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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 2 

A STOCHASTIC APPROACH 
TO SOME LINEAR FRACTIONAL GOAL 
PROGRAMMING PROBLEMS* 

I. M. STANCU-MINASIAN, ST. TIGAN 

This paper deals with an extension of the goal programming with linear fractional criteria 
and linear constraints studied by Kornbluth and Steuer [9] (see also [1]). This extension covers 
the case in which the objective functions or target values are random variables. Three problems 
are considered. Using some arguments similar to those employed by Ben-Israel, Charnes and 
Kirby [2] and Stancu-Minasian [15] for the linear case, it is shown that the three stochastic 
problems can be reduced, under certain hypotheses, to deterministic linear fractional min-max 
problems with linear or convex constraints. The latter problems are solved by use of the para-
metrical method presented in [18] and [19] or the procedures considered in [5] and [10] for the 
linear fractional case with linear constraints. 

1. INTRODUCTION 

The classical goal programming problem (Charnes and Cooper [4]) is formulated 

as is shown below. 

Problem GP: 

Minimize g(x, y, z) 

subject to 

(1.1) Ft(x) - y, + z, = G; for iel = {1, 2 , . . . , r} , 

(1.2) x e S , y = (yu y2,..., yr) £ 0 , z = (z,, z2 z,) £ 0 , 

where: 

(i) Ft: S ~> R, (/' e /) are the objective functions; 

(ii) G, e R (/' e i ) are the levels (goals, target values) to be reached by the objective 

functions; 

(iii) v and z are unknown deviational vectors, whose components measure the 

deviation upwards and downwards, respectively, of Ft(x) values from the 

corresponding goal values G, (/' el); 

* Presented at the International Conference on Stochastic Programming, Prague, September, 
15-19 , 1986. 
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(iv) S £ W is the set of feasible solutions to the problem; 
(v) g: R+

+ 2 r-> IR + represents a global deviation function depending on the 
deviational vectors y and z. 

Ordinarily, the objective function g assumes the form 

(1-3) g(x,y,z) = ^(aiyi + piZi), 
iel 

where <x; and /?,- are intragoal positive weights and specify the relative penalties 
to be applied for over- or underachievements in G;. However, in this paper we shall 
consider another form for g(x, y, z) (i.e. (2.9)). 

The goal programming problem has been investigated and generalized by several 
authors who gave many efficient solution methods. Thus, for instance, for the case 
when the objective functions Ft (iel) are linear, Lee [11] suggested a modified 
simplex algorithm, whereas Ijiri [8] proposed a generalized inverse technique. 
In [1], Agrawal, Swarup and Garg considered that the objective functions E; (i el) 
are linear fractional and proposed an algorithm for solving the goal programming 
problem. This method is based on Swarup's procedure [17] for solving linear frac
tional functional programming problems. Kornbluth and Steuer [9] considered the 
case when F ; (iel) are linear fractional and either (a) each linear fractional criterion 
is assigned to its own priority level or (b) all the criteria are at the same level. In 
case (a), a sequence of linear fractional programming problems has to be solved, 
whereas in case (b), one has to solve only one linearly constrained programming 
problem with a nonlinear objective function which is the sum of the linear fractional 
objective functions. 

Stancu-Minasian [14] considers also that all the criteria are at the same priority 
level and a goal objective function of Chebyshev type must be minimized (see, e.g. 
(2.9)). 

Peteanu and Tigan [12] examined the case when all the objective functions are 
linear fractional and have the same priority level and, additionally, the goals G; (i e I) 
are extended to the interval goals [G;, G"] (i el). It is shown that the interval goal 
programming problem can be reduced to a min-max linear fractional problem with 
linear constraints. In [20], Tigan gives an extension of the interval goal programming 
[12] to include objective functions with inexact data. This extension is a natural 
link between goal programming, multiobjective programming and inexact programm
ing with set-inclusive constraints, as introduced by Soyster [13]. Stochastic approaches 
to goal programming are considered by Contini [7] and Chobot [6]. 

This paper extends goal programming with linear fractional criteria and linear 
constraints to include the case when the objective functions or target values are 
random variables. Three stochastic problems are considered and it is shown that these 
problems can be reduced, under certain hypotheses, to deterministic linear fractional 
min-max problems with linear or convex constraints. The latter problems can be 
solved by use of the parametrical methods presented in [18] and [19] or the procedures 
given in [5] and [10] for the linear fractional case with linear constraints. 
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Let us first replace Problem GP by the following equivalent Problem GPl: 

Minimize g(x, y, z) 
subject to 

(1.4) F;(x) - yt g G ; , iel, 

(1.5) F;(x) + z ; ^ G ; , i e / , 

(1.6) x e S , yt^Q, z, > 0 , i e / . 

