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KYBERNETIKA - VOLUME 18 (1982), NUMBER 6 

SELF-TUNING REGULATORS 
WITH RESTRICTED INPUTS 

JOSEF BOHM, M1ROSLAV KARNY 

A modification of a suboptimal self-tuning control strategy known as "iteration spread 
in time" [5] is proposed. The simple resulting algorithm respects various restrictions of the 
digitaly manipulated signals (regulator output) and/or their changes, both for minimum and 
nonminimum-phase systems. The behaviour of the algorithm is discussed, illustrated on typical 
simulated examples and its possible extensions are outlined. 

1. INTRODUCTION 

Self-tuning regulators are attractive for their capability to decrease requirements 
with respect to prior knowledge of the controlled plant. They try to respect usual 
conditions of a control design in this way. The fundamental direction in the develop­
ment of these regulators should be, according to our opinion, the convergence between 
assumptions under which the synthesis is performed on the one hand and the existing 
possibilities and restrictions of practice on the other hand. 

One of the most frequently encountered discrepancies between an "academical" 
solution and practical needs seems to be the fact that the synthesis is mostly perfor­
med for unbounded inputs and/or their increments. However, restrictions imposed 
on the input signal are present almost everywhere and are given by the hardware, 
technology or economy of the considered process [13]. 

One possibility how to meet the requirements is to saturate the regulator output 
before the actuator. This often may be a satisfactory solution, especially in the single-
input case, but for a multi-input system and sometimes also for single-input ones 
it leeds to unnecessary increase of losses. 

Another possibility is to modify the control law by an adequate change of the 
design criterion. For the quadratic criterion which is considered here the input 
restrictions can be respected by an additional input penalty. However, its choice 
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is not a simple task and usually several trials have to be done before the desired 
behaviour is achieved. 

Assuming linear models and one-step-ahead quadratic criterion there is no problem 
to incorporate any restriction on inputs into the control law design in a consistent 
way. However, such a criterion is not suitable, in general, for non-minimum phase 
systems. It leads to the simple algorithm for the control synthesis but unfortunately 
it cannot guarantee both the stability and good closed loop performance in general 
case. 

The multi- or infinite-step criteria do not suffer from this disadvantage, however, 
for the price of the increase of the computational burden. Moreover they remove 
the possibility to find a feasible solution when inputs are to be bounded. 

A feasible way how to reduce the computational complexity of the multi-step 
criteria into well acceptable limits is the use of a suboptimal strategy called "Itera­
tions spread in time" (1ST) [5], [ l ] . This approximation, in more detail recalled 
below, preserves the simplicity of the one-step-ahead criteiion and at the same time 
is able to stabilize any stabilizable system and to achieve asymptotically the optimality 
of the infinite-stage criterion. 

In this paper an atempt is made to extend the 1ST strategy so that the linear 
restriction on inputs and/or their increment becomes a part of the synthesis. The 
authors believe that the idea used here may also serve as a hint how to approach, at 
least approximately, similar problems outside the linear-quadratic theory. 

2. PROBLEM FORMULATION AND REVIEW OF STRATEGY 
OF ITERATIONS SPREAD IN TIME (1ST) 

Let the controlled system be described by the multivariate linear-in-parameters 
normal regression model with the conditional mean of the output given the past 
input-output data including input u ( t ) 

(2.1) ЎU) «- I>ď«-.) + EM.-D + c = Prz(t) = 
i = l i = 0 

= [B0,'_41,J51, ...,An,B„, c] MÁ'____~ 
= P T 

""«.... 
У(t-i) 
Mí f-i) x « - i > 

_1 

and with a constant conditional covariance matrix R. In equation (2.1) u(t), y(() are 
the system (vector) input and output at the discrete time t; Bt, A, are (unknown) 
model coefficients collected into the matrix P and the vectors x, z are composed 
from the data d, \ = ("(.)> 3̂ (.)) accordingly. 
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The control objective is to stabilize the observed output on a fixed (zero) level. 
This is assumed to be quantified by the expected average loss per step 

(2.2) . co-nxEEl"! i« (* ( 0 )1 

N-oo \_N 1=1 J 

The loss q(.) is assumed to be a quadratic function 

(2-3) q(x) = xTQxx , Ox ^ 0*) 

The objective of the output stabilization is reflected by its special form 

(2-4) q(xit)) = f(t)Qy)\t), Qy > 0 

The minimization of the criteria (2.2) for the system (2.1) is the special type of an 
optimal control problem for Markovian systems. Under known weak assumptions 
the following conclusions are valid [7]: 

The optimal strategy exists and generates the input «(t) as a deterministic function 
of the state x(,_1) and the optimal u(r) is the minimizing argument of the functional 
equation 

(2.5) co + Vfo.-i)) = min E[q(xU)) + V(xit)) | x (,_i), u] 

i.e. the optimal loss (2.2) and the function V(.) (unique up to additive constant) 
solve the equation (2.5). 

