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K Y B E R N E T I K A — V O L U M E 19 (1933), N U M B E R 3 

MEASURES OF VECTOR INFORMATION 
WITH THE BRANCHING PROPERTY 

BRUCE R. EBANKS 

It is known that, for a large class of monoids (S, *), all solutions of the functional equation 

A(s, t) + A(s * /, ;/) = A(s, t * u) + A(t, u) 

for A : S2 —> G (with (G, + ) any divisible abelian group) have representations of the form 

A(s, t) = f(s) + / ( / ) - f(s * /) + V(s, t), 

where y is antisymmetric and bi-additive. We show that this class is closed under the formation 
of direct products. This result is then used to characterize branching measures of vector informa­
tion on strings of monoid elements. 

1. INTRODUCTION 

An entropy in the "classical" (probabilistic) sense is a sequence (/„) of mappings 
from the set of all n-ary complete probability distributions into the real numbers. 
More generally, /„ can be a function of several probability distributions, as is the case 
for directed divergence or inaccuracy. Discussions, properties, and characterizations 
of such information measures can be found in the book [2] by Aczel and Daroczy. 

Measures of information in a different sense have been proposed and studied by 
the author [3], [4]. In [3], a measure of information is a function of a string of 
elements from a monoid. In [4], the information measure is a function of pairs 
of strings (quantities and "attractions") and appears as a utility function. In the 
present setting, a measure of information will be a function of m-vectors of strings. 

The main results are contained in Sections 2 and 4. In Section 3, a fundamental 
functional equation is derived. Its general solution is found in Section 4 and used 
in Section 5 to prove the main result of Section 2. 
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2. BRANCHING MEASURES OF VECTOR INFORMATION 

A measure of m-vector information (m = 1, 2, ...) is a sequence /.in: X S" ~> G 
J'=I 

(n = 3, 4, . . . ) , where (G, + ) is a divisible abelian group and each Sy is a commutative 

monoid (with identity e} )from a certain class S defined below. For notational con­

venience, we write the argument of n„ as if it belonged to ( X S;)" instead of X S". 
J = I J = I 

The essential property for our measures is that of branching. A measure /*„ of 

m-vector information is said to be branching if there are maps Ani : X S2 -> G, for 
all i = .1, 2, ..., n - 1 (n = 3, 4, . . . ) , such that J = 1 

(2.1) /i„(v1;v2,...,v„) = 

= ^,(vj, ..., Vj.i, v ; 0 v ; + 1 , e, v; + 2 , . . . , v„) + 4 ; ( v „ v; + 1 ) , 

for all » , e X 5, (fc = 1,2,..., n), where e = (et, e2, • • -, em) and u o w = (u1w1, 
j '=l m 

w2w2, ..., umwm) for all (u, w) e X S2. For the sake of readability, the operations 
J'=I 

of all Sj are designated simply by juxtaposition, as this leads to no confusion here. 

All monoids Sj are from the class S defined as follows. 

Definition 2.1. A commutative monoid (S, *) is said to belong to class S if all 
solutions A : S2 -» G ((G, + ) any divisible abelian group) of the functional equation 

(2.2) A(s, t) + A(s * f, «) = A(s, t*u) + A(t, u) , 

for all (s, t, u) e S3, have a representation 

(2.3) A(s, t) = .5(a) + <5(f) - <5(s * t) + i//(s, .) 

for some map 8 : S -> G and a map i/> : S2 -> G which is antisymmetric 

(2.4) i//(s, t) = - ^(f, s ) , V(s, 0 e S2 , 

and bi-additive. (Additivity in the first variable, for example, means that 

ijj(st, u) = i/>(s, u) + ip(t, u), V(s, t, u) E S3.) 

Equations (2.2) and (2.1) have been studied extensively and on many different 
domains. On branching measures of information, see [3] and [4] for results on 
strings of (m=) 1-and 2-vectors. On equation (2.2), see [8], [5], [6], [ l ] , [7], 
[3], [4]-. 

