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KYBERNETIKA ČlSLO 2, ROČNÍK 6/1970 

Information-Theoretic Approach 
to Measurement Reduction Problems* 

ALBERT PEREZ 

Considering the measurement problem as a statistical decision problem subordinated to a more 
basic one there are applied some information-theoretic methods facilitating the task of defining 
what to be measured and with what accuracy in order to achieve the required overall decision 
efficiency with a set of measurement data as reduced as possible. 

In this paper, the measurement problem is conceived as a statisrical decision 
problem subordinated to a more basic one. In face of a decision task (including pre
diction, control, etc.), it is the need of efficient decision procedures which leads to the 
collection of as more of data as possible relevant to the above task, namely, through 
the measurement of some set of parameters serving to characterize the decision situa
tion. In this context, it is possible to distinguish two aspects of the measurement pro
blem. The first one, more usual, is related to the task of measuring something a priori 
given, namely, to the task of estimating the values of the above set of parameters 
with the accuracy needed by the original decision task. Given the boundedness of the 
measurement capabilities at our disposal, there is a tendency to reduce as far as pos
sible the volume of data (and the measurement costs for their acquisition) sufficient 
for such an estimation. It is clear that the efficiency of a data reduction procedure 
closely depends on the degree of exploitation of the information on the set of para
meters which may be extracted from the measurement data. The information-
theoretic approach to data reduction problems developed by the author consists 
essentially to estimate in information-theoretical terms (not necessarily of Shannon's 
type) the loss of decision quality (measurement accuracy) implied by different ver
sions of data reduction. The methods presented may, thus, facilitate the task of 
economizing measurement capabilities in measuring a given object (i.e. in estimating 
a given set of parameters) with the required accuracy. This is made on the base of 
what it would be possible to call "essential observables" in the sense that the set of 
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data obtained by their observation is the more reduced one among all the similar 
sets containing, as to the given set of parameters, an information sufficient for their 
estimation with the required accuracy. This concerns the first aspect of the mea
surement problem as envisaged in this paper. 

The second aspect of the measurement problem is related to the task of what is 
necessary to measure in order to characterize as economically as possible the decision 
situation as required by the original decision task (to which the measurement task is 
subordinated). This question arises, of course, only if the parameter set introduced 
above is not a priori given and, thus, a possibility of selection of this set exists. The 
methods of treating this problem of reducibility of the parameter space are to a certain 
extent similar to those applied in the study of reducibility of the observation space 
mentioned above. 

1. PRELIMINARIES 

As said in the introduction, the measurement problem is conceived as a statistical 
decision problem subordinated to a more basic one. In the sequel, by X = Xt x 
x . . . x Xs will be denoted the "complete" parameter space, Cartesian product of s 
component spaces-parameters, X 1 : X2,..., Xs. Similarly, by Y = Yi x Y2 x . . . x Y„ 
will be denoted the original (unreduced) sample or observation space, Cartesian 
product of n components-observables, Yj, Y2, ..., Y„. In general, to every 
realized value x of X there corresponds a probability distribution PY/x on the ob
servation space Y, indicating the probability of possible values taken by the "complex 
observable" Y. The system {PY/x, xeX] of conditional probability distributions re
presents, thus, the so-called "observation channel", characterizing, in particular, the 
measurement devices from the accuracy point of view. The dynamic aspect may be 
taken in account by considering suitable time-sequences of such channels. 

Let, further, D be the'decision space (i.e. the set of possible decisions) corresponding 
to the original (basic) decision problem. By w(x, d), xeX, d e D, will be denoted the 
so-called weight or distance or loss function, indicating the "loss" or "inadequate-
ness" implied by taking a decision d e D in a decision situation characterized by the 
value x e l of the "complex parameter". The latter is no directly observable, in 
general, but only through the observation channel {PX/X, % e X}, so that it can be only 
estimated on the base of the observed value y of the "complex observable" Y As a con
sequence, the choice of the decision d in D may be made only on the base of the ob
served y 6 Y, either directly or through the prior estimation (measurement) of the 
value x of the complex parameter X. Whatever be the case, the decision procedure 
may be represented by a function (called "decision function") b(y) of y e Y taking its 
values on D. Sometimes it is useful to decide by applying a randomized decision func
tion (mixed strategy) but here we consider only "pure" decision functions. 

The risk corresponding to the parameter value x and to the decision function b is 



92 given by 

(1) r(x,b)=jw(x,b(y))dPYlx(y). 

