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KYBERNETIKA-VOLUME 21 (1985), NUMBER 2 

ON GEOMETRIC-OPTICAL PROJECTION 
OF SPATIAL PARTICLE SIZE DISTRIBUTION 

VRATISLAV HORÁLEK 

A stereological model devoted to the relationship between the spatial particle size distribution 
and the distribution of circles gained by geometric-optical projection (not orthogonal projection) 
of these particles when recorded on a photography is presented. 

1. INTRODUCTION 

In drying process, chemical defence, meteorological office etc. we have been 
meeting with problem of the analysis of aerosol cloud formed by microscopic particles 
of spherical shape. The basic question put on the imaging of such a particle flow is 
to evaluate it taking into account the spacing of these particles. One way is to replace 
the optical memory by a holographical one which provides the transformed data 
on the sizes of spaced particles and in this way the possibility to obtain an actual 
image using a reconstruction of a hologram. 

The reconstruction of a three-dimensional image from a two-dimensional photo­
graphy requires to respect the fact that a two-dimensional picture records particles 
located in different distances from the photographic plate. In [ l ] the principles 
of manual, semi-automatic and fully-automatic reconstruction of a hologram are 
presented. The TV system used for manual reconstruction is in semi-automatic 
and fully-automatic reconstruction replaced by an image analyzer. In these three 
methods the basic steps of the reconstruction are the following: 

a) calibrate the system, 
b) find the particle and focus it, 
c) measure its diameter using a graticule, 
d) read off the position of the hologram and thus determine the coordinates of the 

particle, 
e) transfer the data to a coding sheet (for manual or semiautomatic reconstruction) 
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or to transfer the data into a memory as elements of particle size distribution or 
coordinates of these particles (for fully automatic reconstruction). 

In the hologram reconstruction the steps b) to e) are applied to each particle 
separately. After measuring the last particle, for manual and semi-automatic recon­
struction, the data on the coding sheet are processed and an empirical distribution 
of actual sizes of particles can be gained; for fully-automatic reconstruction the stored 
particle diameters are arranged into an empirical distribution of actual sizes or in this 
form displayed. In all three cases under consideration the statistical characteristics 
of the size distribution can be calculated and from the corresponding data on co­
ordinates the mean space density of particles per unit volume can be estimated. 

The described aerosol sizing apparatuses are equipped by a double-pulsed ruby 
laser and an image analyzer; their application for routine work in industry is limited. 
Therefore, another way for aerosol particle sizing has been searched; a new method 
based on the geometric-optical theory of optical projection is suggested in [2]. 
It uses the information from a photography recording aerosol particles lying in 
a limited space the depth of which is given by the definition of the used optics. It 
respects the fact that most of particles registrated in the photographic plate have not 
their actual sizes, but sizes following the geometric-optical theory of projecting 
(not orthogonal projection) spatial objects onto a plane, in our case represented 
by a photographic plate. A probabilistic model enabling to relate the distribution 
of particle sizes observed on the photography and the actual size distribution of 
spaced particles is the subject of this paper. For processing the image information 
from such a photography an image analyzer can be used. It is clear that the precision 
of the presented method cannot be as high as that one based on the hologram re­
construction, but it seems to be fully sufficient for routine work. In fact, this method 
brings a stereological correction if a method of direct evaluation of a picture of 
aerosol particles using an image analyzer is applied. 

2. PROBLEM FORMULATION 

The situation presented in Fig. la follows from the geometric-optical theory for 
a thin lens. The relationship between the position of an object y and its corresponding 
picture y' has the form 

a a J 

where / ' is the focal distance; the lateral magnification m is given by the equation 

(2.2) 
y a 

(in our arrangement the object coordinates are negative). Without a loss of generality 
we can consider only the case a' = a i.e. / ' = 0-5a'. Then the object and its picture 



are of the same size. From the point of view of the geometry of holographic projection 
the assumption a' — a means that the wavelength X' of the reconstruction wave 
is equal to the wavelength X of the coherent wave illuminating the object and form­
ing a coherent background. The actual picture of the object lies likewise in the 

Fig. lb. 

distance a behind the plate (see the plane QZ in Fig. lb), on which the interference 
patterns can be observed. 

Let us assume that the particles in the distance a i.e. the particles lying in the plane 
Q„, are focused. For fixed focal distance / ' , all particles lying behind Qa are in the 
plane QZ of the plate linearly reduced. The reduction fc (0 < k < 1) is given by the 
ratio 

(2-3) 
Уь Ъ' 

where yb is the actual size of the particle in the plane Qb (see Fig. lb). Of course, this 
particle has in the plane QZ, where it is recorded, the size y'a < yb. 