The following summarizes the above results on (2.2). 

Theorem 2.2. A commutative monoid (S, •) belongs to class S if (S, •) is any 
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of the following: idempotent, a monoid with zero, a thread, a group, the set of positive 
elements of an ordered group, a cancellative w-thread, a near-thread. 

Definition 2.3. A w-thread (or thread in the wider sense) is a connected, totally 
ordered topological semigroup. A thread is a w-thread with a greatest and a least 
element, both of which are idempotent. Finally, a near-thread is a semigroup obtained 
by removing the zero from a w-thread (S*, •) which has a zero as least element 
and the property S* . S* = S* (global idempotence). 

The main result, which is proved in Section 5, is the following. 

Theorem 2.4. The measure /<„ : X S" -> G (n = 3, 4, ...) of m-vector information 
J = I 

has the (2.1) branching property, if and only if it admits a representation 

(2.5) njiyu ..., v„) = (p„0(Vl o ... o v„) + f %,.(v,.) + £ t U*i> *k) , 
i = 1 i = 1 k»I + 1 

for all (v1, ..., v„)e X S", for some maps cpni: X Sj -> G (i = 0, 1, .... «) and 
j = i j = i 

i//„ : X S ; -> G, where \j/n is antisymmetric and bi-additive in the m-tuples vh vk. 
J = I 

That is, \j/„ satisfies 

(2.6) \j/n(u, w) = ~ij/,.(w, u), V(u, w) e X Sj 
J ' = I 

\p„(u o v, w) = \j/n(u, w) + \j/n(v, w), V(u, v, w) 6 X Sj . 
J ' = l 

We can easily obtain the following consequence. 

Corollary 2.5. A measure ftn of m-vector information is (2.1) branching and 
symmetric in its arguments v,- (i = 1, ..., «), if and only if there exist maps <pn, cpn : 

• XSj -> G such that 
J = I 

(2.7) ^„(v1;..., v„) = ft,(v. o. . . o v.) + t cp„(Yi). 
; = i 

Proof. Assume that /J„ has the (2.1) branching propsrty. \i„ has representation 
(2.5) by Theorem 2.4. Interchanging vk with vk + 1 (I ^ k ^ n - I), by the symmetry 
hypothesis, we get 

(2-8) q,Jiyk) + (p„:k+1(vk + 1) + \p„(vk, vk+1) -

= <Pnk(Vk+i) + <P«,k+i(vk) + iA„(n+1, vfc) , 

for all (vfc, v i + i ) e X S 2 , from (2.5). Letting vk+1 = e and using i//„(e, vk) ~ \J/„(vk, e) = 
> = i 
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= 0 (which follow from bi-additivity), we have 

(2-9) <Pn,k+i(")=-M") + cnk, VueXSj. 
J ' = I 

Now (2.8) yields 

tf'-.fa, vk + 1) = <A„fa + i, vk), Vfa, vk+1) eXSJ . 
J = I 

By the (2.6) antisymmetry of ij/„, therefore, 

(2.10) ^ = 0 . 

Thus, by (2.9) and (2.10), (2.5) becomes (2.7), where cp„ and <pn are defined by 
n - l 

<Pn : = <P„1, <Pn : = <PnO + __ ( " ~ !<) C„* • 

fc = i 

The converse is easy to check. • 

3. DERIVATION OF THE FUNDAMENTAL EQUATION 

We begin by using equation (2.1) in two different ways for a given string fa, v2, ... 

..., v„) e X S". On one hand, apply (2.1) for /' = k + 1 (1 S k ^ n - 2), then for 
j=i 

i = fc; on the other hand, apply (2.1) first for i = k, then for i = fc + 1, then for 
i = k again. Comparing the two results, we find that 

(3-1) -U*+ifa+i> V/c + 2) + -Ufa , n + i ° v* + a) = 

= - U f a ' V*+l) + 4lJ.1-lfa "k+l) + 4 * f a ° Vfc+1' Vii+2) , 

for any fa, vk+1, vk + 2) e X S). With v4 = e, (3.1) becomes 
J = I 

(3-2) -1-A+ifa + i ,vk + 2) = Ank(vk + 1,vk+2) + Ank(e,vk + 1) + 

+ 4,fc+ifa vk + i) - ^U(e> vfe + 1 o vk + 2) . 

