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KYBERNETIKA CIiSLO 2, ROCNIK 3/1967

Information Transfer in Sensory Channels
with an Application in Auditory Sensorial
Communication

VLADIMIR MAJERNIK, ALBERT PEREZ, IGOR VAIDA

Based on the assumption that the link between stimulus and percept is of statistical nature, the
subject of sensory communication is tackled from the standpoint of the Shannon’s theory of
information. After introduction of the general mathematical model identifying the given source
of stimuli to an abstract information source and the given channe! of sensorial perception to an
abstract communication channel on the input of which is directly applied the source, the concept
of information on the stimulus, contained in the percept, is defined as well as its transmission rate.
This model is specified for single-parameter stimulus and two-parameter stimulus (size and dura-
tion) it the region of Weber-Fechner law, and it is applied in the field of auditory sensorial com-
munication, namely, in discerning a finite count of tonic signals.
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O. INTRODUCTION .

Sensorial communication is a branch of science which examines sense organs as
receivers of outside information. There has been lately remarkable development of
this branch of science due, in particular, to the fact that the control of modern
machinery still requires the participation of human operator. Man is in this process
both the receiver of information from machines and a source of information for
machines and it is therefore desirable from the point of view of information transfer
that information-theoretic characteristics of men are in agreement with those of
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machines (similarly as e.g. we match impedances in electronics in order to optimize
the transfer of signal ehergy). From this point of view, the information-theoretic
characteristics of sense organs are investigated mainly by the so called engineering
psychology.

In the quantitative analysis of sensorial channels very little is up to now done
about the mathematical description of the actual mechanism of the individual sensory
organs. From the point of view of sensorial communication, sensorial physics
(psychophysics) should answer mainly two questions:

(a) How does human consciousness react to outside stimuli reaching sense organs?
(b) How are the individual physical and chemical processes in the sensorial organs
registered and interpreted in the nervous system of these organs?

The present paper is concerned with some aspects related to the first question
which is, obviously, of much more phenomenological character than the second
question. The great number of investigations in different countries on sensorial
communication and intelligibility from the point of view of information theory
which try to answer question (a) is explained by the needs arising in different applica-
tions similar to those mentioned above. Observing this fact ten years ago one of
the authors of the present paper has formulated the opinion* that these investigations
could be much more fruitfull if their authors were fully aware of the fact that what
we are trying to determine is, properly speaking, nothing else than the characteristics
of the receiver (sense organ) own channel, where the term ‘channel’ is conceived
in the sense of information theory (see section 1).

Percept can be described by means of an abstract or n-dimensional Euclidean
space in which a point is assigned to each percept characterized by a set of n sensorial
parameters. A set of stimuli can similarly be described by means of a signal space
so that to each stimulus a certain point can be allotted according to the physical
parameters used for its description. The points of the signal and sensorial spaces
are assumed to be statistically related. By studying these statistical relations, general
information-theoretic characteristics of sensorial channels can be found.

This paper deals with the mathematical analysis of one of the most important
aspects of information transmission in human organism, i.e. with the quantitative
expression of information which can pass under given conditions through the sensory
perception channel. The general model is gradually specified for single-parameter
stimulus and two-parameter stimulus (size and duration) in the region of Weber-
Fechner law, and it is applied in the field of auditory sensorial communication,
namely, in discerning a finite count of tonic signals.

* See: Albert Perez: Mathematical Theory of Information. Aplikace Matematiky 3 (1958),
pp. 1—21 and 81— 105 (in Czech with summary in French; the remark above is in p. 9).



1. GENERAL MODEL

The paper is based on the presumption that the link between stimulus and percept
is of statistical nature. In particular, the subject is tackled from the standpoint of
the Shannon’s theory of information: Let us denote by X and Y the respective sets of
all stimuli, i.e. of all points in the signal space, or of all percepts, i.e. of all points
in the sensorial space. Then if the characteristics of the statistical link between the
elements of sets X and Y as well as the incidence frequency of the individual stimuli
are known, the mean quantity of information supplied by the percept about the
stimulus concerned can be determined.