If Px is the so-called a priori probability distribution on X, the average risk cor
responding to the decision function b is given by (cf. (l)) 

(2) r(b) = f r(x, b) dPx(x) . 

If P is the simultaneous probability distribution on the Cartesian product X x Y, 
generated by Px and the channel {PY/X, x e l } , the so-called Bayes risk is given by 

(3) r0(P) = r(b0) = min r(b). 

(In the sequel we shall suppose that always there exists an optimal or Bayes decision 
function b0 in the set B of all possible decision functions.) 

Let us, now, recall the definition of some infomation-theoretic concepts applied 
in the sequel. 

The Shannon's information on X contained in Yis given by 

(4) I(X,Y)=I(P)=l log-£^LdP(x,y) 
J x x Y

 a{rx x rY) 

where dPJd(Px x Pr) is the density of P with respect to the product measure of its 
marginals Px and PY. If this density does not exist, then I(X, Y) = oo. 

As well known, l(X, Y) ^ 0 with equality if, and only if, X and Yare stochastically 
independent, i.e. if, and only if, P = Px x PY. Further, by reducing X to X' (for 
instance, in our case, by retaining only some components Xt of X and by rejecting the 
rest, represented in the sequel by X" so thatX = X' x X") and, similarly, by reducing 
Yto Y', it holds 

(5) I(X', Y') ^ I(X, Y) , 

the sign of equality taking place if, and only if, the transformations (reductions) 
S(X) = X' and T(Y) = Y' are "sufficient" with respect to {P, Px x PY) in the sense 
of mathematical statistics. 

The concept of information may be considered as a special case of the concept of 
generalized entropy of one probability measure P with respect to another probability 
measure Q defined on the same measurable space. Thus, the Shannon's generalized 
entropy H(P, Q) = oo unless P is absolutely continuous with respect to Q, the cor-



responding density being dP/dQ = w. Then 

(6) H(P, Q) = flog u dP = fu log u dQ . 

If the convex function u log u is replaced by a more general continuous and strict 
convex function f(u), we obtain a more general concept, the so-called generalized 
f-entropy of P with respect to Q 

(7) Hf(P, ß) = j /(«) dß, 

where by u we denote the ratio of the densities of P and Q with respect to a dominat
ing measure R: 

(7a) u^^M. 
dQJdR 

Except of the well-known additivity property, the other fundamental properties 
are essentially conserved on passing from the Shannon's to the generalized /-entro
pies. If, namely, the "statistical hypotheses" P and Q are transformed to P' and Q', 
respectively, due to the fact that their common sample space is not observed directly 
but through some observation channel (which may be also some ordinary transforma
tion of the sample space), then it holds (cf. (5)) 

(8) Hf(P\Q')<kHf(P,Q), 

the sign of equality taking place if, and only if, the observation channel in question is 
(in some generalized sense) "sufficient" with respect to the system {P, Q). This re
lation, thus, exprimes the well-known fact that by reducing the space or the accuracy 
of the observations we cannot increase the discernability. For more details see re
ferences [1, 2, 3, 4, 5]. 

2. FIRST ASPECT OF THE MEASUREMENT PROBLEM: REDUCTION 

OF THE OBSERVATION SPACE Y 

As said in the introduction, the boundedness of the measurement capabilities in face 
of the task to measure a given object, i.e. to estimate with a given accuracy the value 
of a given "complex parameter" X, represented by the set of parameters-components 
Xt, X2,..., Xs, (cf. section 1), leads to the tendency to reduce as far as possible the set 
of "observables" Yl5 Y2, ..., Y„, (cf. section 1), as well as the accuracy of their values, 
sufficient for the estimation of X with the needed accuracy. In the language of 
tr-algebras of subsets of the spaces X and Yit would be possible to express all this in 
a more suitable and precise form (cf. references above). For the sake of simplicity, 



however, we shall try to expose here our ideas in terms of sets of observables and 
parameters. 

Let, thus, reduce the original set of observables Y to Y' by rejecting some of its 
components Y;. As a consequence, the observation channel {Py/X, x eX}, (cf. section 
1), is transformed to the reduced observation channel {PY,/x,xeX}, the marginal 
probability distribution PY becomes PY, and the simultaneous probability distribu
tion P becomes P' on X x Y'. 