For LQ problems (linear system, quadratic criterion) V(.) is the quadratic function 
with the kernel S 2: 0 and the equation (2.5) takes the form 

(2.6) Pfa.-i)) = 4-DS x(t-i) = m i n zl)Hz(t) 

M ~-H?bf 
where 

(2.8) H = P*TSP* 

(2.9) S =S+ Qx 

(2.10) p.»[J!Jdta «}__(*) 
dim(íí) 

dim (z) 

The kernel S determining the solution of equation (2.6) can be found independently 

* Q (__ 0 is the shorthand notation of a positive (semi) definite matrix Q. 
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of the value x(t-iy The derived form of the matrix equation is suitable for numerical 
solution by sucessive approximations. It corresponds to a certain version of the well 
known Riccati equation. 

To describe the 1ST strategy the equations (2.6)-(2.10) will be rewritten as symbolic 
relation 

(2.11) S = ®(S,QX,P) 

Then the kth step of successive approximations is 

(2.12) S* = M(Sk~x, Qx, P), S° £ 0 

The lack of knowledge of the parameters P in (2.11) and (2.12) can be overcome 
by enforced separation of identification and control which replaces the unknown P 
by their latest point estimates P^-iy 

Thus the sequence of the equations of the type (2.11) should be solved 

(2.11') -?(„-*(~*(.).Q.*-Vi>) 
for each time t. Similarly equation (2.12) has its analogy in 

(2-i2') sk
(t) = m(s}r)

1,Qx,P„-l)), S^o 
It is known that the quality of the initial guess S(°() is substantial for the convergence 
of (2.12'). The use of the last estimate of S obtained at the time instant t - 1 as the 
initial one at the time instant t is the main trick of the 1ST strategy. Just one iteration 
per time unit can be performed. This simplification will be used in the sequel. 
Omitting the superfluous superscript k = 1 the final certainty equivalence version 
of the 1ST strategy takes the simple form. 

(2-13) S W - ' « ( S ( ( . i ) , C V « ) . S(0) = ° 

The value « ( 0 is taken as a minimizing argument in (2.6) with the kernel H (2.8) 
given by equations (2.8)-(2.10) with S = S(t-t), P = P(t-iy 

The 1ST strategy has been tested intensively by experiments and also partially 
analyzed [1]. It may be useful to summarize the current state of knowledge about 
this strategy. 

The behaviour of 1ST strategy is determined by the properties of successive appro­
ximation for fixed P as well as by the properties of the estimation part. 

It is known that the solution of equation (2.11), say S*, stabilizing the closed 
loop exists generically. The sequence generated by the lecursion (2.12) converges 
to S* if and only if the "sufficient rank condition" (SRC) is valid [9]. SRC requires 
the existence of some finite k0 for which 

(2.14) jr(S
k°) c J^(S*) 

where ^V(S) denotes the nullspace of the matrix S. This implies, for fixed P, the 
validity of (2.14) for all k ^ k0. 
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It must be stressed that the condition (2.14) is fundamental for a reliable applica­
tion of the 1ST strategy. There is the whole class of penalties Qx e.g., the penalty 
(2.4) for which the sequence Jr(Sk) may be nondecreasing. In this case the existence of 

(2.15) J'(Sk0) => jr(S*), jr(Sk°) * jr(S*) 

must destroy convergence S* to S*. To illustrate the influence of this condition on the 
1ST strategy let us suppose the case of the output penalty (2.4) and a non-minimum 
phase system. If for some time interval the parameter estimates P form a minimum 
phase model, S(() will converge to the zero matrix. Then (2.15) might appear and S(r) 

could not converge to S*, even if the estimates P would achieve the true values of the 
system parameters. 

