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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 2 

ON TRANSFORMATIONS 
OF MULTIVARIATE ARMA PROCESSES 

ALES LINK A 

Transformations of multivariate ARMA processes are investigated such that they preserve 
the ARMA structure. A theorem is given that characterizes a multivariate ARMA process 
using a property of its covariance function. The theorem is applied to the linear transformation 
of a multivariate ARMA process and to the scalar product of two ARMA processes. 

1. INTRODUCTION 

Let Xt be an /-dimensional ARMA (p, q) process. Let g: Ul -> W be a measurable 
function. Define a process Zt by Zt = g(Xt). Generally, Z.is not an ARMA process. 
However, we are interested in such functions g, for which Zt is also an AR 
process. It is important to know the orders of the process Zt. In the most cases we 
find only some bounds for them. From the practical point of view, our considera
tions enable to express complicated ARMA processes in a form of some transforma
tions of simpler ARMA processes. 

The problem of transformations of one-dimensional ARMA processes was in
vestigated in several papers. The results concern mainly sum, product and aggrega
tion of ARMA processes. A unified approach was presented by Engel [2]. It is based 
on a theorem which characterizes a one-dimensional ARMA process using a property 
of its covariance function. In Engel's paper also all other references can be found. 

There exist only few papers devoted to transformations of multidimensional ARMA 
processes. They concern mainly the sum of ARMA processes. Let us mention the 
paper by Lutkepohl [8], who considers a transformation Yt = FX, where F is a matrix 
with real elements. 

In our paper we prove some assertions on the scalar product of two ARMA 
processes. The methods are based on Theorem 3.1, which characterizes a multi
variate ARMA process by means of its covariance function. Theorem 3.1 is a general
ization of the assertion for one-dimensional processes given in [2]. The problems 
concerning bounds for orders of the model are demonstrated on some examples. 
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2. PRELIMINARIES 

Let e( = (e1, ..., e"')' be an m-dimensional white noise with E(_( = 0 and var 8( = 
= Jm, where \m is the unit matrix of the type m x m. Let A0, ..., Ap and D 0 , . . . , Dq 

be m x m matrices with real elements such that Ap + 0, Dq + 0 and that the follow
ing conditions are fulfilled: 

a) A0 and D0 are regular. 

b) We define D(z) = £ Dkz\ 
4 = 0 

P 

c) If we define A(z) = Vj A ẑ* then the equation \A(z)\ = 0 has all roots outside 
the unit circle. '£ = 0 

Then there exist m x m matrices C0, Cu ... such that 

[A(z)]-1 D(z) = f Ckz\ | z | < l , 
4=0 

£ |cj,| < oo for j , I = 1, . . . , m 
4 = 0 

and the process X( given by 

(2.1) X( = £_ ,_ ,_ , 
4 = 0 

is the unique solution of 

(2.2) A0X, + AxX(_t + ... + A_X(_„ = DoE( + D.«._, + ... + D,e,_, 

which has the form of a linear process. The process X( is called an m-dimensional 
ARMA process of the order p and q. We denote it by ARMA,„(p, <j). We shall 
use the symbol ARMA,„[p*, q*] for an ARMA,„(p, <j) model such that its true 
order p, q satisfies p g p*, </ _£ q*. If B is the back-shift operator, then (2.2) can be 
equivalently written in the form 

(2.3) A(B) X( = D(B) Bt 

where 

A(B) = £ AkQ« = (Au(B))lJ=l = ( £ 4B*)"V=i 
4=0 t=o 

D(B) = £ D,B* = (Dy(B))fJ=1 = ( t 4 B X = ! 
ft=o 4 = 0 

Denote 

•py = deg[_4y(B)], g y = deg [Dy(B)] 

where deg [•] denotes the degree of a polynomial. Then it holds 

p = max pij, q = max qi}. 
U ij 

The process X, is stationary and we get from (2.2) that its covariance function 
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Rx(/c) satisfies 
(2.4) A(B) Rx(k) = 0 , k> q, 

(2.5) A(B) Rx(q) = DqC0 + 0 . 