Let us suppose that for each set E of a class X of subsets of the set X (corresponding
to discernible stimuli), the probability of the stimulus x € X to belong to E is known.
Let us further assume that for each stimulus x € X as well as for each set F of a class 9
of subsets of the set Y (corresponding to observable phenomena), there is known the
conditional probability of percept y € Y falling into F if the receiver was stimulated by
stimulus x. The former of the numbers just defined will be denoted by Py(E), the
latter by Py, (F) and it will be assumed that the classes ¥ and 9 are o-algebras,
i.e. that for each countable system E,, E,, ... of sets, belonging to X or 9 there
applies the rule that also their union E, |J E, |J ... as well as their complements
belong to X or 9. The probability distribution Py defines the statistical properties
of the source of stimuli and the set {Py,,, x € X} of conditional probability distribu-
tions defines the statistical properties of the receiver with regard to the given set of
stimuli X. In terms of information theory, the triplet (X, X, Py) would be called
the (stimuli) source of information and the triplet (%, {Py., x € X}, 9) would be
described as the (sensory) communication channel.

In further considerations, (X, X, Py) will be a mathematical representation of
physical reality affecting the receiver (sensory organ), while (X, {Py,, x € X}, 9)
will be a mathematical description of the sensory communication channel.

The general model being established, the above task of assessing the amount of
information, using general considerations, will be tackled.

Let us denote by ¥ ® 9 the smallest g-algebra which contains all the sets of the
type E® F where Ec X, Fe 9 and E ® F represent the set of all the pairs (x, y)
which are characterized by x € E and y € F (see [1], Chap. 1, §4.2). Let then Pyy
be the simultaneous probability distribution of pairs (x, ) of stimuli and percepts
which means that Pxy{(G) for Ge X ® 9 represents the probability of (x, y) € G.
As known, the distribution Pyy can be obtained from the known distributions Py
and {Py|,, X € X} by means of equation:

Pas(G) =j Pyu(G)dPy, GeX®Y,
G

where G, is the set of all y e Y for which (x, y) € G applies. Let us finally denote by
symbol Py the marginal probability distribution of distribution Pxy on the o-algebra 9)
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and by symbol Pygy the product distribution Py ® P, on the g-algebra X ® 9
{see [1], Chap. 1).

If Pyy < Pygy, 1.€.if Pxy(G) = 0 applies equally for each set G € X ® Y character-
ized by Pxgy(G) = O then the (average) information I on stimulus x contained in
percept y is given by the expression

(1) I = j logf(x, ,V) dPyy,
XY

where f is the Radon-Nikodym density of the distribution Py, with respect to
Pygy and where the logarithm is here and in the sequel taken to the base 2. If the
condition Pxy <€ Pygy is not satisfied, then I is put equal to infinity, I = co. (This
definition of information is in the discrete case in agreement with the known definition
which considers information as the difference between the a priori and a posteriori
entropy (equivocation) of the parameter space X (sce (4) in § 2).

There is a series of intuitive and logical reasons (acceptable even in our case of
sensory perception) which have in the past given rise to this general definition of
information (see [2]). This question shall not be examined here, the paper shall
concentrate only on some very important properties of the number I (for further
details and references see [2]).

1. I ranges between 0 and + oo; it is equal to 0 if and only if the random quantities x
and y are statistically independent, i.e. if Pyy = Pxgy-

2. No transformation of the X (or Y) set into itself or into any other set can in-
crease the amount of the information. In case of one-fo-one (or, more generally, of
so called in mathematical statistics sufficient) transformation, the amount of the
information is the same before and after the transformation. If the transformation
is however non-sufficient (for instance, in case of technical reproductions of complex
acoustic or visual stimuli), the amount of the information is reduced after transform-
ation.

PXY(EiV Xiij)__
Py(E). Py(F))’

3. = sup ¥ Pxy(E; x F))log
ij

where the least upper bound (sup) is taken over the class of all finite disjoint decom-
positions E,, E,, ..., E, of the set X with E;e X, i =1,2,..., n, and for all finite
disjoint decompositions Fy, F, ..., F,, of the set Y with F;e®, j=1,2,...,m,

The first two properties of information are in full agreement with the requirements
of an adequate definition of information. The third property makes it possible to
determine the number I, at least approximately, in those cases when the integral (1)
cannot be calculated directly.

1t can be supposed, without loss of generality. that a positive number #(x) can be
ascribed to each stimulus to characterize its duration.