Two ways of the respecting SRC have been used. 

— The cautious version of the 1ST strategy [5], [ l ] in which the conditional co-
variance of the parameters maintains the full rank of S((). 

— The penalty Qx is selected in such a way that SRC (2.14) holds structurally, e.g. 
the penalty on inputs and/or their increments is introduced. 

The criteiion of primary interest (output penalty) grows in some degree in both 
cases mentioned above. Moreover the proper selection of additional penalties needs 
some tuning. 

The modification proposed in this paper removes these difficulties. 
Employing the bayesian approach (cf. [10]) the suitable point estimate of the un­

known parameters P is understood as the mathematical expectation of P conditioned 
on the past observed history. 

The straightforward application of the martingale theory [4], [12] shows that 
the sequence of point estimates converges to some point almost surely. Moreover 
it is known that 

(2.16) l im^ ( ( ) = P = P 
(-+00 

is valid if the parameters P are asymptotically measurable with respect to the cr-alge-
bra generated by the observed data. 

This measurability requirement seems to be the most abstract formulation of con­
ditions of both sufficiently exciting inputs [8] and nonredundancy in the model 
parametrization. 

Experiments indicate that for the 1ST strategy the identity (2.16) does not need 
to be fulfilled. In order to achieve the identity (2.16) and in this way also the asympto­
tic optimality, some dual-control modification [2] is needed. The most promising 
seems to be a two-step-ahead version of the 1ST strategy similar to the strategy 
described in [11]. But the following conjecture follows from intensive experimental 
studies: 

— the 1ST strategy under SRC generically stabilizes the closed control loop 
— transient as well as asymptotic behaviour is not far from the optimal one. 
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3. MODIFIED STRATEGY OF ITERATIONS SPREAD IN TIME (MIST) 

Let us consider the controlled system (2.1), the criterion (2.2), (2.4) and moreover 
let us assume linearly bounded admissible inputs 

(3.i) «(*<.-«)_;«(») = " ( * ( » - D ) 

where u, u are the given functions. In the multi-input case the inequality is under­
stood entry-wise. 

The practical examples of the restriction (3.1) are 

(i) The bounds on the admissible input range 

(3.2) M(.) = u = constant M(.) = u = constant 

(ii) The bounds on admissible speed of the input changes 

(3.3) _ ^ _M(t) = M(() - «(,_,) S 3 

in this case 

(3.4) «(*(,-!)) = ^ + U(t_1} , M(X(t_,)) = U + M ( (_D 

(iii) The simultaneous requirements for (i) and (ii) imply 

(3.5) »(*(r-i)) = max(M, M ( ,_D + _) 

%( ,_! ) ) = min(M, M ( (_D +7) 

The proposed modification of the 1ST strategy (MIST) taking into account the 
restrictions (3.1) can be easily explained in the special case of a single input system 
under the symmetric restriction 

(3.6) u(
2,) = M2(x((-D) 

Like in the 1ST strategy the substitution of P instead of P is performed and the 
function V(.) in the functional equation (2.5) is searched as a quadratic form with 
the kernel S _t 0. 

Performing expectation (integration) on the right-band side of (2.5) we arrive at 
the minimization problem of the type (2.6) which differs just in the range of admissible 
inputs. Thus we search 

(3.7) V(()(x((_1))= min zJt)H(t-iyzw 
« 2 («_B 2 (* ( t - . ) ) 

For all values x(t_ty for which the (absolutely) minimizing inputs u°t) fall into the 
interval (3.6) the function V(t) has quadratic form and, hence, the regular step of the 
1ST strategy is performed. In the opposite cases the minimum is achieved at the 
boundary. The optimizing input minimizes Lagrangian function 

(3.8) *{t)Blt-i)Z(t) + A(x(t_1), M(x(t_ D)) M(
2
() 
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where the multiplier /. ^ 0 is determined by the equality 

(3.9) _?,> - a'fa,-.,) 

for the minimizing input. It can be easily found that X > 0 when u°t] > u2
r). 

The restriction (3.6) has, in this case, the same influence as a data dependent 
penalty on inputs. 