This formulation of the goal programming problem will be used in the next sections 
for the extensions obtained in case when the functions F ; or target values G; (i e I) are 
assumed to be random variables. Problems amenable to this formulation are met 
with in many areas. For an application of a stochastic model dealing with production 
scheduling and investments in a firm, see [6]. 

It can be easily shown that problems GP and GPl have the same optimal solution 
set when the function g is of the form (1.3) with positive weights. Moreover, it can be 
proved that GP and GPl have the same optimal solution set when g(x, y, z) is 
a strictly increasing function with respect to y and z. 

2. RANDOM TARGET VALUES 

In what follows, we shall assume that the objective functions F ; in Problem GPl 
are well determined, and the target values G; are independent random variables 
with known distributions T;(*) (i si). 

In this situation, we consider that constraints (1.4) —(1.5) are satisfied in a pro
portion of cases or, in other words, with certain given probabilities, rather than 
always satisfied. 

Like Ben-Israel, Charnes and Kirby [2] (see also Stancu-Minasian [15]), we con
sider the following stochastic goal. 

Problem SGP: 
Minimize g(x, y, z) 

subject to 
(2.1) ?{a> | F ;(x) ^ Gi(aj) - z,} ^ Pi, iel, 

(2.2) P{co | F;(x) < Gi(co) + yt} ^ g, , iel, 

(2.3) xeS, }>;^Q, Zi^O, iel, 

where p, and g ; e [0, 1] are lower bounds of these probabilities. 

The other notation is as in the foregoing section. 
Let us find the deterministic equivalent of Problem SGP. 
Let 

T-'\d) = inf {rj: Tt(t\) ^ 6) . O ^ ^ l , iel, 
and 

fr\e) = sup {n: Tin) < 9}, o ^ e ^ l , i el. 
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We rewrite (2.1) as: 

P{cu | E;(x) ^ G;(co) - z;} = P{« | Gi(co) ^ F,(x) + z;} = 

= T(E,(x) + z;) > ?( , iel, 

or, equivalently, 

(2.1') E;(x) + z ; > Tf 1 ^ , - ) , /<=/. 

Similarly, (2.2) is re-written as 

(2.2') E;(x) - y, ^ t f x(l - q,), iel . 

Thus, we have 

Theorem 1. If G; (i el) are independent random variables with distributions T;( •) 
(iel), then Problem SGP is equivalent to the deterministic 

Problem PGD: 
Minimize g(x, y, z) 

subject to 

(2.4) E;(x) + z ; ^ Tf1^,), / £ / , 

(2.5) Ffa)-y,£ tr\\ -q,), iel, 

(2.6) x e S , yt£0, z ; > 0 , i e l , 

Further on, we need supplementary conditions on E; and g and shall show that the 
stochastic goal problem SGP reduces to a linear fractional min-max problem with 
linear constraints. 

Thus, we assume that: 

(HI) The objective functions are linear fractional: 

(2.7) F,(x) = SfLLSli, for all xeS, 

dtx + di0 

where c; e R", dt e W, ci0, d,0 e R. 

(H2) For each i e I: 

(2.8) dtx + d,o > 0 , for all xeS . 

(H3) The global deviation function g is of Chebyshev type, i.e. 

(2.9) g(x, y, z) = max (a ;r ; + jS;z;), (a;, /?; > 0 , iel). 
iel 

Such functions were considered, for example, in [12], [14] and [20]. 

(H4) The set S is polyhedral nonempty and bounded subset of R", defined by 

(2.10) S = { x e R " | A x = b, x > 0] , 

where A is a given m x n real matrix and b e Rm. 

142 



Using these statements, problem PGD becomes 

Problem PGD1: Find 
min max (a^ + /?;z;) 

iel 

subject to 

(2.11) C'X + C'°- + z, _: Tr] (p,), / e / , 
d;x + d;o 

(2.12) 5_+_J2._ j , , .gf--(i _ , , . ) , i e / f 
a,x + d;o 

(2.13) xeS, yt>0, zt = 0 , i e J . 

Using assumption (H2), we transform constraints (2.H) and (2.12) into the follow
ing constraints: 

(2.11') (c. - Trj(p.) dt) x + z,.(_ ;x + di0) = - c;o + di0Tr >(p.) , 

/ e / , 

(2.12') (c, - TrX1 - _) -*i) * ~ * ( -> + tl.'o) _ -c , 0 + di0tr\\ - q.), 

iel . 

Therefore, problem PGD1 becomes 

Problem PGD2: Find 
min max (a,y; + /?;z;) 

iel 

subject to constraints (2.1T), (2.12') and (2.13). 

