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K Y B E R N E T I K A — V O L U M E 3 0 ( 1 9 9 4 ) , N U M B E R 2, P A G ES 1 2 1 - 1 2 8 

BIFURCATIONS AND CHAOS IN A PERIODICALLY 
FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM1 

YURI A. KUZNETSOV AND CARLO PICCARDI 

An adaptive control system with a first-order plant and the so-called cr-modification 
adaptation law is analyzed in the case of periodic disturbance or reference input. The local 
bifurcations of the low-period solutions are numerically detected by means of a continuation 
method, and the different modes of behavior are classified as well as the transitions among 
them. As predicted by the theory, the control system is robust in the sense that all trajec­
tories are bounded regardless to the action of the disturbance. However, the periodicity of 
the input can give rise to chaotic behavior. The result of the analysis will aid the designer 
in selecting the controller parameters in order to achieve an acceptable behavior. 

1. INTRODUCTION 

It has been pointed out in the last few years that even simple continuous-time 
autonomous adaptive control systems can have a rather complex behavior, displaying 
several types of bifurcations with respect to the design or to the plant parameters 
(Cyr et al. [1]; Rubio et al. [2]; Salam and Bai [3,4]; Bai and Salam [5]; Mareels and 
Bitmead [6]). In this work, a model reference adaptive control system with a first-
order plant and an adaptation law generally referred to as a-modification (Ioannou 
and Kokotovic [7]; Riedle et al. [8]) is considered, and attention is paid to a situation 
which is of definite interest in control systems analysis, namely the superposition of 
a sinusoidal component over the constant disturbance or the reference input. 

As is known, the ^-modification scheme guarantees robustness, in the sense that 
the output error and the adapting parameter remain bounded for all initial conditions 
and parameter values, regardless to the action of the (bounded) disturbance. In the 
autonomous case (i.e. with constant disturbance and reference input) Salam and 
Bai [3,4] showed that the system experiences several bifurcations (saddle-node, Hopf, 
and homoclinic) with respect to the disturbance, and presented a detailed picture 
of the possible system behaviors. 

In the periodically forced case considered in this work, the aim of the analysis 
is to classify the modes of behavior of the system with respect to the system pa­
rameters, and to evidence the mechanisms of transition among them. As is known, 

1 Presented at the IFAC Workshop on System Structure and Control held in Prague on September 
3 - 5 , 1992. 
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the study of the bifurcations of the periodic solutions is equivalent to the study 
of the bifurcations of the fixed-points of an autonomous discrete-time system (the 
Poincare map) associated to the original periodic continuous-time system (Arnold 
[9]; Guckenheimer and Holmes [10]). This discrete-time system is not available in 
analytical form, so that a numerical analysis must be carried out. In particular, the 
bifurcations of the fixed-points of the Poincare map will be numerically analyzed in 
this work by means of a continuation method (Seydel [11]; Khibnik et al. [12]). The 
final result, as already pointed out, is a classification of the modes of behavior of the 
system and of the transitions among them, that will aid the designer in selecting the 
controller parameters in order to achieve an acceptable system behavior. 

2. SYSTEM DESCRIPTION 

The object of the control is the first-order plant 

i)p - PVp + u + d 

where u = u(t) and d = d(t) are, respectively, the control input and the disturbance. 
It is assumed that d is uniformly bounded, i.e. there exists a positive constant D 
such that \d(t)\ < D \/t. The plant output yp is required to track the output of the 
reference model 

ym = ~ym + r 

where r = r(t) is the reference input. With this goal, the control input u is selected 
according to the feedback law 

u = -kyp + r. 

In the ideal case, i.e. when p is known and no disturbance affects the system 
(d(t) = 0 Vf), the nominal feedback gain k* = p + 1 is such that the transfer 
function of the plant matches that of the model. In the real case, k is varied in order 
to counteract uncertainty, according to the following adaptation law (Ioannou and 
Kokotovic [7]; Riedle et al. [8]): 

k = -ak + ayp(yp - ym) or, a > 0. 