The method of hologram reconstruction outlined in the Introduction is applied 
in such a way that the optical system is successively focused in those planes in which 
particular particles occur. In our model we assume that the relationship between 
the actual particle size in the plane Qb and the reduced size of this particle in the 
plane QZ is uniquely determined by the distance of the plane Qb from the plane Qa; 
this relationship which is a linear function of this distance is valid in the whole depth 
of focus of the used image-forming optical apparatus. The depth of focus L of the 
investigated space, bounded by the planes Qa and qb, is assumed to be finite. 

In construction of a corresponding stereological model we shall start from the 
three-dimensional Euclidean space E3 with axes uu u2 and u3. The random spatial 
structure Sx will be represented by opaque spherical particles in a transparent space E3 > 

the centres S} (j = 1, 2,...) of the particles being located in the points of a homogene­
ous Poisson process with a constant density x and the particle diameters Y} being 
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random variables mutually independent and identically distributed with a continuous 
probability density function (p.d.f.) g(y), 0 < y < GO, having p finite moments 
a; (/ = 1,2,..., p). The density x is assumed to be so small that for a given value 
of the depth of focus Lthe overlapping of particles can be ignored. 

Let us introduce two planes: Q0 and QL defined by u : = 0 and ut = L, respectively. 
The planes Q0 and QL form the boundaries of a subspace i£ and in fact they represent 
the original planes Qa and Qb after their linear transformation. 

Now let «*(}'*) be the p.d.f. of diameters Y». of circles, the size of which we measure 
on the photography i.e. on the plane QZ and *«; (i = 1, 2, ..., p) the corresponding 
moment of the i-th order. These diameters are not, in general, identical with diameters 
of particles lying in jSf. Their sizes are reduced in agreement with the geometric-
optical theory i.e. in dependence on the distance x of the particle centre from Q0. 
It is clear that the distance x of the centre of a particular particle is a random variable; 
we shall denote it by X (0 < X 5S L). Due to our assumption (a = a') the plane 
QZ of the photographic plate is symmetrical to Q0 and therefore we can hereinafter 
consider only Q0. 

The problem is to investigate the relationship between g*(y*) and g(y) and between 
the corresponding moments #a ; and mv (i = 1, 2 , . . . , p) and to analyze them. 

3. DERIVATION OF BASIC RELATIONSHIPS 

Consider now a fixed plane QX defined by ux = x (0 < x < L). A particular 
particle having its centre in QX and its diameter y is recorded on the photography as 
a circle with diameter y*. From the point of view of the above introduced assumptions 
it is clear that the random variables X and Y are mutually independent and are 
related to Y* in this way 

¥> = Y[1 + (z-l)i]' for osxsl-
usual in practice, we shall us* 

(n) y**Y[\-(i-fc)|] 
For k e <0.8; 1>, usual in practice, we shall use the following approximation 

for 0 < X ^ L, 

very tightly fitting to the exact formula. Then, due to the independence of X and Y, 
we can write for the mean values 

(3.2) E(Y '>E(Y ')EJri-(l-fc)^T| for i = l,2,.,.,p. 

From the introduced assumption on the centre particle spacing in E3 it follows that 
the random variable X has a uniform distribution over the interval (0, L). Therefore 



we have 

(3.3) 'i-(i-*)f 1 1 - k1 

1 + i \ - k 

so that we can deduce the relationship between the moments at and *a; 

(3.4) a, * C(fc, 0 *a; 

where 

(3.5) C(/c,o = (i + 0 ( 1 fcO"1 f o r í = 1,2,...,p. 
J = 0 

In the next step we shall derive the p.d.f. a*(y*) relevant to the random variable 
Y*. For simplicity we shall put in (3.1) 

(3.6) ri-(l~fc)f]=X.. ['-<'-<] 
Then (3.1) becomes the form 

(3.7) YX*, 

the random variables Y and .X* being mutually independent, too. The definition 
region <0, L> for the original random variable X changes to <fe, 1> for the random 
variable X*, the definition region for the random variable Yremains (0, co). Therefore 
the distribution function (d.f.) G.(y*) of random variable Y* can be expressed as 

(3.8) G,(y,) m P(Y, < y.) « P(YX* < y.) - - - i _ j " I T '" g(y) dy I dx* . 

У * = У * * 

Fig. 2. 

The domain of integration for which yx. < y* holds, is presented in Fig. 2. Differenti­

ating (3.8) with respect to y . we find that 

(3.9) G',(y,) = 0.(y.) « - i - f ^ - *(y) dy . 
i - fcj,. y 

Now we shall add some notes to (3.5) and (3.9). Hereinafter we shall consider in 

(3.9) = instead of « , assuming k e <0.8; 1). 



From (3.9) it can be easily derived that the modus of p.d.f. g*(y*) lies in the point 
y* = >'*(0) where y*w satisfies the equation 

(3.10) g(fy-g<?*). 

