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KYBERNETIKA - VOLUME 26 (1990), NUMBER 6 

DECENTRALIZED ADAPTIVE STABILIZATION 
WITH STATE REGULATORS 

JAN MURGAS\ IVAN HEJDA 

In the paper, two variants of a new approach to the decentralized control design of linear 
dynamic systems based on the large-scale system decomposition into subsystems are given. 
At the subsystem level, the state regulators are applied. The adaptation of local state regulators 
is effectuated according to the state variables deviation from the equilibrium. The theoretical 
base used is represented by the notion of the stability respecting the part of variables and the 
second Lyapunov method. An example is presented. 

1. INTRODUCTION 

The mathematical description of a dynamic system is not a trivial task. Especially 
in the case of large scale system, the exact modelling can never be achieved [1]. 
A great number of real applications deal with interconnected subsystems with poorly 
known or varying structure and parameters. Hence, the adaptive control schemes 
have been extended to the decentralized systems (cf. [2] —[9]). 

Direct schemes are more frequently used (cf. [2] — [5]). Usually, the model refer­
ence adaptive control is applied to the subsystems, and when the interconnections 
among them are sufficiently small, the overall system stability is not disturbed. 

The indirect schemes [6] —[9] are modified self-tuning single-input, single-output 
regulators operating at the subsystem level. In this case, the problem of identification 
loop robustness to the unmodelled dynamics (interconnections) has to be solved. 

Tn this paper, two adaptive decentralized control algorithms using local subsystem 
state regulators are designed. The feedback gains of subsystems state regulators 
are adapted to achieve the stability in the presence of arbitrary interconnections. 
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2. DECENTRALIZED ADAPTIVE CONTROL 

Consider the linear large scale system consisting of N subsystems 
iV 

x, = AtXi + B{u{ + X AtjXj , ieJT . (1) 
;=» 

where 
j ^ e R " ' , I / . -GR'" ' , Jf = {1,2, . . . ,N} 

and At, Bh Au are real matrices of appropriate sizes. We have to design the adaptive 
local control laws such that the state of global system (1) 

N 

x == [xT,xJ
2, . . . , * J ] T , xeU", » = £ n , (2) 

is regulated to zero. 
We will distinguish two decentralized control types acting upon the system (1) 

via local regulators. In the first case, we consider the following control law 

«, = - ( 1 + af) #o .* , , ieJT , (3) 

where K0i e IRmi Xni are determined according to the arbitrary prespecified requirements 
on the system so that, the isolated subsystems are stable and a,- e Ul is the ith sub­
system adaptation parameter. We use the adaptation law 

a,- = xJCiXi, ie Jr , (4) 

where Ct e U
niXni, i e Jf, are symmetric positive definite matrices. The initial condi­

tions a,(0), i e JT, are arbitrary small positive numbers. 
In the second case, n; parameters are adapted in the subsystem control law 

Ui - ~(Koi + K0iXi) xt, ieJT, (5) 

where K0i has the same sense as in (3) and x, = (xnk), xt e P , " ' ^ , i e Jf, are diagonal 
matrices of adapted parameters. The adaptation law is 

H-Sr!.;-: imjr- (6) 

where Z)ielR',i><"' are diagonal positive definite matrices and X;(0) > 0. Hence, 
we have to prove the stability of systems ( l ) - (4) and (I), (2), (5), (6) with unknown 
Ah Bh ALj, i,j e Jf ,j + i. The stability will be proved with the use of the generalized 
second Lyapunov method. In the following paragraph, some basic theorems and 
definitions are introduced. 
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3. SYSTEM STABILITY RESPECTING THE PART OF VARIABLES 

The second Lyapunov method is frequently used when analysing the stability 
of differential equations. The authors themselves have examined the idea of analysing 
the stability with uncomplete state set. Further development of this idea by several 
mathematicians (Rumyantsev, Oziraner, Zubov, Halanay, Rouche, Peiffer, Yoshiza-
wa ...) led to the so called generalized Lyapunov stability theory. An overview of this 
problem is given in [10]. 

In basic considerations, the system 

x=f(x,y,t), xeU" 

y = g(x,y,t), y € Um 

is used. The/( - ) and g(-) functions have a unique solution for every 

t> 0 , | * | ^ h, \\y\\ < + o o , h > 0 (8) 

whete | • | denotes the Euclidian norm. 
Moreover, for all t j> t0 ^ 0 

f(0,0,t)=0 (9) 

g(0, 0, t) = 0 

Let zT = (xT, yT) e Un+m denote the state vector of the composite system. Then, 

zT(z0, t0; t) = [xT(z0, t0; t) , yT(z0, t0; t)] (10) 

represents the solution of the system (7) starting from z0 at time f0. 
Let us now introduce some definitions and theorems which are used to analyse 

the stability when respecting the part of variables. 