The channel of sensorial perception in relation to the source of stimuli can be
sometimes characterized by the so called transmission rate

@ ' i=1Jt,

where 7 is the so called mean duration of stimuli

= f 1(x) dPy .

In principle, a distribution P{" could be found which would maximize i representing
thus in some sense the optimum use of the given sensorial channel.

The incidence of significant outside stimuli in nature may be considered as given
by a probability distribution P{". It can be expected that natural sensorial systems
are made so that the information rate through sensorial channels obtains its maxi-
mum value just for the probability distribution P of stimuli, i.e.

P;{n) — P(xm) )
2. MODEL WITH SINGLE-PARAMETER STIMULUS

In this section we shall describe a special case of sensorial communication in which
stimuli and percepts are uniquely given by a single numerical parameter, e.g. by
frequency, intensity etc. This is the case of the so called single-parameter stimulus
model. All the stimuli which can be psychophysically described by means of primary
sensorial quantities belong to the set of single-parameter stimuli.

(I) Let, first, X = {1,2,...,n)}, Y= {1,2,..., m} be finite sets. In that case the
distributions Py, Py, are given by non-negative numbers

P, =Py(i), Py=Pylj), ieX, jev,
where XP =1, ZP,J = 1 for each ie X. It can be easily seen that the Radon-

leodvm density con51dered in section 1, has here the following form:

P
J60) = =%
ZP"P’U
so that
P
3) I—ZPP, log ———.
’ ZP"-P’U

This result is in agreement with the definition of information in the finite case as
the difference between the a priori and a posteriori entropy, i.e.

(4) I'= H(X) ~ H(X|Y),
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where
H(X) = =3 P, log P;,

H(X|Y) = =Y.P,P,;log PPy .
iy Y

kg
If T = Y1(i) P, is substituted into (2), a special expression is obtained for i.
(II) Let again X = {1,2, ..., n} and let Y be either an interval or the real line.

Then the distribution Py is the same as above and it can be assumed that the condi-
tional distributions Py,; are given by probability densities, i.e. that

PY/i(E) =J Yiy) dy

for each Borel set E — Y. Under these conditions it applies that

wiy)

T S
so that, according to (1),

[ Vi)
5 1= Py log—"A) g
©) 'EZXJY v ng;Pk‘/fk(y) g

The computation of this integral is often complicated and it may thercfore be of
advantage to use the following approximation (see property 3 in section 1):

(6) Y Y PPjlog Py << ~Y Plog P;,
ieX j=1 Z P ieX
keX
(7) P,-,»=J Viy)dy, ieX, j=1,2,...,m
Fj

and where Fy, F,, ..., F,, is any finite system of disjoint Borel sets whose union is Y.

(IIX) Let X and Y be intervals or real lines. It can then be presumed that the
distributions Py and Py, are given by Borel densities ¢(x) and ll/(ylx), xeX,yeY,
respectively. In that case:

Sy = YLD
¥ (»)
where

2) = f o) U(y | V) dx,



so that, according to (1), 163
(8) . sz J o(x) x[/(y|x)logi(yT])i)dxdy.
xJy "

The mean duration # in relation (2) can be found from equation:
9) i= f i(x) p(x)dx .
X

3. TWO-PARAMETER MODEL FOR THE REGION
OF WEBER-FECHNER LAW

In this section a special model with two-parameter stimulus (9, £) will be described,
in which the real numbers 9 and ¢ represent the size and duration of the considered

iy

Fig. 1.

stimulus, respectively. It will be assumed that only the size parameter 3 (in the sequel
only: stimulus 9) and not the duration parameter ¢ of stimulus is to be detected and
that the resulting percept can be characterized by a single real parameter y, i.e. by
the corresponding sensorial quantity. The set of all values § and y will be denoted
by © and Y and it shall be assumed that @ and Y are real lines. We can then write
(9,t)e ® ® T where T is obviously the real half line of positive numbers. Conse-
quently, in the notation of section 1 or2, @ @ T = X. )

It will be further assumed that such pairs (8, 1) with ¢ smaller than the threshold
duration t (3) of stimulus 8 can not appear, i.e. that the distribution Pggy = Py is
given by a density (9, t) which will be taken as different from zero only in the dashed
section of Fig. 1, i.e. (9, 1) > 0 only for ¢ = #9).