This result will be used in the next Chapter. 

Comprehensively in the limit situation (fc tends to 1 in the whole subspace i f ) 
the presented model must converge to a well known model constructed for the ortho­
gonal projection (all particles with centres in i f are orthogonally projected onto Q0 

and the diameters of particles are identical with the diameters of corresponding 
circles in the photography). Really, in this case we have from (3.5) 

(3.11) limC(fc, /) = 1 

and after solving the relevant indetermined form in (3.9) 

(3.12) l i m ^ * ) ==<?(>>). 
ft— i 

The moments *a; (i = 1, 2, ...,p) can be estimated using data obtained after 
processing the photography by means of an image analyzer. 

The analytical form of g(y) is not usually known. The type of this size distribution 
follows from the physical character of the process of particle forming. On the other 
hand the distribution parameters characterizing the physical conditions of the 
investigated process (e.g. in drying process we consider film thickness, physical 
dimension and shape of the spraying nozzles, fluid pressure etc.) are usually unknown 
and the question is how to estimate them. Mostly we can express these parameters 
as functions of moments a„ i = 1, 2 , . . . , p. From this point of view it is important 
that the correction coefficients C(k, i) given in (3.4) are distribution-free. 

In practice the problem of testing the hypothesis on G(y) can be realized only as 
testing the hypothesis on a corresponding G*(>*). But this procedure assumes the 
possibility to solve the integral involved in (3.8) or in (3.9), if we determine the 
relevant p.d.f. In the next chapter we shall show the solution of (3.9) for g(y) following 
the Rayleigh and normal distribution. Both cases occurring in practice, the reduction 
ratio fc is either known or unknown, will be considered. 

4. DETERMINATION OF ^(.v*) FOR GIVEN g(y) 

4.1. Rayleigh distribution 

For the Rayleigh distribution 

(4A) g(y) = ~e'^, y>o, 
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(3.9) becomes the form 

(4.2) g,(y,) = — L - f" e"£ dj, = ^(27tl 
(i-fc)^J,. (i-fe)VWL WOO/ WO) 

where 

(4.3) *(,)=.JLf e-*"d-
V(2") j-oo 

is the distribution function of N(0, 1) distribution, tabulated e.g. in [3], [4]. 

The modus y(0) of g(y) has its coordinate located in N/^, The modus y*(0) of g*^*) 
can be gained as a solution of (3.10). For g(y) following (4.1) we have after some 
algebra 

V*(0, = V(/j) u*(k)' 
where 

vjfu-k^m. o<*<i. 
But for UR(fe) we have 0 < UK(fe) < I and in addition to it U«(k) is an increasing 
function of k. Therefore it holds 

y*(0) < .V(O) 

and for decreasing k the modus y,(0) shifts from y(0) to the left. 

Further we shall take into account the knowledge of JX and k. First we shall consider 
the combination: (i unknown, k known. For the moments of Rayleigh distribution 
it holds 

(4.4) a j = ( 2 ^ 2 r ( L _ p \ i=\,2,...,P, 

r(n) being the gamma function of argument n. Putting / = 1 we gain from (4.4) 

(4.5) „«---? 
n 

and from (3.4) 

(4.6) a, = „a. , 
1 + k 

so that 

(4.7) 
K (1 + fc)2 

where ^ can be estimated from measurement results after processing the photo­
graphy. 

The second couple will have the form: both fi and k are unknown. The loss of 
information on k will be replaced by increasing number of hitherto used moments 
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^at. Putting i = 2 in (4.4) we get making use of (4.5) 

(4.8) m2 = - a? . 
7t 

But from (4.6) it follows 

(4.9) fc = - £ _ ! _ i . 

Inserting these two last equations into 

(4.io) ^ i d ^ T * " 2 ' 
following from (3.4) for i = 2, we obtain after some algebra a quadratic equation 
in a1. Its solution has the form 

(4.U) 1>2a1 = *«, ± i V[3( r t *«2 - 4 *a?)] . 

We now proceed to concentrate on the discriminant D. Obviously it can be expressed 
in the following form 

D = 3(7! *«2 - 4 ,«?) = 4 ,«? ^4 ^ l ^ + f - 3J, 

so that for 0 < k < 1 it is D > 0. On the other hand it follows from (4.6) that <xl > 
> .̂Mj and so the only acceptable root of (4.11) is the positively signed root. 

Applying this root in (4.5) and (4.9) we see that both Kj and k are functions of 
moments *a,- (i = 1, 2) only. 

4.2. Normal distribution 

If Y follows the Gaussian distribution with p.d.f. 