By introducing the output error e = yp — ym and the displacement <j> = k — k* = 
k — (p+l) of the feedback gain k from its nominal value, the above system is reduced 
to 

e = -e-4>(e + ym) + d (la) 

j , = -ff<j, + ae(e + ym) - a(p + 1) . ( l b ) 

ym = -ym + r. (lc) 

Consider the function 

V(eA)-\^e2+l-<j>2 (2) 

whose time derivative along the system trajectories is 

V = ^ - e + ^ = -ae2-CT<j>2 + aed-cj(p+l)^ (3) 
ae am 
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Since d is bounded, V is negative for ||(e,<^)|| sufficiently large, so that there exists 
a positive constant M such that all the system trajectories are attracted into the 
region delimited by the closed line V(e, <j>) = M (an approximation of the lowest M 
having the above property can easily be derived from (2), (3)). Therefore system 
(1) has the property that all its solutions are uniformly bounded for all possible 
disturbances, reference signal, and system parameters (Ioannou and Kokotovic [7]). 

We are interested in analyzing the behavior of system (1) in the following two 
cases: 

a) periodic disturbance: we let 

d(t) = d0+ 6 cos(uit) 

and r(t) = 0 V/. After transient we can assume ym(t) = 0, so that system (1) reduces 
to 

e = - e - <f>e + d0 + 6 cos(wi) (4a) 

</,= -cr(j> + ae2 - a(p + 1) (4b) 

b) periodic reference: we let 

r(t) = r0 + 6 cos(u;<) 

and d(t) = 0 V*. After transient we can assume 

ym(t) - r0 + 6' cos(wt + ij}) 

where 6' = 6/(1 + w2)1!2 and ip = —arctg(w). By introducing the time shifting 
T = t + I/>/UJ, system (1) reduces to 

e = - e - 4>(e + r0 + 6' cos(wr)) (5a) 

</> = -a</> + ae(e + r0 + 6' cos(wr)) - a(p + 1). (5b) 

The numerical analysis of systems (4) and (5) revealed that they possess qualitatively 
the same bifurcation picture. Therefore, the following presentation and discussion 
will be limited to the case of periodic disturbance. 

3. BIFURCATION ANALYSIS 

The bifurcations of the periodic solutions of system (4) have been analyzed with 
respect to 6 and d0, namely the two parameters characterizing the disturbance. The 
other parameters have been fixed at the values suggested by Salam and Bai [3], 
namely p = 1.5, a = 0.5, and a = 1. The frequency of the periodic disturbance has 
been fixed at u> = 1.5. 

We briefly recall the bifurcations taking place in system (4) in the autonomous 
case (6 = 0) with respect to the (constant) disturbance d0 (see Salam and Bai 
[3] for a detailed description). At d0 = 0 system (4) has three equilibria, two 
stable foci (Si : (e,<f>) = ( -0 .866, -1) ; £2 : (e,</>) = (0.866,-1)) and a saddle 
(£3 : (e, <j>) = (0, -2.5)) . At d0 = d'0 S 0.26336 the stable and unstable manifolds 
of the saddle £3 form a homoclinic orbit around the focus £\. By increasing d0, 
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the homoclinic orbit disappears giving rise to an unstable limit cycle. This cycle 
has decreasing amplitude as do increases, and disappears at do = d'0' — 0.35355 
through a subcritical Hopf bifurcation by colliding with £i, giving rise to an unstable 
focus. Finally, at do — 0.49905 the unstable focus becomes an unstable node which 
disappears at do = 0.5 through a saddle- node bifurcation by colliding with £3, so 
that for d0 > 0.5 the stable focus £2 is the only existing equilibrium. The same 
sequence of bifurcations takes place when do is decreased from 0, with the role of 
the two foci interchanged. 

In the periodically forced case (8 > 0) system (4) defines a Poincare map P : 
R 2 —> R2 , namely a discrete-time autonomous system of the form 

(e(T), «HT)) = P(e(0), <K0)) 

where T = 'lir/ui. The fixed points of the m-th iterate p(m) (ra = 1,2,...) of 
the Poincare map clearly correspond to period-mT solutions of system (4). The 
eigenvalues of the Jacobian matrix of p(m) evaluated at a fixed point are called 
multipliers of the period-mT solution. A fixed point is structurally stable if and 
only if it has no multipliers with module equal to 1. Having fixed all the parameters 
except 8 and do, the values (8, do) at which a fixed point is structurally unstable 
define a bifurcation curve in the (8, rfo)-plane. We will use the following notation to 
denote codimension-one bifurcation curves:1 

tm-saddle-node (tangent) bifurcation curve (on this curve p(m) has a fixed point 
with a multiplier equal to 1). 

fm-flip (period-doubling) bifurcation curve (on this curve P(m) has a fixed point 
with a multiplier equal to —1). 

hm-Naimark-Sacker (secondary Hopf) bifurcation curve (on this curve p(m) has a 
fixed point with a pair of complex conjugate multipliers with module equal 
to 1). 