For a broad class of communication problems here considered it may be assumed
that, according to psychophysical measurements, the system of probability distribu-
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tions {Pyg }seo, 1515 18 given by a system of Gaussian probability densities
Wy | 9, 1)} on Y with mean value 3 i.e.

(10) TIEDE - (}mﬁ]

b
V(@m) o(8. 1) p[ 20%(9, 1)

for each Y€ @, r > ¥9), the standard deviation o(9, t) being generally dependent
on & and 1.

Weber-Fechner law is widely applicable in psychology and, as modified by
G. A. Miler [3], it has for fixed duration the form:

11) AS =Kk(9 + 9,),

where A3 is the DL* for a certain physical or chemical parameter 3 of outside
stimulus, 3, is a constant and k is a constant of proportionality. For non-stationary
outside stimuli, k and, thus, A3 depends also on the duration of stimulus 7. This last
relation can often be approximated by a function [4] of the type:

(12) as = 2O
ot +d
Combining (11) and (12) we get
(13) Ag = 99T b
ct+d

where a, b, c, d are real constants depending only on the receiver and on the type
of physical parameter.
For A3 obtained by the so called matching psychophysical method it is found that

A% = a(9, 1)
so that it results from (13)
(14) o8, =0t
ct+d

for (9, t) belonging to the region W of validity of the Weber-Fechner law.
Hence, according to (10), it follows for (9, t) € W that

Loy ct+d o[G0 =9+ dF
Wy ] 9.0 V/(zn)(as+b)ep( [ V2(ad + b) D

Supposing that (9, 1) > 0 only for (9,¢) € W, i.e. if it is certain that under the

* DL = discrimination length.



given circumstances the receiver can be affected only by a stimulus from the region W,
it can then be derived from (8) that

" _il —_ t — Lyﬂzl
I N AR b it

1 exp{-[(y -9 Q/\/ZZ]Z}]
! d3dedy,
% [J 2 ') i

where

_cttd _ 1 q [6-9.07 ds
Q= pra and y(y) = \//(2E)VLL(/7(&, t)Qexp{ ,: N ] } di.

W7

" N sl
|
9, il fi

Fig, 2.
Similarly, according to (2), i = Iff where
(16) - f j 10(9, 1) d dt .
oJT

Supposing that ¢(9, ) is a uniform distribution on the rectangle in Fig. 2 which
is assumed to be contained completely in region W, it then follows from (16)

- t + 1
17 = _! 2
a7 i 5
and according to (15)
0 t2 p82
(19) I= ! j f f 0.
V@) (82 = 8) (6 — 1) )~y S,

Y

165
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where

. B { 32 pia ol V(Y*'Q)Ql ‘
’(y)‘J(zn)(zz—n)(sz—s,)L,LQ”’{ [ 72 ]}dgdt'

It results from (17) and (18) that in this case also I and i depend solely on constants
1y, 13,91, %5, a, b, ¢, d. Integral (18) is too complicated for direct computation.
But it can be calculated by means of a computer, using a standard program. It
could be calculated under any circumstances as a function of the concrete values
ti, 15, 94, 92, a, b, ¢,d.

In the following part of the paper examples will be given of application of the above
theoretical results in the field of auditory sensorial communication. It will deal with
the so called tonic signals, i.e. with tone signals the duration ¢ of which is equal to
the threshold duration #(9) of the tone-pitch &. The tone-pitch duration threshold
is in psychoacoustics defined as the minimum duration of tone signals necessary
for perceiving them as a sound of tonal character [5], [6].

4. DISCERNING A FINITE COUNT OF TONIC SIGNALS

Let us suppose that a person is faced with the problem of detecting one of n tonic
signals of frequency x,, X5, ..., X, (cycles per sec.) and of duration #(x,), #(x,), ...
..., t(x,) (ms), the probability of the i-th tone being P;. The question is: how much
information will the person receive under these conditions about the tonic signal
affecting his hearing and what is the transmission rate (bits per sec.).

This single-parameter stimulus, characterized by a single real parameter which
is its frequency, can be described by means of model (II) of section 2. The frequency
of the stimulus can have any of the values x;, x,, ..., x, and the percept y can exhibit
any pitch within the range of audibility.