1 (y-n)2 

(4A2) g(y) - — — - e~ -*- , 0 < y < co , 

V ( 2 T C ) °" 

(3.9) attains the form 

(4.13) 
g(y\ , f i e -2 -T- d>, = lf _ _ _ e " ^ 2 dw , 
y*{y*J (l-k)J(2n)*Jy, y ( l - f c ) V ( 2 « ) J r / , ^ + l 
where 

[ / . = _ _ ! £ a n d - , , . . _ _ _ . 
or /c<7 

Fis the variation coefficient and k the reduction coefficient. Unfortunately the integral 
in (4.13) cannot be transformed into some known integral the values of which are 
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tabulated. For practical need we could use only the series expansion or numerical 
integration. The variation coefficient Vis assumed to be known, since the parameters 
fi and a can be estimated using the aforementioned procedure. This shows that the 
verification of the hypothesis "g(y) follows the normal distribution" is not so easy 
in practice. 

Now by means of (3.10) we can determine the modus yH0) of g*(y#). For normally 
distributed Ywe get after some algebra 

y*(o) = 2/i UN(k), 

where 

UN(k) = — — , 0 < k < 1 . 
W 1 + k 

But for UN(k) we have 0 < UN(k) < 0-5 and in addition to it UN(k) is again an 
increasing function of k. Hence we deduce that our conclusion on the relationship 
between the modus y^o) and the modus y(0) are identical with that outlined in Section 
4.1. 

Further we shall express the parameters n and a2 as functions of the moments 
^a, only. 

The first case will be again: k is known. Using the same procedure as in Section 4.1. 
we obtain 

(4.14) fi = a, =- ~ ** 
1 + k 

and 

(4.15) a2 = 3 „a2 *a2 . 
y J 1 + k + k2 (1 + k)2 

The solution of the second case (k is unknown) will be based on the same idea 
as in Section 4.1. Obviously the corresponding system of equations is given by 

(A i ^ - + k 

(4.16) #a, = ——- « . , 

(4-17) * a 2 = 1 + fc
3
+/c2(«2 + ^ ) , 

(4.18) *a3 = i ( l + k + k2 + k3) (a? + 3a l f f
2) . 

In the next step we express ax and a2 as functions of only one unknown constant k 
as we carried it out in (4.14) and (415). The application of these two equations in 
(4.18) leads after some complex algebra to the following equation of the fifth order 
infe 

(4.19) Z5k
5 + Z4k

4 + Z3k
3 + Z2k

2 + Zxk + Z0 = 0 , 
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where 

r Z5 = Z0 = 8 X + 9 * a i *«2 - 2 #a3 , 

(4.20) < Z4 = Zx = 16 *«i + 27 ^ *a2 - 8 #a3 , 

I Z3 = Z2 = 24 +ai + 36 +ax *a2 - 14 *a3. 

We see that(4A9) is a positive reciprocal equation which can be rewritten in form 

(4.21) A(ks + 1) + Bk(k3 + 1) + Cfc2(fc + 1) = 0 

where 

(4.22) A =Z5=Z0; B = Z4 = Z1 ; C = Z3 = Z2 . 

It is known that any positive reciprocal equation of odd order has a root kx = — 1. 
The knowledge of this root permits to gain a positive reciprocal equation of the 
fourth order that may be transformed into the form 

(4.23) A (k2 + ±\ + (B - A) fk + -\ + (A - B + C) = 0 . 

Making here the substitution 

(4.24) k + - = u, 

we arrive at a quadratic equation for unknown u 

(4.25) Au2 + (B - A) u + (C - B - A) = 0 , 

Its solution gives two quadratic equations for unknown k 

(4.26) k + - = — [A- B + V(B2 + 542 + 2AB - 4AC)] , 
k 2A 

(4.27) k + - = —[A-B- V(B2 + 5A2 + 2AB - 4AC)] 
k 2A 

and from here we find the other roots k2 to k5. Of course, the coefficients A, B and C 

are functions of the known moments â,- (;' = 1, 2, 3) only. 
Investigate now the discriminant D1. It can be rewritten into the form 

D, = B2 + 5A2 + 2AB - 4AC = 4{*a3(*a3 + 8 ,a? - 18 *«. *a2) + 

+ 16 *a? + 81 ^a2 *al + 72 *a? *a2} . 

Applying the Schwartz inequality we easily prove that Dt takes finite and positive 
value. 

Comprehensively from five roots kt to k5 of (4.19) we may consider only those 
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fulfilling the condition 0 < k < 1. We find that only the root 

(4.28) k5 = -L [A - B - V(D.) + V((^ - ^ - V(^i)) 2 - 16A2)] 
4A 

possesses the required property. 

The knowledge of the value k enables to determine the parameters n and a2 

given by (4A4) and (4.15), respectively, and using them the p.d.fs g(y) and g*(y#), 

respectively, given by (4.12) and (4.13). 

(Received December 20, 1983.) 
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