Let A*(B) = (A*/(B))r,j = i b e t h e adjoint matrix to A(B). Multiplying (2.3) from the 
left by A*(B) and using |A(B)| /„, = A*(B) A(B) we get 

(2.6) |A(B)| X, = A*(B) D(B) zt. 

This formula will be usefal in the next considerations. Let H!y(B) denotes the i/th 
cofactor of matrix A*(B) D(B). Then it holds max (deg [H,7(B)]} = 

= max (deg [A*,(B)]) + qnJ; i,j, n = 1, . . . , m). Multiplying (2.6) from the right 
by X't_k, taking expectations using (2.1) we obtain 

(2.7) |A(B)| Rx(fe) = 0 

if k > max (deg [A*(B)] + qJn ; i,j, n = 1, ..., m) . 

It is known that the matrix f(X) = (fij(X))™j_i of spectral densities of the process 
Xt exists and equals 

f(X) = ±[A(l)y> D(l)D(l)[A(l)r1 

2n 
where 

A(l) = j]Ak.-^, A(l)=VA'k^, 
k=0 k=0 

D(l) = tDke-ik>-, D(X) = iD'k^>-. 
k=0 fc=0 

Since the matrix f(l) is regular, the process Xt is also called regular (see [5] and [6]). 

3. CHARACTERIZATION OF MULTIDIMENSIONAL ARMA 
PROCESS 

The following assertion is a generalization of Theorem 1 from [2]. 

Theorem 3.1. Let Xt be an m-dimensional regular stationary process with vanish
ing expectation. Then X, is an ARMA,„(j>, q) process if and only if there exist 
matrices A 0 , . . . , Ap such that Ap + 0 and that the following conditions are fulfilled: 

p 

(3.1) If we define A(z) = £ A ẑ* then the equation |A(z)| = 0 
fc = 0 

has all roots outside the unit circle. 

(3.2) A(B) Rx(/c) = 0 for k> q . 

(3.3) A(B)RX(«)4=0. 

Proof. If X, is an ARMAm (p, q), then the assertion clearly holds. 
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We prove that the conditions are sufficient. We see that 

RA(B)x(l<) = j _ t AjRx(k + i - j) A'. = 0 for k > q , 
i = O ) = 0 

**vM * ° • 
It remains to show that if the covariance function Rz(fc)of an ;n-dimensional process 
Zt satisfies 

(3.4) Rz(k) = 0 for k> q, 

(3.5) AzGO + 0, 

then Zt is a moving average process. From the Wold decomposition we obtain 

(3.6) Z, = __ Cflt_j 
j = o 

where C0 is a regular matrix, t\t = (r\\, ..., iff)' is an m-dimensional white noise and 

(3.7) *,(.) = *{*) 

where #Ft(Z) = 3t(Zs; / = ! , . . . , m, s < t) is a subspace of the Hilbert space 
jf(Z) = 3l?(Z\; i = 1, ..., m, t = 0, + 1 , . . . ) (see [9]). From (3.6) we get 

(3.8) EZ,Vr'_t = Ck. 

On the other hand, (3.4) implies 

EZtZ't_k = 0 for k> q . 

In view of (3.7) we have also 

(3.9) EZ,i/U = 0 for fc > q , 

Comparing (3.8) and (3.9) we can see that Ck = 0 for fc > q. 
Assume that Cq = 0. Then EZttj',_q = 0 but in view of (3.7) we have also EZtZ't_q = 

= 0. This contradicts (3.5). Thus Xt is an ARMA,,, (p, q) process. Q 

We shall apply the existence theorem to special transformations of the ARMA 
processes. If we know a formula for the covariance function of the process arising 
from a transformation of ARMA processes, it suffices to find a matrix A(B) such 
that the conditions (3.1), (3.2) and (3.3) are fulfilled and to use Theorem 3.1. 

4. LINEAR TRANSFORMATION 

We start with a transformation of the process which is based on the multiplication 
by a matrix, the elements of which are real numbers. The next theorem is given in [8] 
without proof. 