It can be expected within psychoacoustics that the density ;, of the conditional
probability distribution on the set of detected frequencies Y, has approximately
Gaussian shape with mean value x;, on condition that the hearing organ received
a tonic signal of frequency 10* < x; < 10* and of pitch duration threshold #(x,).
Its standard deviation a(x;, #(x,)) is related with x; by (cf. [6])

o(x;, 1(x;)) = 4-4.107%x,,

o) =210 o (- [1636 _y.i]z)
X; X;

In this informative part it will be assumed, for the sake of simplicity, that y; are
approximately triangular distributions according to Fig. 3 with mean value x; and
standard deviation o; = 4-4.1072x,. (In the following paragraph the Gaussian

so that:




distributions will be approximated even more roughly by means of uniform distribu-
tions with the same mean value and standard deviation, to make numerical calcula-
tions more easy.)

The values #(x;) can be found from the empirical curve representing the relation
between the average tone-pitch duration threshold and the frequency according to
results in [6], [7], [8] and [9].

The standard deviation of a triangular distribution of height o being approximately
equal to 0-815/x, the density ,(y) has triangular shape with triangle height «; =
= 204/x; and base x,[/10-8.

For a concrete numerical calculation let us assume n = 4, P, = 2[3, P, = P, =
= P, = 1/9, x, = 1000 cfs, x, = 1100 ¢s, x5 = 1210 ¢fs and x, = 1320 ¢/s.

wi(y)

Fig. 3. ¥ ye¥

In order to give an example of the approximate determination of information I by
means of (6), let F; = (—o0, 1050), F, = <1050, 1155), F5 = {1155,1270), F, =
= (1270, + ).

In that case it can be easily found according to (7) that the matrix P = (P,;) of
conditional probabilities is given as follows:

1 0 0 0
P = {0004 099 O 0
0 0004 0996 0
\0 0 0031 0-969
which substituted in the lefi-hand side of inequality (6) gives 1.38 < I. Similarly,
from the right-hand side of the inequality (6) the following is found
1< H(X) = 3[910g9 + 23 log 3[2 = 1-45

and therefore
(19) ' 138 <1 <145 [bits]

It will be easily found from Fig. 4 that the mean tone duration is ¥ = Y #(x,) P; =
= 9-5 ms so that the transmission rate is in the given case within the limits

146 < i < 153 [bits/sec] .
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78
{ms]

L J
7 Ihefs]

o=t | 10

Fig. 4.
5. INFORMATION RATE OF TONIC SIGNALS

This paragraph deals with the question of the information rate in detecting tonic
signals on the condition that all the tones from a frequency interval within the range
of audibility are equiprobable. It is obvious that here it is appropriate to use model
IIT (section 2) because both the stimuli and percepts can be represented by a real
number — the tonic frequency. It can be therefore assumed that X and Y are real
lines and that the density ¢(x) is uniform in the interval 10* < x < 10*¢fs, i.e.
@(x) = 1/9900 for x from the interval considered and elsewhere ¢(x) = 0. It will
be further assumed that the density y(y [ x) is also uniform for each 10?2 £ x < 10*
and its mean value is x and the standard deviation is o, = 44 . 10™%x (see section 4).
As pointed out already in section 5, the latter assumptions are not quite in accordance
with the experimental data but if the empirical distributions were approximately
substituted by Gaussian distributions, too complicated integrals would be obtained
from (8).

The standard deviation of uniform distribution in the interval of length o being
equal to af2./3, the conditional probability density ¥(y l x) = 1/0-153x for



x(1 — 0:0765) < y £ x (1 + 0-0765)and Y(y | x} = 0for y out of this interval, ie. 169
Wy | x) will be uniform in the interval of length & = 2. ./3.4-4.1072x = 0-153x.
All data required for model III (section 2) being defined, information I or transmission
rate i will be found.

For brevity let w(x, y) stand for the density (x) ¥(y | x)on X ® Y.

It is obvious that w(x, y) > O only in the region 4 dashed in Fig. 5, where the

equation of the straight line making the upper boundary of this region is y =
»

[e/s]

1-0765.104

104

9:235.10%

- |
65 86.10% 10t x [efs)

Fig. 5.