The bifurcations taking place across these curves are very well known and de­
scribed, for example, in Arnold [9] or in Guckenheimer and Holmes [10]. At cer­
tain points on these curves some non-degeneracy condition for the corresponding 
codimension-one bifurcation can be violated, thus giving rise to a codimension-two 
bifurcation. We will use the following notation to denote codimension-two points:2 

Am-strong resonance 1:2 (at this point p(m) has a fixed point with a double mul­
tiplier equal to - 1 ) . 

Bm-strong resonance 1:1 (at this point P(m) has a fixed point with a double mul­
tiplier equal to 1). 

Cm-cusp (at this point p(m ) has a fixed point with a multiplier equal to 1 and an 
extra nonlinear degeneration [9,10]). 

Z5m-degenerate flip (at this point P(m) has a fixed point with a multiplier equal to 
-1 and an extra nonlinear degeneration [9,10]). 

1 Curves of the same class will be distinguished by a subscript number. 
2 Points of the same class will be distinguished by a subscript number. 
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The parametric portrait of system (4) for the above specified values of p, <r, a, 
and u is presented in Figure 1. It has been numerically obtained by means of a 
continuation method implemented on PC by the interactive program LOCBIF (see 
Khibnik et al. [12] for a detailed description). 

F i g . 1. Parametric portrait of systém (4) in the (S, áo)-plane. 

In region 0 system (4) has three period—T solutions: two of them are stable and 
correspond to the perturbation of the foci £\ and £2 of the autonomous system (we 
denote these solutions by C\ and C2, respectively), and one is unstable (denoted by 
C3) corresponding to the saddle £3. (We only describe the bifurcations related to 
C\ and C3, since C2 experiences the same bifurcations as C\ once the sign of do is 
reversed). The curves t\ and t\ reveal a typical (symmetric) fold structure for these 
period—T cycles. More in detail, on segment B1 C1 of curve t\, the cycles C\ and 
Cz collide and disappear, while C\ becomes unstable when crossing h\ or h\ toward 
region 1, and then collides with C3 and disappears on t\. At the cusp point C1 the 
three cycles C\, C2 and C3 coincide, and outside the curves t\ and t\ (region 2) only 
one period—T solution exists. 

In the autonomous system (8 = 0), by decreasing do from d0 (Hopf) to d0 (ho-
moclinic) the period d of the unstable cycle generated through Hopf bifurcation 
increases from d = 1.15T to infinity. Thus, in the periodically forced system (6 > 0) 
we expect resonance tongues at the values of do where ^ is an integer multiple of 
the period T of the forcing term, i.e. i3 = mT (m = 2,3 , . . . ) . These tongues are 
formed by pairs of saddle-node bifurcation curves which delimit the region where 
a pair of period-mT orbits exist: these orbits are unstable at least for S close to 
zero, since the limit cycle in the autonomous system is unstable. For ra = 2 these 
curves are depicted in Figure 1 (t2 and t2). They terminate respectively on a flip 
bifurcation curve fl (point D\), and at a cusp point C2. At point C2, another 
branch of period—2T saddle-node bifurcation curve (<§), which originates on f1 at 
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point D\, terminates. Moreover, an infinite sequence / 2 , / 4 , . . . of flip bifurcation 
curves intersects with f1 (f2 and / 4 have been computed, and only f2 is depicted 
in Figure 1). This sequence accumulates on a curve f°° that delimits the region of 
chaotic behavior. The curve / 2 is connected to t\ and to f1 by two Naimark-Sacker 
bifurcation curves h\ and h\, while the curves fm and f2m (m = 2,4, . . . ) are con­
nected by a pair of Naimark-Sacker bifurcation curves h\m and h\m (not depicted 
in the figure). 