Theorem 4.1. Let F be an / x m matrix with real elements. Let the rank of F be /. 
Let X, be an ARMA,,, (p, q) process. Then 

Zt = FXt 
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is an ARMA, [p*, q*~\ process, where 

p*-deg[|.VB)|], 
q* - max {deg [A**(B)] + qjn ; ij, n = 1,..., m) . 

By A**(B) we denote the yth cofactor of the adjoint matrix to AX(B). 

Proof. The covariance function Rz(/c) of the process Z, is given by 

Rz(k) = EZ(Z('_k = FRx(k) F . 

Because EZ, = 0 and the covariance function Rz(k) does not depend on t, the process 
Z, is stationary. From Theorem XVIIA in Andel [1] it follows that the process Z, 
is regular. If we express the process X, in the form (2.6) and if we denote AZ(B) = 
= \AX(B)\ /,,then it holds 

Az(*)Rz(k) = F\Ax(B)\Rx(k)F> = 0 

for k > max {deg [A**(B)] + ?>; ij, n = \, ..., m} . 

Applying Theorem 3.1 we get our assertion. • 

Theorem 4.1 is to be understood in such a way that one of the ARMA models 
of the transformed process Z, has the order p, q bounded by p*, q*. The following 
example can serve as an illustration. 

Example. Consider a two-dimensional AR(1) process X, given bv 

. ' ; T ) X ' + C : 0 X — -
where s( is a white noise with Ee, = 0, var e, = /2. Let F = (1,1). Consider the process 

Z, = FX( = X\ + X2 . 

Then the spectral density fz(X) of the process Z ( is 

/-W = juW + fM + j2iW + j22(A) 

where fij(X) are elements of the matrix f(X) of the spectral densities of the process 
X,. After some computations we get 

, - U | 2 

ЛW - ^ ì h ^ (3 - V8)2TC |15 - 2e~ i ;- - e - i 2 A | 2 

This spectral density corresponds to a one-dimensional process ARMA (2,1). We 

know from Theorem 4.1 that Z, is an ARMA [2, 1] process. In this case the bounds 

for the order are equal to the true order. 

Choose a matrix F = (I, a), where a is a real number. Define again 

Z, = FX( = X] + aX2 . 

Analogously as in the previous case we derive the spectral density fz(X) of this process 
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Z, in the form 
f(X\- 106 ~ 104a + 28a2 + (21 - 20a + 4a2) (e~iA + eu) 

h { ) ~ 2 u | l 5 - 2 e - i A - e ~ i 2 f 

If a= | or a = \ we get 21 — 20a + 4a2 = 0 and then the spectral density corre
sponds to an AR (2) process. Theorem 4.1 still gives ARMA [2, 1]. In this case 
the true order of the model is lower than that insured by Theorem 4.L 

The example shows that for a small order of the model of the process X, Theorem 
4+ gives good bounds for the order of the transformed process Z(. 

The following theorem is a consequence of Theorem 4.L It concerns the sum 
of independent ARMA processes. 

Theorem 4.2. Let X, and Wt be independent m-dimensional ARMAm (px, qx) 
and ARMA,„ (pw, qw) processes, respectively. Define 

zt = xt + wt 

Then Zt is an ARMAm [p*, q*] process, where 

p* =deg[ |A x (B) | ]+deg[ |A w (B) j ] , 

q* = p* + max (G*„ Gw„; i,j, n = 1, ..., /*} , 

G*, = deg[Ay(B)] + q * - d e g [ | A x ( B ) | ] , 

Gw„ = deg[/tw*(B)] + q ] r - d e g [ | A w ( B ) | ] . 