= (1 + 0-0765) x and that of the lower boundary is y = (1 — 0-0765) x. We have

w(x, y) = (107* — 10?) 0-153x for (x, y) € 4.
Since y(y) = 107* for 10765 < y < 9235, i.e. it does not depends on y, it is

then easy to calculate the integral

JI w(x, y) log %Li) dxdy = 35,

where 4, is the region framed by a thick line in Fig. 5. It is of course difficult to cal-
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culate the integral
¥(y]x)
w(x, y) log =1 —"dxdy.
HA_M (%, y) log e y

It is possible to prove that the expression is positive, so that
I= J.'[ w(x, y) log ﬂlj} dxdy > 35 bits.
4 W)

Next an attempt will be made to find an upper estimate of the number 7.

From the system of probability distributions y(y I x) corresponding to 10? <
< x < 10® the smallest standard deviation, equal to 4-4, corresponds to y{(y | 10%),
while from the system of probability distributions ¥(y [ x) corresponding to 10% <
<x £ 10* the smallest standard deviation 44-0 corresponds to ¥(y | 10%). If for all
102 £ x £ 10° the standard deviation was 44 and for 10°® £ x < 10* was 44-0,
then the discernibility and consequently the information would be higher. Let this
information be I; then I < I. In this case 1[7(y | x) =1/153 for x — 765 < y <
< x + 7-65 and elsewhere ¥/(y ] x) = 0 if 10* £ x < 103, while ¥(y I x) = 1/153
for x — 765 £ y £ x + 76'5 and elsewhere §(y I x) = 0if 10* £ x < 10% so that

I= fL W(x, ¥) log%’)ﬁ dxdy,

where §(y) = [W(x, y) dx and where W(x, y) = (x) §(y [ x) is different from zero
only in the dashed region 4 in Fig. 6.
Since, for 107-65 < y < 923-50r 1076:5 < y < 9230-5,%(y) = 1-01. 1074, it can be

proved that
fj Ww(x, y) log M dx dy = 6:06.
PR ()

The regions A, and 4, are marked in Fig. 6 as framed by a thick line. It can be shown
that the integral in the region 4 — (4; U 4,) is a quantity of the order of 1072,
so that the relation I < 6-2 is obviously applicable here too, and we can conclude that

(20) 350 < I < 620 [bits] .

The quantity 7 can be derived from equation (9)

(21) - 10,000 m
100 9-900
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¥
lcfs] V4
oo ——

93— — 7L

10765 fm — e e e — — — A 4
9235 b ————— —

107-65 | — — — o
102 '

o ———— —

102 3 ) ' 104 x [cfs]

Fig. 6.

The function #(x) shown diagramatically in Fig. 4 can be expressed analytically by
the following empirical equations '

9-5 :
22 )= ———— for x e <100;4,000),
@) ) 1 — exp (—x/300) xel )
10?
H(x) = ———————— for  x e {4,000; 10,000) ,

12:1 — 421 .107*x
where ¢ is expressed in ms and x in cps. Substituting (22) into (21) we get

T=dy+ 5,
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4.000 1

Jy=96.10"* e dx
100 1 = exp (~x/300)
10.000 1

£, =101.10""1 x=69,

[ —:
so00 121 —421.107%x

so that 7 = 11 ms.

From this result it is possible to find the transmission rate limits by means of (20),
318 < i < 565 [bits[sec] .

In the conclusion a practical application of the above methods will be pointed out.
1t appears that people with some auditory defects have different resolution ability
than people with normal hearing which is shown e.g. by curves t(x) (see [9]). As
a result of reduced resolution ability also the information rate changes. It is therefore
necessary to adapt also the probability distribution of outside stimuli so as to make
the maximum use of the human sensorial auditory channel. This can be in principle
calculated for each individual case of auditory defect and thus there can be established
the probability distribution of stimuli which provides the maximum rate of informa-
tion. Further it is possible to use the rate of information as a mesure of the extent of
the auditory defect, taking the hearing organ as an information transmission channel.