From (3.1), using (3.2), we now get (with u = vk, v = vk + i, w = vk + 2) 

(3-3) -Ufa w) - Ank(e, vaw) + Ank(u, v . w) = 

= -Ufa v) - Ank(e, v) + Ank(u 0v,w), 

for all (u, v,w)eX S3 and all k = 1, 2, ..., n - 1. (To get (3.3) for k = n - 1, 
J = I 

use (3.1) and (3.2) for k = n - 2 and solve (3.2) for 4,„-2(v„-i , v„) instead of 

4i,i!-]fa-_> v«)' t n e n substitute for -U„_2 terms in (3-1)-) 

Fix n W.I and fc = 1 (temporarily) and define F :XSj —^ Gby 
J = 1 m 

F(u, v) := _Ufa v) - Anl(e, v), Vfa v) 6 X S2 . 
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Then, by (3.3), F satisfies 

(3.4) F(u, v) + F(u oV,w) = F(u, v o w) + F(v, w) 

for all (u, v, w) e X Sj, and Anl is given by 
J = I 

(3.5) Anl(u, v) = F(u, v) + A,n(e, v), \/(u, v)eX SJ , 
y = i 

for an arbitrary map Anl(e, • ) : X S j - + G. 
J'=I 

Thus we have proved the following. 

Lemma 3.1. If fi„ (n = 3, 4, ...) is a (2. l) branching measure of m-vector informa­
tion, then the branching functions Ani (i — 2, 3 , . . . , n — l) can be obtained recursi­
vely from Anl and arbitrary one-place functions Ani (e, •) through (3.2). Moreover, 

Anl is given by (3.5) for an arbitrary solution, F : X S2 -» G, of (3.4). 
j=i 

Our immediate goal is, therefore, to solve (3.4). 

4. SOLUTION OF THE FUNDAMENTAL EQUATION 

The principal tool to be used in solving equation (3.4) is the following. 

Lemma 4.1. If (X, ®) is a commutative monoid, and if (S, *) e S, then a map 
F : (X x S)2 -> G (with (G, + ) a divisible abelian group) satisfies 

(4.1) F(x, r; y, s) + F(x ® y, r * s; z, t) = 

= F(x, r; y ® z, s * t) '+ F(y, s; z, t), 

for all (x, y, z) e X3 and all (r, s, t) e S3, if and only if there exist maps q> : X x S -> 
-> G, ;// : (X x S)2 -^ G, F : X2 -> G such that 

(4.2) F(x, r; y, s) = F(x, y) + (p(x, r) + q>(y, s) - q>(x ® y, r * s) + 

+ \j/(x, r; y, s) , 

for all (x, y) e X1, (r, s) e S2, where \\i is (2.6) antisymmetric and bi-additive, and 
F satisfies 

(4.3) F(x, y) + F(x ® y, z) = F(x, y ® z) + F(y, z), V(x, y, z)eX3. 

Proof. Lemma 4.1 in [3]. • 

With Lemma 4.1, we obtain the following result. 

Theorem 4.2. Let S,- e S, j = 1, 2 , . . . , m; let (G, + ) be a divisible abelian group. 
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A map E : X Sj -> G satisfies (3.4) for all (u, v, w) e X Sj, if and only if there exist 
J = I J ' = I 

a map q> : X Sj -> G and an (2.6) antisymmetric bi-additive map i//: X S) -> G for 
which J = 1 J=1 

(4.4) E(u, v) = (p(u) + cp(v) - <p(u o v) + (/'(u, v) , 

for all (u, v) e X Sj. 
J = I 

Proof. Let E satisfy (3.4). In this direction, the proof is by induction on m. For 
m = 1, it is simply a restatement of Definition 2.1. 