5. SCALAR PRODUCT 

Let X, and Wt be m-dimensional stationary processes with EX, = ftx, £Wt = /iw. 
Let X, and Wt be stationary cross-correlated, i.e. their cross-correlation functions 

Rxw(fc) = - ( * . - Vx) (Wt-k - fiw)' , 

Rwx(k) = E(W, - „w ) (Xt_k - ?xy 

depend only on fc and not on t. 
Let a process Z, be defined by 

z( = x;w, = f>'i-7. 
;= I 

Then for its expectation fiz and for its covariance function Rz(t, t — fc) it holds 
(5.1) fiz = Tr [Rxw(0Y] + ii'xliw , 

(5.2) Rz(t, t - fc) = n'xRw(k) fix + fx'wRx(k) fiw + n'xRwx(k) fiw + 

+ HwRxw(k) /V - {Tr [RXw(0)]}2 + 

+ E{[(x, - Mxy (w, - nw)] [(x,_fc - pxy x 

x {Wt.k - ^w)]} + 
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+ E[(X, - „xy (wt - nwy\ [(x(_,t - „xy ^ + 
+ E[(X, - ^y (wt - „w)] [n'x(w,_k - „„)] + 
+ E[(X, - pxy / v ] [(x,_, - tixy (wt.k - nw)] + 
+ E[/x(Wt - „w)] [(X,_, - /.x)' (W,_,t - „w)] . 

We shall consider special cases in which Rz(t, t — k) depends only on k so that 
the process Z, is stationary. 

Theorem 5.1. Let X, and Wt be independent m-dimensional ARMA,,, (px, qx) 
and ARMA„, (pw, qw) processes, respectively. Let 

z, = x;w, = Ylx
l
tw,'. 

i = 0 

Then Z, is an ARMA, [p*, q*~\ process, where 

p* = deg [|AX(B)|] deg [|AW(B)|] , 

q* = p* + max {T*„, T^„; 1,7, n = 1, . . . , m} , 

T^ = deg[4*(B) ] + ^ „ - d e g [ | A x ( B ) | ] , 

T-=deg[AnB)]+^-deg[|Aw(B)|]. 

Proof. It follows from (5.1) and (5.2) that 
EZ( = 0, 

(5.3) Rz(fc) = Tr [Rx(k) Rw(k)] = £ f R*(fc) R$fc) . 
i = i _ - i 

If we use for X, the model (2.6), then 

/|Ax(B)|R*(fc),..., |Ax(B)|R?Jfc)\ 
|AX(B)| Rx(k) = = 0 . 

\ |Ax(B)|R^1(fc),. . . ) |Ax(B)|Rl(fc)/ 

for fc > max {deg [A£*(B)] + q%; i,j,n = 1, ..., m} . 

We have m2 difference equations for R*(fc). Let (a*) - 1 , ; = 1, ..., deg [|AX(B)|] 
be the roots of the polynomial |Ax(z)|. Then 

deg[|Ax(B)|] 

1=1 

for k > max {T*„; i,j, n = 1, ..., m} , 
where 

T* = deg [Af/(B)] + q* - deg [|AX(B)|] . 

Similar results we get for the process Wt. Let u = deg [|AX(B)|], v = deg [|AW(B)|]. 
Inserting into (5.3) we obtain 

Rz(k) = i __d?x«r? 
1 = 1 s = l 

for fc > max {T*„, T™„; i,j, n = 1, ..., m} . 
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Define „ „ 

^-)-nn(i-«f-.w-). 
I = l s = l 

Then we have that 

Az(z) Rz(k) = 0 

when 

k > max {T* , T*; i,j, n = 1, . . . . m] + deg [|AX(B)|] deg [|Av(B)|] = q* • 
Now, we apply Theorem 3.1. • 

Theorem 5.2. Let X, be an m-dimensional Gaussian ARMAm(p> q) process. Let 

z( = x;x( = £(x;)2, 
/ = i 

V, = Zt - nz . 

Then Vis an ARMAj [p*, q*~\ process, where 

p* = ideg[|Ax(B)|]{deg[|Ax(B)|] + l } , 

q* = p* + max {deg [A**(B)] + qJn; i,j, n = 1 , . . . , m} - deg [|AX(B)|] . 

Proof. If we insert Yt = X( into (5.1) and (5.2), then from Isserlis's relation in [7] 

we obtain 

EV( = 0 , 

R¥(k) = 2 Tr [Rx(k) Rx(/c)] = 2 £ £ (R£)2 . 
i = U=i 

Further we proceed similarly as in the proof of Theorem 5.1. • 
(Received July 30, 1987.) 
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