(Received November 15th, 1966.)
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VYTAH

Pienos informace smyslovymi kandly s jednou aplikaci
ve sluchové sensorické komunikaci

VLADIMIR MAJERNIK, ALBERT PEREZ, IGOR VAIDA

Prdce vychdzi z predpokladu, Ze zdvislost mezi podnétem (stimulem) a vjemem
md statisticky charakter. K otdzce sensorické komunikace se pfistupuje z hlediska
Shannonovské teorie informace.

V &dsti 1 je zaveden obecny matematicky model smyslové komunikace, ktery
piifazuje k danému zdroji podnéti abstraktni zdroj informace a k danému smyslo-
vému kandlu abstraktni sd€lovaci kandl (tak jako se tyto pojmy definuji v teorii
informace), pfi &emZ se pfedpbklﬁdé, Ze zdroj informace je p¥imo aplikovany na
vstup kandlu. Ddle je zaveden pojem informace o podnétu, kterd je obsaZena
ve vijemu, jakoZ i pojem rychlosti pFenosu informace, a jsou pfipomenuty nékteré
ze zdkladnich vlastnosti pojmu informace, které jsou pouzity dale.

V &dsti 2 se tento obecny model aplikuje na ptipad tzv. jednoparametrového sti-
mulu, kdy v sensorické komunikaci jak popudy tak i vjemy jsou pokldddny za
jednoznaéng uréené jednim Ciselnym parametrem (frekvenci, intenzitou apod.).

V &dsti 3 se obecny model specializuje na dvouparametrovy model pro oblast
platnosti Weberova-Fechnerova zdkona. Jde o model s dvouparametrovym popu-
dem (9, 1), pii CemZ redlné &islo $ reprezentuje hodnotu ur&itého fyzikdlniho para-
metru a t reprezentuje trvani popudu. Pfitom se pfedpoklddd, Ze jde o problém
detekce hodnoty parametru a nikoliv délky trvdni popudu a Ze vznikly vjem je mozné
reprezentovat jedinym redlaym parametrem p, tj. hodnotou pfisluiné sensorické
velidiny. Ddle se pfedpoklddd, Ze takové dvojice (9, 1), pro které je ¢ mensi neZ pra-
hovd délka trvdni #(9) pFislusného popudu, se nemohou vyskytovat a Ze jsme v oblasti
platnosti Weberova-Fechnerova zdkona.

V &ésti 4 jsou vy$e dosaZené vysledky aplikovdny na p¥ipad rozliovdni koneéného
podtu tonalitnich signdli, tj. tonovych signdli, jejichZ délka trvdni je rovnd dasovému
prahu tonality. Jde o problém detekce jednoho z n tonalitnich signédld frekvence
Xis Xgs .o X, [¢fs] a délky tevdnd #(x,), #(x,), ..., {(x,) [ms] respektive, z nichZ i-ty
signdl miZe nastat s pravdépodobnosti p; a nds zajimd otdzka odhadovat jaké
mnoZstvi informace ¢lovék za téchto podminek obdrZi o tonalitnim signdlu, ktery
plsobil na jeho sluch a jaké je pfi tom dosaZeno rychlosti pfenosu. Na zdkladg
experimentdinich 1idaji a za pfedpokladu trojuhelnikovych distribuci charakterizu-
jicich smyslovy kanadl je pak propocitan konkrétni numericky piiklad.

V &4sti 5 je sledovdna otdzka, jaké rychlosti pfenosu se dosahuje pfi detekei tona-
litnich signdli za pfedpokladu, Ze se stejnou pravdépodobnosti mohou nastat viechny
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tény z uréitého frekvenéniho intervalu uvnité pdsma sly3itelnosti. Konkrétni nume-
ricky piiklad je propoéitdn zde za predpokiadu obdélnikovych distribuci charakteri-
zujicich sluchovy kandl. Odhady se dobfe shoduji s experimentdlnimi udaji.

Na z4vér je poukdzdno na jednu moZnost praktického pouZiti vy$e uvedenych
metod, a to u sluchov& vadnych, aby jejich sluchovy kandl byl maximdin& vyuZit.

Viadimir Majernik, prom. fyzik, Fyzikdlny stav SAV, Dibravskd cesta, Bratislava;
Dr. Albert Perez, DrSc., Ing. Igor Vajda, Ustav teorie informace a automatizace CSAV, Vyse-
hradskd 49, Praha 2.
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