The constraints of Problem PGD2 are nonlinear, but we can linearize them by 
the Kornbluth-Steuer transformation [10]: 

(2.14) u( = z;(_;x + di0) ; p, = y,(d,x + _ „ ) , i e / . 

Employing this change of variable, problem PGD2 becomes a deterministic linear 
fractional min-max problem with linear constraints: 

Problem PM: Find 
a..y; + R-M-. 

min max 
;s; d,x + d)0 

subject to 
(c; - TT1^,) _,) x + it, _: - c I 0 + di0Tr\p) , iel, 

(c; - f f *(l - «,) </,) x - V-, <, - c ; 0 + d.-cffTl ~ 1i). ' ' e l , 

x e S , M — (MJ, M2, ..., Mr) — 0 , i ' = (i'j, u2, •••, fr) _: 0 . 

Under assumptions (HI) —(H4), the following theorem is immediate: 

Theorem 2. If G; are independent random variables and if (x*, _*, u*) is an optimal 
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solution of Problem PM, then (x*, y*, z*) with 

rf- Pl—, z* = - Ut - , iel, 
dtx* + di0 d,x* + di0 

is an optimal solution to Problem SGP and conversely. 

Proof. The proof follows from the fact that Problem SGP is equivalent to Problem 
PGD (Theorem 1), Problem PGD is equivalent to Problem PGD1 or Problem PGD2 
by relations (2.7)-(2.9) and Problem PGD2 reduces to Problem PM by the variable 
transformation (2.14). • 

3. RANDOM OBJECTIVE FUNCTIONS 

In this section, we assume that the target values G; (i e I) in Problem GP1 are well 
determined, but the objective functions F, are random. 

We adopt the following assumption: 
(H5) The objective functions Ft (i e 7) are of the form: 

(3.1) F i ( x , w ) _ £ _ _ ) _ L ± _ _ H ) 
d,x + di0 

where the components of the vectors (c;, c;o) e W+1 (i e I) are normal independ-
dent random variables with expectations c y and variances Oy (i e I,j = 0, 1 , . . . 
...,«). 

We also suppose that assumptions (H2) —(H4) in Section 2 are true. 
With the notations adopted in Section 2, the stochastic goal programming problem 

is 
Problem GPF: Find 

min max (a,y; + /?,z;) 
iel 

subject to 

(3.2) ?{w | Fi(x, co) = G,- z;} _ p,, iel, 

(3.3) P{w | F,(x, co) < G, + y j _ q,, iel, 

(3.4) xeS, yi = 0, zi = 0, iel. 

Having in view (2.8) and (3.1), constraints (3.2) and (3.3) can be written as 

(3.5) ?{co | Ci(co) x + cio(co) _ Gt(d,x + di0) - Zi(dtx + dt0)} _ p,, iel, 

(3.6) P{co | c;(w) x + c,0(co) < G,(d,x + di0) + y,(d,x + d,0)} _ q,, iel, 

or, equivalently, as 

(3.7) gfel d»\- 4^±1A^1^Z1^ < rt(i _ pi)i ieI> 

d°fjxj + 4>yn 
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(3.8) G ' ( d ' * + rf'o) + -V '^'X + dio) - ° V ~ 5 '° _ 0"*(«i) . iel, 

( i ^ 2 + 4 r 
J = I 

where </>(•) is the probability distribution function of the standard normal variable 
N(0, 1). 

Thus, problem GPF is 
Problem GPF1: Find 

min max (a^,- + /J.z.) 

subject to constraints (3.7), (3.8) and (3.4). 

Employing the change of variable (2.14), problem GPF1 becomes a deterministic 
linear fractional min-max problem with nonlinear constraints. 

Problem GPF2: Find 

Cl:V: + BlUi 

mm max 
iel dtx + di0 

subject to 

(3.9) G i ^ ± j y _ Z L M i . r ctx-cjo^ ^ - 1 ( 1 _ pt) f i e I t 

{iofjX} + of0y» 
J = I 

(3.10) - f e j l ^ o ) + p ' - ^ - ^ o ^ ^ - i ( g < ) , iel 

(£*? ,* 2 + *2o)1/a 

y = i 

(3.11) x e S , M , _ 0 , t ' i _ 0 , ; ' e / . 

It is reasonable to choose pt > 0-5 and qt > 0-5 such that the constraints of 
Problem GPF2 define a convex set. 

Hence, we have 

Theorem 3. If the objective functions E, (iel) are random of the form (3.1) and 
assumptions (H2)-(H4) are true and if (x*, u*, v*) is an optimal solution of Problem 
GPF2, then (x*, y*, z*), with 

,,* .,* 
, iel, 

dfx* + diQ dtx* + di0 

is an optimal solution to Problem GPF and conversely. 