Definition 1. The equilibrium z = 0 of the system (7) is called stable with respect 
to the variable x when for every e > 0 and t0 ^ 0, there exists d(e, t0) such that the 
conditions ||z0|| < 5 implies ||.r(z0, f0; f)f < e for every t ;> t0. 

Definition 2, If the scalar function a(r) is continuous and increasing for every 
r e <0, /?> and a(0) = 0, then it belongs to the class $£ (a(r) e i f) . 

Definition 3. The function V(z, t) (z is given by (10)) is called positive definite 
with respect to the variables x if there exists a ^-invariant function w(x) (vv(0) = 0) 
and the following relations hold on the set (8): 

V(z, t) ^ w(x) 

VV(JC) ^ 0 

Theorem 1 (cf. [10]). If there exists a function V(z, t) which is positive definite 
with respect to the variables x and its derivation V(z, t) along the solution of (7) 
is nonpositive (V(z, t) <. 0), then the equilibrium z = 0 is stable with respect to the 
variables *. 
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Theorem 2 (cf. [12]). If there exist functions a, b e S£ and V(z, i) satisfying 

a(\\xl)<V(z,t)<b(\\z\\) (11) 

V(z, 0 = o 
for the differential equations system (7) on the set (8), then the equilibrium z = 0 
is uniformly stable with respect to the variables x. 

Theorem 3 (cf. [11]). Let us suppose that f(z, t) in (7) is uniformly bounded: 

\f(z, 01 = ct (0 < cx = const.) (12) 

for every 

t = 0 , \\z\\ < H , (0 < H = const.) (13) 

and a, c € Sf. Then, if there exists the Lyapunov function satisfying on the set (8) 

«(M)£V(z,t) 
V(z,t)i-c(M) [ ' 

the equilibrium z = 0 of (7) is stable and asymptotically stable with respect to the 
variables x. 

4. THE GLOBAL SYSTEM STABILITY 

In this chapter, we will prove the stability of the system (1) with decentralized 
control (3) or (5). The dynamics of the general system (7) are the following (two 
considered control types are distinguished): 

N 

Уt:xi = (AІ - BІKOІ) Xi - ЛtBiKotXt + £ Ai}x}, . 
T/-Г J ' = 1 

a ř = XІCІXІ . JФІ 

£Clr" l^ (15) 
V 

Pi- *i = (-4. - -9«Ko.) xt - BiKoiXiXt + £ AtjXj, , , 

Xi is given by (6). j*i 

When comparing the systems Sf1 and £f2 with the system (7), the variables x((2)) of 
the systems Sf \ and £f2

 c a n De regarded as corresponding to the x variables in (7). 
The Sf\ variables otx, ...,otN and Sf 2 variables xx, ...,xN are chosen to correspond 
to they-variables: 

&t = cCi ~ af , ieJS. 

x{ = xt — x* , i eJ/~, 

where af, xf are time-invariant finite scalars (matrices) specified later. 

Theorem 4. Let the matrices K0h i e JV, in (15) be chosen such that: ' 

a) Re {kj[At - (1 + «,) BtKoi]} < 0 , (17) 
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for every a, e (0, a,max > , aimax > 0 , j = 1, ..., n(. iejf 

b) Re {^(B^)} = 0, j = 1, ..., nt, ieJf , 

where X(') denotes the eigenvalue of the indicated matrix. Then the equilibrium 
Xi = 0, a. = 0, ieJf, of the system £f\ is stable and asymptotically stable with 
respect to x. 

Proof. Let V(x, a) (aT = [a l s . . . , %]) be a Lyapunov function candidate for the 
system SfXi 

V(x,ot) = lJ{xTPixi}+5iT6t, (18) 
i = l 

where Pt EJV, are symmetric positive definite matrices specified later. For the proof 
of stability, the third theorem will be used. We have to prove the validity of relations 
(12) and (14) for the function (18). The well-known properties of quadratic forms 
imply 

£.U'i)M*s£-T-v.i. (t9) 
i = l i = l 

where Am(*) represents the minimum eigenvalue of the indicated matrix. From (18) 
and (19), we obtain 

mm{Xm(Pi),l}\\z\\2SV(z) (20) 
ieS 

where zT = (xT, aT). The time derivation of V(x, a) along the solution of Sf x is 

V = I {xT\_P{Ai - BtK0i - «A-Soi) + (At - BtKoi - aA*o.)T-*i 
i = l 

+ 2atC^ xt - 2<x*xTCiXi + xJP, £ AijXj + (xJP, £ AijXj)
T} (21) 

/ . i j=i 
j*i J*l 

If the assumptions of the theorem are satisfied, then the equations 

Pt(Ai - BtKm - aA*oi) + (At - B{K0i - aA-*o.)T Pt + 2a,C, = 0, 
\zJf, (22) 

have a unique solution for all at e (0, a,max), aimax > 0, represented by the symmetric 
positive definite matrices Pt. Then, (21) will be 