The proposed extension of the 1ST strategy preserves the feasible quadratic form 
of the function V(.), however, at the price of the additional data-dependent input 
penalty. The penalty is fixed at the value X(xu_1), u(x(,_.))), which is the minimal 
one for the measured state xu_i) (zero for „°.2 g «2(.)). More formally 

(3.10) xTS(t)x = min U H(t-i) + Mx(t-i)> "(*(<-1))) u f f ° r aH x 

where the weight X(.) is selected in such a way that for x = x(f_«.) the minimizing 
argument of (3.10) minimizes (3.7) in the range (3.6). The kernel i-(._.) has the form 

(3-n) i-v„ = [ V D |̂ -](S(t-i) + Q*)[%f ] 

It is apparent that: 

(i) The proposed extension does not increase computation burden of the 1ST 
strategy substantially, 

(ii) The sufficient rank condition (SRC) (2.14) is automatically respected also 
for the loss (2.4) with the minimal additional penalty preserving the range 
of inputs. 

(iii) Other one-dimensional problems (nonsymmetric restrictions) are easily trans­
formed into the symmetric form (3.6) by the data-dependent linear transforma­
tion of input, the kernels are then modified by a one-rank positive semidefinite 
matrix. 

(iv) The general multi-input case appears to be a simple problem of mathematical 
programming: the minimization of a positive semidefinite quadratic form 
with linear inequality constraints. 
The algorithm [3] or its numerically more stable modification [6] seem to be 
appropriate for this purpose. Details will not be described here. The extension 
is rather straightforward but more technically involved. 

To close the section let us mention that even in the minimum-phase multi-input 
case and for one-step-ahead optimization it is reasonable to perform the exact 
conditional minimization. The increase of the quality may be rather significant 
in comparison with the usual practice of the input saturation. 
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4. ILLUSTRATIVE EXAMPLES 

In this section some examples will be given which compare the behaviour of the 
proposed modification with the standard technique. 

It is known that stable minimum-phase systems are optimally stabilized when 
one-step-ahead criterion is used. In the case of the known parameters it means that 
no danger arises when inputs (or its increments) are saturated and that any additional 
penalty on u(t) or Au(t) causes an increase of the output criterion (2.4). However, 
in the unknown-parameter case, when input sequence is substantially saturated, 
the excitation of the system may be insufficient. This may result in poor identifica­
tion and in poor closed loop behaviour. The last observation applies, of course, 
also to nonminimum-phase systems. However, in the latter case the output behaviour 
is more dependent on the whole sequence of u(t) and a change of one term, due to 
the limits, can cause the significant deterioration of the control performance for 
some time interval. 

The proposed modification will change adequately the control law and not only 
the current input u(t), unlike the simple saturation. The behavioui of the modifica­
tion can be shortly summarized in the following way. If the control variable moves 
in the admissible limits no correction is applied. If it reaches the bounds, the correction 
takes place. The increase of the tank of S by QU(QA) and its influence in the Riccati 
equation iteration causes a change in the control law. The additional penalty is 
applied until the generated u(t)(Au(t)) is within the admissible limits. The finite number 
of such steps is always sufficient in case of stable systems. Then the control system 
works without an additional penalty until the bounds are reached again. When 
w(r)(_1w(()) reaches the limits frequently the system behaves approximately like an 
optimal one with an additional input-penalty in the criterion. 

Using the 1ST strategy a slow convergence rate of successive approximation (2.12) 
may deteriorate the closed loop behaviour. It can be shown that additional penaliza­
tion of u(Au) accelerates the convergence, especially when the current controller is 
far from the steady state one. 

Two different systems, both of nonminimum-phase, were chosen to demonstrate 
the properties of the algorithm. 

System I: p(t) = 0-98)'(._1) - 0-08«(0 + 0-12«(,_1}, R = 1 

System II: y(t) = 0-98y(t_1} - 0-48w(() + 0-52M ( ( _ 1 ) , R = 1. 

System I has a zero far enough from the unit circle while the zero of the other is rather 
close to the unit circle. The limits on u(t) were imposed and chosen to be u = 10, 
u = - 1 0 . This range is just sufficient for the optimal unrestricted control with 
known parameters. 

