < q. 

Thus, the derivation (16) satisfies the conditions of the lemma 3.1, where P ;, 
\<i<2k, are given by (11) and (12). 

On the contrary, to each derivation (16) in G' satisfying V, 2', 3', there exists at least 
one derivation (13) in G satisfying (II) and yielding again (16) by way of induction 
as described above. Besides, some segment (14) satisfying 1, 2, 3 corresponds 
at the same time to each segment (17) satisfying 1', 2', 3'. This assertion follows 
from (15) and from (11) and (12). Thus, all derivations (16) satisfying the mentioned 
conditions are obtained from all derivation (13) by means of the construction des­
cribed above. Thus, according to lemma 3.1 the set of output phrases of T is a CFL. 

The desired CFG in the proof of the lemma 3.1 is found by means of sequential 
introduction of the sets of new metavariables replacing those not belonging to If and 
being contained in the rules of P 2 i _ l 5 P 2 i ; more exactly, for each i, 1 ^ i <, k, a new 
set {B['\ ..., P^°} is added. In this manner, from each rule hJ(i)(r), 1 <. i ^ k, con­
taining metavariables not belonging to W, a new rule is obtained, which differs from 
the original one only by the denotation of the metavariables originally not belonging 
to W. The new grammar 

G'" = (V, (j Ah P', S) 
i = l 

having arised in this way has the following characteristic property: If we retain the 
denotation of the sets (11), (12) also after the metavariables have been renamed then 
for any derivation in G'" an "equivalent" derivation (i.e. one with the same phrase 
marker) 

(18) P'o,P'i>--,& 

can be found which has the following property: If i 4= /', then any rule r e P 2 i is not 
applied close upon any rule r' e P2j. 

Let us denote 

R[ = {(,-, hJ(i), (/•)) | r e P A i?(r) = At A m(r) e (Z u Wf A 1 < i < k} . 

For all i, 1 g i S k, and for all hm e P2i, let us denote by [h;(0('')]C0 t h e r u l e w e 8 e t 

from hM(r) by renaming of metavariables. According to (15), each such renaming 
of metavariables induces also a renaming of metavariables in r, from which we get k 



different rules r(l), 1 < i •$, k. Now we denote 

R'2 = {('-(°> [>;<» {r)T \rePA(r, h m (r)) £ R[ A 1 < i < fe} . 

Finitely, let ft,(0(r) e F 2 , _ , (i.e. JS?(r) = A;) and ®(r)e(2u Wf. Let r' and 

fc}(.)(r) be the rules obtained by the metavariable renaming from r and hj(i)(r), resp. 

We denote 
k 

R3 = U {(r', fc;(i>(r)) j r e P & Jg?(r) = A; & 0t(r) # ( I u W)*} , 
( = 1 

R' = R; u R2 u R3, 

G" = (V', 2, {r | (r, r) e J?'}, S) , 

where V is the same as in G'". (15) holds true if we replace there r and h/r) by r and r 

of G", resp. where (r, p) e R'. Thus to each derivation (18) in G'" we can construct 

by induction the corresponding derivation 

(19) a'0,a[,...,a's 

in G" such that the relation between (19) and (18) is the analogy of that between (13) 

and (16). 

Now if we denote 

R = {A -»(0i(r), m(t), II) I (r, r) e R' A A = J5f(r) A H is the corresponding 

permutation} , 

then H = (V, I, \j Ab R, S) is the desired SDTS. The theorem is proven. 
> = i 

Note. Now, from the lemma 3.2 and theorem 3.1, it follows: Both the decomposition translation 
induced by an index transformation and the decomposition translation induced by a translation in 
virtue of selected metavariables is an SDT. 

(Received February 26, 1970.) 
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Rozkladové překlady a schémata syntaxí řízeného překládání 

JIŘÍ KOPŘIVA 

Jsou vyšetřovány dva důležité případy rozkladového překládání bezkontextových 

jazyků, a to jednak indexové překládání, jednak překládání indukované transformací 

na základě vybraných metaproměnných. Je dokázáno, že první z nich se dá převést 

na druhý a že oba se dají realizovat jistým způsobem formalizace dobrého překládání, 

totiž tzv. schématy syntaxí řízeného překládání. 

Dr. Jiří Kopřiva, CSc, Laboratoř počítacích strojů VUT Brno, Třída Obránců míru 21, Brno. 
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