Let P'Y/X be, for every xeX, defined by the relation dP'Y/x = (dPY,/xjdPY) dPY, 
(in the sequel, we assume the existance of all the densities used; this is assured by the 
finiteness of the Shannon's informaiton we suppose throughout the paper), and, thus, 
representing an extension of PY,/x from Y' to Y. Similarly, let P' be the corresponding 
extension of P' from I x F t o I x Z I t is possible to prove, (cf. [2]), that the Bayes 
risk as well as the Shannon's information, defined by (3) and (4), are preserved by 
such an extension, i.e. 

(9) r0(P') = r0(P'), 

(10) i(P')=i(P')-

Moreover, for the Shannon's generalized entropy (cf. (6)) it holds 

(11) H(P, P') = I(P) - I(P') = min H(P, Q), 
Q 

where Q is an arbitrary extension of P' from X x Y' to X x Y preserving the Shan
non's information. 

On the base of [2 — 5], it is possible to write under very general conditions that the 
risk increment (cf. (l)), the average risk increment (cf. (2)), and the Bayes risk in
crement (cf. (3)), on passing from a probability law P to a probability law Q (for 
instance, change of the measurement device, reduction of the set of observables, and 
so on), satisfy the inequalities: 

(12) r(x, b, Q) - r(x, b, P) ^ J[2H(PY/x, QY/x) R(x, w2, Q)] , 

(13) r(b,Q) -r(b,P) g J\2H(P', Q) R(w2, Q)] , 

(14) r0(Q) -r0(P) <- J[2H(P, Q) R0(w
2, Q)] , 

where 

R(x, w2, Q) = f(w(x, b(y)) - r(x, b, Q))2 dQY/x(y), 

R(w2, Q) = f(w(x, b(y)) - r(b, Q))2 dQ(x, y) , 

*o(w2, Q) - i(w(x, bQ(y)) - r0(Q))2 dQ(x,y). 

Here bQ is a Bayes decision function corresponding to Q. 



In (12), (13), (14), the quantities 2H(Px/x, QY/X) and 2H(P, Q) may be replaced 
(sometimes, with advantage) respectively by the quantities H2(PY/X, QY/X) - 1 and 
H2(P, Q) - 1, where H2(P, Q) is the so-called generalized entropy of second order 
of P with respect to Q, 

(15) H2(P, Q) - Гu2 áQ. 

Here u is the density of P with respect to Q if it exists, otherwise is the ratio of den

sities introduced in the definition (8) of the generalized j-entropy. In the present case 

/(«) = «2-
Further, in the case of the reduction of the set of observables from Y to Y', Q in 

(12), (13) and (14) will be replaced by P' , introduced above. According to (9) —(11), 
in particular from (14) we throw: 

(16) 0 ̂  r0(P') - r0(P) S V[2(/(P) - I(P')) Ro{™2, P')] • 

In [2] we introduced the concept of e-sufficiency, generalizing the concept of suffi
ciency and of sufficient statistics in mathematical statistics, in terms of the Shannon's 
information as follows: A reduction of the sample (observation) space is e-sufficient 
if the corresponding loss of information satisfies the inequality 

(17) l(P)-I(F)Se (e^O). 

As for the searching of a minimal sufficient statistics, there is possible to establish 
algorithms for the searching of a minimal e-sufficient statistics for e > 0 given. Note 
that the loss of information is zero if, and only if, the corresponding transformation is 
sufficient (cf. (5)). In a similar way, it is possible to introduce the concept of e-suffi
ciency in terms of generalized/-entropies (cf. (7) and (8)). 

If the weight function w is of the type "0 or 1" so that the average risk is the so-
called probability of error, it is possible to derive many interesting estimates (cf. 
[4, 5]) from the following general inequality 

(18) eQf(eP\eQ) + (1 - eQ)f((i - eP)j((l - eQ)) <; Hf(P, Q) 

for every continuous function f(u) strictly convex on [0, oo). Here eQ and eP are the 
minimal error probabilities corresponding to the probability laws Q and P, respective
ly. As before, in the case of reduction Q will be replaced by P'. Note that eP, = eP,. 

Very important is the special case of discriminating two statistical hypotheses P 0 

and Q0 on the base of a sequence Y,, Y2, . . . , Y„ of independent observables equally 
distributed according to the probability distribution P 0 (if the first hypothesis is 
realized) or Q0 (if the second hypothesis is realized). It is well known that, if P 0 + Q0, 
the minimal probability of error en of their discrimination on the base of n observa
tions converges to zero when n converges to infinity. The question arises what is the 
rate of this convergence. 