In Fig. 1 the output and input of the system can be seen when the 1ST strategy 
was used, Fig. 2 represents the same system when MIST was in action. There is no 
significant difference between 1ST and MIST strategy for this system. 
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Fig. 1. System I, 1ST strategy. Output var. = 8-39, input var. = 52-4. 
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Fig. 2. System I, MIST strategy. Output var. = 8-59, input var. = 44-2. 
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Fig. 3. System I, 10 step strategy. Output var. = 5-94, input var. = 37-1. 
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Fig. 4. System II, 1ST strategy. Output var. = 75-9, input var. = 42-7. 
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Fig. 5. System II, MIST strategy. Output var. = 22-8, input var. = 17-: 
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Fig. 6. System II, 10 step strategy. Output var. = 61-3, input var. = 52-5. 
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To compare the 1ST strategy, with the usual multistep one the additional run was 

performed also with limit M ( ( ). The output and input of the system, when 10 iterations 

were made in every control step, starting always from given standard initial conditions, 

can be seen in Fig. 3. As it could be expected it behaves better at the beginning but 

no difference can be seen later. However, it spends approximately ten times more 

computation time. 

The very similar trials were made with the system II. Figures 4, 5, 6 represent 

runs with 1ST, MIST and 10 iterations per control step, algorithms. In this case the 

results are much more favourable for the MIST strategy. 

The additional run with 1ST, Qu = 2 and without limits on M ( ( ) is shown in Fig. 7 

to compare the behaviour of the closed loop with the fixed penalization of u ( ( ). 

The output of the system might be satisfactory but even with this rather severe Qu 

it is difficult to get M ( ( ) into the desired limits. 

rfЪФ 

Fig. 7. System II, 1ST strategy. Qu = 2, output var. = 26-4 input var. = 31-0. 

The last series demonstrates the influence of the limit on Au(t), The system I was 

simulated and limit A2 = 2 2 was applied as the most representative. Fig. 8 shows 

the case with the 1ST strategy while much better results are obtained by MIST 

strategy as can be seen in Fig. 9. The properly chosen fixed penalization of Au(t) 

(in this case QA = 1) gives a very similar result which can be seen in Fig. 10. It may 

be worthy to note that the choice of adequate QA needs several trials. This by-hand 
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Fig. 8. System I, 1ST strategy. —2 < Au < 2, output var. = 65-4 input var. = 225. 
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Fig. 9. System I, MIST strategy. —2 < Au < 2, output var. = 903 input var. = 109. 
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tuning can be well done in simulations but may be rather impractical in real situations. 
The given examples more or less confirm what could be expected. We believe 

that even better results can be obtained in more realistic situations when the system 

u 
Л M Ҷ Л L J V Ѓ Ҷ\ AЛ, o / v 

- 4 t 

Fig. 10. System I, 1ST strategy. QAu = 1, output var. = 9-58 input var. = 6-64. 

parameters do vary in time and a small forgetting factor has to be used in identifica­
tion and when there are substantial differences in the solutions to which the Riccati 
equation should converge. 

5. CONCLUSIONS 

The MIST suboptimal strategy foi self-tuning control described in the paper 
is able to handle any controllable multivariate system which can be described by 
a normal linear regression model. While saving the computational simplicity of one-
stage-ahead control, it does not rely on the minimum-phase property of the system. 
Moreover it is able to respect linear restrictions imposed on inputs and/or their 
changes. 

The presented idea of the automatic generation of the data-dependent weights 
brings the following advantages 

• convergence of the 1ST strategy cannot be destroyed through nonrespecting 
sufficient rank condition 

• number of artificial manually tuned parameters is deci eased — penalties on inputs 
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are replaced by the range restrictions which are more closely connected with 
technological requirements 

• higher quality of closed loop behaviour can be achieved because additional penal­
ties are close to the minimal ones needed in order to respect the restrictions 

There are some straightforward till unexploited extensions of the MIST strategy. 
As an example we can formulate a dead input zone as the set of linear restrictions 

AuU) = 0 or 0 < A S |^u(o| = 2 

The lower bound A here describes the range of input changes undistinguishable 
from zero. 

It can be easily seen that this problem can be solved in the same manner. In a simi­
lar way one can generate data-dependent output weight in order to respect that 
a whole range of outputs is (in some cases) equivalent from the point of view of a user. 

The above extensions are rather apparent but we believe that there is a possibility 
to extend the idea of using simple forms of the function V(.) to some nonlinear 
systems and/or non-quadratic criteria. A strong connection with the Lyapunov 
stability theory and the theory of dynamic programming can be felt and some attempts 
have been done in this direction. 

(Received October 28, 1981.) 
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