Assume the truth of the theorem for m = n. Let v; denote (vu v2, ..., vt) = the 

first i coordinates of v e X S;, for i = 1,2, ..., m - 1. Also, let ut © v; denote 
J = 1 

(.»!«!, M2̂ 2' •••> uivi) — the restriction of y o v to its first i coordinates (i = 1, 2, ... 

..., m — 1), for any (u, v) e X Sj. Then, for m = n + 1, (3.4) can be written 
J ' = I 

(3.4) E(u„, M„ + , ; v„, u„ + , ) + E(D„ © v„, M„ + l P , + 1; wtt, wn + l) = 

= E(u„, M„+ 1 ; v„ © vv„, vn+1w„+1) + E(v„, vll+1; w„, w„ + 1 ) . 

Now, applying Lemma 4.1 with X = X S, and S = S„ + 1, we get 
J = I 

(4.5) E(u„, M„ + 1 ; v„, pB+1) = F(un, v„) + 0(u) + ^(v) - q)(u . v) + #(u, v) , 

where E satisfies (4.3) and $ is (2.6) antisymmetric and bi-additive. But, by the induc­
tion hypothesis, E has a representation of the form 

(4.6) E"(u„, v„) = </>(u„) + <£(v„) - (p(un © v„) + i£(u„, v„) , 

where $ is (2.6) antisymmetric and bi-additive. Combining (4.6) with (4.5) and 
n+ I 

defining (p(u) : = 0(u) + <p(u„), i/>(u, v) : = $(u, v) + i//(u„, v„) for all (u, v) e X Sj, 
J = I 

we have (4.4) for m = n + 1 (with i/> (2.6) antisymmetric and bi-additive), as re­
quired. 

The converse is easy to check. Q 

Remark. Theorem 4.2 says that S is closed under the formation of direct products. 

5. PROOF OF THEOREM 2.4. 

Let /i„ (n = 3, 4, . . . ) be a (2.1) branching measure of m-vector information. By 
Lemma 3.1 and Theorem 4.2, zlnl has a representation in the form 

Anl(u, v) = cpnl(u) + cp„2(v) - <pnl(u o v) + \j/n(u, v) 
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for all (u, v) e X S], where q>„2(
v) '• = </>„i(v) + ^lnl(e, v) and t/<„ is (2.6) antisymmetric 

; = i 
and bi-additive. Furthermore, An2, An3, ..., An „_, are defined recursively through 

(3.2), giving 

(5.1) 4,(u, v) = q>„{u) + (p„J+1(v) - (pni(u o v) + \jjn(u, v) 

for all (u, v) e X SJ and all i = 1, 2, . . . , n — 1, where (pni is defined recursively 
J = I 

by <?„,, +i(u) := <?„;(") + Ani(e, u). We have also used the fact that i//„(e, u) = 0 

for any u e X S;, which follows from additivity in the first variable. 
J = I 

Now, by (2A) and (5.1), we have 

pj(yu v2,..., v„) = //„(>., . . . , v„_ 2 , vr„_, o v,„ e) + <?„.._,(>,._.) + 

+ <P„„(v„) - <?„,„-i(v„_i o V„) + </<„(/„_!, v„) = . . . 

• • • = /̂ „(Vi o v 2 o . . . o v„, e, e, . . . , e) + £ 9„.(v,) -

- ^ І ^ ! o V2 o . . . o V„) + X E Фn(Vn Vk) , 

n - 1 

z 
= 1 fc=i+l 

where we have also used the additivity of \j/„ in the second variable. Defining </>„0(
u) : = 

= j.i„(u, e, e, . . . , e) - (pnl(u), we obtain the asserted form (2.5). 

Again, the converse is easy to check, and Theorem 2.4 is established. • 

(Received April 16, 1982.) 
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