V = £ {xTP> £ A,7*,- + (*TF, £ AijXj)
T - 2«txTCiXi} (23) 

i = i j = i y = i 

/+i y+i 
If x = [|*i|, |.v2||, ..., ||*;v||]T, then the derivation of the Lyapunov function (18) 
can be bounded by 

V(x,x) = -xTWx (24) 

where W = (wiy.) , 

w -WljCt), i=j (25) 

"'l-lPiAijl-iAljPA, / + ; ( 2 5 ) 
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From (24), (25), it follows that there exist such finite af > 0, i e JT, that the symmetric 
matrix W will be positive definite, and hence 

V(x,«)H-Xm(W)\\x\\* (26) 

Therefore, the third condition of Theorem 3 is satisfied. Condition (12) is satisfied 
for t _ 0, \\z\\ < H. This proves that the differential equations system (15) is asympto­
tically stable with respect to the variable x. • 

Theorem 5. Let the matrices Koi, i e Jr, in (16) be chosen such that the conditions 

Re {Xj[At - ZM-~o,(-?i + *«)]} < 0 , 

for every xt e (0, x,max>, ximm > 0, j = 1, ..., nt, i e Jr are fulfilled. Then the equi­
librium Xi = 0, x~i = 0, iejf, of the system £f t is stable and asymptotically stable 
with respect to x. 

Proof. We will consider the following Lyapunov function candidate for £f 2\ 

V(x, x l f . . . , xN) - £ {xJPiXi + tr (Xi)2} - (27) 
i = i 

In the condition (20), z is 

zT = (xT,xT) 

where x is the vector collecting the diagonals of xh i e Jr. The time derivation of 
(27) along the trajectory of y 2 is 

V = I{xJ[Pi(Ai - BiK0l - BiK0iXi) + (At - BtKot - -5£K0ix,)T Pi + 
i = l 

+ 2xiDi] Xi - 2xTx*DiXi + xTPi £ AtjXj + (xJPt £ AijXj)
T} (28) 

J = I j=i 

The Lyapunov function derivation (28) can be bounded similarly as in previous case: 

V(x,x) < ~xTWx (29) 

Wij-UPiAiA - yip,! i*j e°) 
where .Pf, i e ./T, are solutions of the Lyapunov equations 

Pi[Ai - BtK0i(l + *,)] + [Ai - BiK0i(l + x,)]T Pt + 2*,/), - 0 , 

iejV (31) 

From (29), (30), we get that there exist finite xf > 0, i e Jf, such that the matrix W 
is positive definite. This completes our proof. • 

Remark. For the constructions of the mentioned adaptive laws, the Koi matrices 
are needed stabilizing the isolated subsystems. Moreover, other conditions defined 
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in Theorems 4 and 5 have to be fulfilled. Hence, the exact knowledge of subsystems 
dynamics may help to determine appropriate Koi, ieJr. We note that often such 
K0i, i e .¥, can be found when the amount of prior information is less significant. 

5. EXAMPLE 

We consider the system consisting of two subsystems 

*' = [-l -0-2}*1+[l]"1+[o]'a 

x2 = - 0 1 x 2 + «2 + [0, - l ] * i 

Local state feedbacks are chosen as 

Kol = [ 2 , 3 ] , #02 = 3 

The following control is considered: 

«i = - ( 1 + <xi)KQ1x1 , u2 = ~(1 + a2)#o2*2 

«! = - K 0 1 * 1 - --01*1*1 » »2 = ~K02*2 - #02*2*2 

In the adaptation laws (4), (6), we choose 

C, = D, = diag (5) , C2 = D2 = 5 

The simulations results are shown in Fig. 1 — Fig. 3. The disturbance was simulated 

(32) 

(33) 

(З4.a) 

(З4.b) 

xЭ 

-.5 

. x 1 

• * 2 

t í - J 
0 2 4 Б 8 
ł 1 1 1 1 

Fig. 1- System responses, nonadaptive state feedback. 
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Fig. 2. Systems responses, adaptive control law (34.a). 
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x1 x2 
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x 1 1 

x2 
kapal 12 

.5 

kapa 1 

kapa 2 

.5 

xЗ 

-.5 

kapa3 

tlsl Ґ tls] 
0 2 4 6 8 0 2 4 6 8 
l 1 1 1 1 ł 1 1 1 1 

Fig. 3. Systems responses, adaptive control law (34.b). 
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as the changement of the second diagonal element of Ax from the value —0-2 to the 

value i, and the A2 element from —01 to 1 at time t = 0. This important disturbance 

results in unstable behaviour when nonadaptive decentralized control is applied 

((34.a); al5 a2 = 0) as it is shown in Fig. 1. Fig. 2 and Fig. 3. show the results obtained 

for the adaptive laws (34.a) and (34.b), respectively. 

6. CONCLUSION 

In this contribution, very simple adaptive decentralized control method for linear 

dynamic systems consisting of interconnected subsystems is given. The adaptive 

controlled system convergence is proved by the generalized Lyapunov theory of 

stability assuming that certain conditions can be fulfilled. 
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