The proof is similar to that of Theorem 2 and so, it will be omitted. 
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4. SIMPLE RANDOMIZATION OF OBJECTIVE FUNCTIONS 

Throughout this section, we shall adopt the following assumptions for Problem 
GPF: 

(H6) The objective functions Ft (iel), given by (3.1), are simply randomized, i.e., 

(4.1) c;(a>) = c\ + ti(co) c'l, ci0(co) = c'i0 + t_(co) c"i0 , i el, 

where c'_, c'l e W ( i e / ) are constant vectors, c'i0, c"i0 e 03 ( i e / ) are scalar 
constants and /,(•) (i el) are random variables on a probability space (Q, K, P) 
with continuous and strictly increasing distribution functions T(-) (i el). 

We note that the stochastic programming problems with simple randomization 
were examined by Bereanu [3] in the linear case and Stancu-Minasian [15], Stancu-
Minasian and Tigan [16], [21] for some special classes of nonlinear minimum-risk 
problems. 

(H7) The global function g assumes the form 

(4.2) g(x, y, z) = max (a,->>, + /J,z,) 
iel 

(H8) d.x + di0 > 0, for all i el and for all x e S. 

(H9) c"x + c'_'0 > 0, for all i e / and for all x e S. 

Hence, problem GPF becomes 

Prob lem GPSR: Find 
min max (u._y_ + /?;Z,) 

iel 

subject to 

(c\ + tjto) c'l) x + (c'i0 + ti(co) c"i0) (4.3) P L 

(4.4) P L 

d_x + di0 

[c\ + tjm) c'l) x + (c'i0 + t_(aj) c"i0) 

è G_ - zЛ _> Pì, iel, 

< G_ + yX ^ qt, iєl, 
dtx + di0 

(4.5) xeS, J , _ : 0 , z_ _: 0 , iel. 

Let us find the deterministic equivalent of Problem GPSR. Under assumptions 
(H6), (H7), (H8) and (H9), we transform constraints (4.3) and (4.4) into the following 
constraints: 

(4.6) P L J tjm) _> G ^ X + d^ ^ f e + ^ ~ C'X ~ C'<°\ * p, , iel, 
[ c'!x + c"i0 j 

(4.7) P L | ti(co) < °^iX ± d'^-+ yJ&*± d ^ - C''X ~ CH £ q,, iel, 
{ c'[x + c"i0 J 
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(4. 
Gj(dtx + di0) - Zj(djX + di0) - c'tx - c'i0 < j . - ! ^ _ -.•) ( e / 

(4.9) g j f o + ^ l i ^ i i J l M z i ^ ~ C'Q ?> Tr\qi), iel. 

c'[x + c"i0 

According to assumption (H9), constraints (4.8) and (4.9) become 

(4.10) (Gtdt - c \ - rr\\ - Pt) c",) x - z,(dtx + dt0) £ 

^ • o + 4 7 7 1 ( l - - P . O - ^ o G , , ie/, 

(4.11) (Gtdt - c't - Trl(qt) c'!) x + yt(dtx + dt0) L> 

£ -Jo + c J o T f 1 ^ . ) - d,oG,-, r e / . 

Therefore, problem GPSR can be formulated as follows: 

Problem GPSR1: Find 
min max (atyt + (j(zt) 

iel 

subject to constraints (4.5), (4.10) and (4.11). 

By the change of variable (2.14), Problem GPSR1 becomes: 

Problem GPSR2: Find 

atv, + B,u, 
nun max --

iel dtX + d;0 

subject to 

(4.12) (Gtd, - c't - rr\l - Pi)c';)x - ut g 

ISCJO + ct0Tr\\ - Pi)-dt0Gt, iel, 

(4.13) (G,dt - c't - Tr'(qt) c"t) x + vtZ c't0 + c"i0Tr\q) - di0Gt, iel, 

(4.14) xeS, w , ^ 0 , vt^0, iel. 

We have 

Theorem 4. If assumptions (H4) —(H9) are true, and if (x*, w*, p*) is an optimal 
solution of the min-max problem GPSR2, then (x*, y*, z*), where 

v, = , 2* = , ' e / , 
d,x* + di0 dtx* + di0 

is an optimal solution of the stochastic goal programming problem GPSR, and 
conversely. 
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5. CONCLUSIONS 

Three classes of stochastic goal programming problems were considered. Determin

istic linear fractional min-max problems with linear or convex constraints (as in the 

case of Problem GPF2) were obtained for each of these problems. 

These deterministic problems can be solved by use of the parametrical method 

presented in [18], [19] or the procedures given in [5], [10] for the linear fractional 

case with linear constraints. 
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