It is possible to prove (cf. [6, 7]) that e„ converges to zero for n -* oo as 

[IIO0(IV So)]" (asymptotically), where 

(19) Hao(P0, Q0) = min Ha(P0, Q0) 
O£ogl 

with 

(20) Ha(P0, Go) = L0 dQ0 . 

Here u0 is defined analogously as u in the definitions (7) or (15). Ha(P0, Q0) is the so-
called generalized entropy of order a of P 0 with respect to Q0 (exceptionally, even 
for the case 0 g a ^ 1, in spite of the fact that then the function f(u) = u" is not 
convex but concave). Its value lies between 0 and 1 for a between zero and one, and as 
a function of a is a convex one, having, thus, always a minimum in the interval 
[0, 1]. 

3. SECOND ASPECT OF THE MEASUREMENT PROBLEM: REDUCTION 

OF THE PARAMETER SPACE X 

As said in the introduction, this aspect of the measurement problem is relevant 
only if the parameter set X, which serves to characterize the decision situation, is not 
a priori given and, thus, there exists a possibility of selection of this set in order to 
characterize as economically as possible the decision situation of the original decision 
task (to which the measurement task is subordinated). Imagine, for instance, that 
instead of using a measuring device covering the "complete" set of parameters X, 
there is applied a less sharp one covering only a subset X' of X. The loss of decision 
quality, thus, resulting may be estimated in a similar way as the loss resulting by 
a reduction of the observation space (cf. section 2). It is sufficient to take for P and Q 
the probability laws on X x Y corresponding to the original and to the reduced or 
modified case, respectively. If, in particular, the observation channel corresponding 
to the reduced case may be considered as a rounded off version of the observation 
channel corresponding to the original case, in the sense that the former, {P'Y/X-, 
x' eX'}, is the conditional expectation of the latter, {PY/x, xeX], with respect to 
X", where X = X' x X", i.e. if, for every measurable subset E of Y 

(21) Py,AE)=\ PY/x(E)dPXVx.(x"), (x = (x',x")), 

then as Q we shall take an extension P" of P" (defined by Px, and the rounded off 
channel above, constructed in a similar way as P' in the preceding section). If the 
estimates are made in terms of the Shannon's generalized entropy, it again holds that 
H(P, P") = I(P) - I(P") = I(X, Y) - I(X', Y) = loss of Shannon's information due 
to the reduction of X to X'. 



Let us observe that to the rounded off observation channel {Px/X', x' e X'}, defined 9" 

by (21), there corresponds as weight or loss function w'(x', d), x' eX', d e D, a 

rounded oif version of the original weight function w(x, d) = w(x', x"; d) given by 

(22) w'(x', d) = I w(x', x"; d) &Px,,/x.(x"). 

Jx» 
It is clear that similar estimation methods may be applied without any difficulty 

a\so in the case of a simultaneous reduction of the parameter and observation spaces. 

However, the situation becomes more complicated if it is desired, together with the 

parameter space, to reduce parallelly the decision space D. Some results in this 

direction are contained in the paper \%\. 

(Received November 27th, 1969.) 
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Informačně-teoretický přístup k problémům redukce v měření 

ALBERT PEREZ 

V tomto článku je problém měření považován jakožto statistický rozhodovací 
problém podřízený danému (původnímu) rozhodovacímu problému. Přitom jsou 
uvažovány dva aspekty měřící úlohy. První aspekt se vztahuje k odhadu hodnot 
a priori daného systému parametrů, který slouží k charakterizaci rozhodovací situace 
původního problému. Snahou je redukovat co nejvíce objem dat nutných pro tento 
odhad, jakož i objem nákladů, spojených s jejich získáním pomocí měření. K usnad
nění této úlohy lze použít informačně-teoretické metody zavedené autorem, které 
spočívají v odhadu ztráty rozhodovací efektivnosti, způsobené redukcí výběrového 
(tj. pozorovacího) prostoru. 

Druhý aspekt úlohy měření, uvažovaný v tomto článku se vztahuje k fundamen
tální otázce co (tj. jaký systém parametrů) je nutno měřit k tomu, aby bylo možno co 
nejúsporněji charakterizovat rozhodovací situaci, odpovídající původnímu rozhodo
vacímu problému (ke kterému je úloha měření podřízena). Tato otázka vzniká, po
chopitelně, jen když zmíněný systém parametrů není a priori dán tak, že existuje 
možnost výběru tohoto systému. V článku je poukázáno i na metody usnadňující 
tento výběr. 

Dr. Albert Perez, DrSc, Ústav teorie informace a automatizace ČSA V, Vyšehradská 49, Praha 2. 
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