Fig. 2. Poincare section of a chaotic attractor at (S, do) = (0.9,0). 

This complex structure of bifurcations gives rise to a partition of the (6, do)-
plane into a number of regions characterized by the existence of solutions of different 
period, which may appear/disappear or change their stability by passing from one 
region to another. For example, if we cross f1 from region 0 to 3, the period—T cycle 
C\ becomes unstable and a stable period—2T cycle appears. Then, i f / 2 , / 4 , . . . are 
crossed, a cascade of period-doublings takes place leading to chaotic behavior (the 
Poincare section of a chaotic attractor is depicted in Figure 2). If, on the contrary, we 
cross t\ from the left to the right below point B2, a stable period—2T cycle appears 
(together with an unstable one) through saddle-node bifurcation. Then, this cycle 
may disappear again through saddle-node bifurcation if t\ is crossed, or undergo a 
cascade of period-doublings if the curves f2, f4,... are crossed. 

4. DISCUSSION OF THE RESULTS 

The bifurcation analysis presented in the previous section shows that the adaptive 
control system (4) subject to periodic disturbance displays an extremely complex 
set of solutions when the parameters characterizing the disturbance are varied. The 
careful examination of the bifurcation picture in Figure 1 reveals that, in any region 
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of the (<5, </o)-plane, there exists at least one attractor, which can be periodic or 
chaotic. As predicted by the theory, all system trajectories converge to one of these 
attractors, so that a bounded behavior is guaranteed regardless to the action of the 
disturbance. 

Since for some parameter values the attractors are multiple, unmodeled perturba­
tions might move the system state from one basin of attraction to another. On the 
other hand, slow variations of some parameters might also yield a transition from 
one attractor to another via bifurcation. This latter transition can be either non-
catastrophic, as it happens, for instance, when crossing the period-doubling curve 
/ x from region 0 to 3 (see Figure 1), or catastrophic (i.e. with a sudden jump), 
as, for instance, when crossing the Naimark-Sacker bifurcation curves h\ or h\ from 
region 0 to 1. Therefore, the combined action of slow parameter variations and of 
fast state perturbations can switch the system from one attractor to another, yet 
giving rise, in any case, to bounded trajectories. 

It can be observed that the system is characterized by the most regular behavior 
when it is strongly excited, namely when 8 and/or d0 are sufficiently high (region 
2 in Figure 1). Indeed, in this case there is only one attractor (whose basin is the 
whole state space) having the same period as the input signal. 

For synthesis purposes, one could also be interested in analyzing how the design 
parameters <r and a affect the dimension and location of the region of chaotic behav­
ior. For example, if we fix <io = 0 and assume that the chaotic region is practically 
delimited by the second-flip curve f2, we can plot the chaotic region in the (a, 8)-
plane for several values of a (Figure 3). It emerges that chaos does not take place 
for very high and very low a, while a merely shifts, for fixed <r, the interval of 8 
where chaos takes place. 

Fig. 3. The region of chaotic behavior in the (<r, <5j-plane for several values of a (d0 = 0). 

Finally, it must be reported that, for different values of the parameters p, cr, a, and 
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u, the p ic ture of Figure 1 is par t ia l ly al tered (e .g . , a t u = 1 curve f2 is completely 

contained inside j 1 ) , b u t all the above discussed proper t ies remain valid. 

5. C O N C L U S I O N S 

In this work a model reference adap t ive control sys tem involving a first-order p lan t 
and the ^-modif icat ion a d a p t a t i o n law ( Ioannou and Kokotovic [7]) has been ana­
lyzed in a case of pa r t i cu la r interest in control sys tems analysis , namely when the 
d is turbance or the reference input are of the form constant-plus-s inusoid. A bifurca­
tion analysis of the per iodic solut ions has been carried out yia numerical techniques, 
allowing to classify the different modes of behavior and the t rans i t ions a m o n g t h e m . 
T h e s tudy has revealed t h a t , as predic ted by the theory, the adap t ive control sys tem 
is robus t ( the o u t p u t error and the a d a p t i n g pa r ame te r remain bounded ) , bu t the 
periodicity of the inpu t can give rise to chaotic behavior . 

(Received February 11, 1993.) 
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