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KYBERNETIKA — VOLUME 30 (1994), NUMBER 5, PAGES 525-536 

ON SUFFICIENT CONDITIONS FOR THE STABILITY 
OF DYNAMIC INTERVAL SYSTEMS 

KAREL SLADKÝ1 

In this note sufficient conditions for the stability of continuous- and discrete-time dynamic 
interval systems are investigated. In particular, we focus our attention on stability con­
ditions based on the extensions of Gershgorin's theorem, i.e. Gershgorin's theorem is 
applied after some similarity transformation, cf. [1], [2] and [6]. We show that the tests on 
stability and stability margins of dynamic interval systems suggested in [2] and in [6] can 
be considerably improved. 

1. INTRODUCTION 

An interval matrix is a real matrix in which all the elements are known only to the 
extent that each belongs to specified closed interval. In particular, an r x r interval 
matrix Ai is in fact a set of real matrices 

Ai = {A = [a.ij] : Oy £ [bij.ctj], i,j=l,...,r}, 

where 6y < cy are given real numbers. Let B = [6y], C = [cy], and hence Ai = 
[B C]. 

The dynamic interval system is defined as 

x(t) = Ax(t), x(t0) = x0 where A £ Ar ( la) 

for the continuous-time case, and as 

x(k + 1) = Ax(k), x(0) = x0 where A £ Ai ( lb) 

for the discrete-time case. 
In the present paper we deal with the analysis of stability and marginal stab­

ility of dynamic interval systems. The system (la) is (asymptotically) stable (i.e. 
lim x(t) = 0) if for every A £ Ai all the eigenvalues of A have negative real parts. 

t—t-OO 

The system (la) is said to be stable with stability margin h, where h > 0 (or to have 
the degree of stability h), if for every A £ Ai the real part of any eigenvalue of A is 
less than — h. 

1 The author was sponsored by the Academy of Sciences of the Czech Republic through Grants 
No. 27561,275103. 
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Similarly the discrete-time system (lb) is (asymptotically) stable if for every 
matrix A E Ai the modulus of any eigenvalue of A is less than one. The system (lb) 
is said to be stable with stability margin h, where 0 < h < 1 (or to have the degree 
of stability h), if the modulus of every eigenvalue of A is less than 1 — h. 

The stability analysis of dynamic interval systems is very important in the robust 
controller design. In recent years, stability of dynamic interval systems has been 
studied by many authors and some sufficients conditions for the stability have been 
obtained, cf. e.g. [1], [2], [4], [5], [6], [7], [8], [9] and [10]. 

In this note we shall closely follow the approaches used in Argoun [1], Juang 
and Shao [6], and Chen [2] to construct the tightest stability conditions. These 
approaches are based on an extension of the well-known Gershgorin's theorem, i.e. 
Gershgorin's theorem is applied after some similarity transformation of the interval 
matrix. Comparing with the approaches based on a direct application of Gersh­
gorin's theorem, methods based on the extensions Gershgorin's theorem do not suffer 
from a shortcoming that the "end points" c,-,- (diagonal entries of C) must be negative 
(resp. less than one) if the continuous-time model (la) (resp. discrete-time model 
(lb)) is considered. The paper by Chen [2] in an elegant way reviews and improves 
many previous results on stability of continuous-time interval systems. In particu­
lar, Chen [2] improves the stability conditions proposed by Juang and Shao [6] and 
shows that tighter stability conditions may be obtained by suitably manipulating 
of some scaling parameters. Moreover, it is shown in [2] that the continuous-time 
system (la) is stable with a given margin h, if the spectral radius of certain matrix 
is less than one. 

In this note we show that the test on stability and stability margins suggested in 
[2] can be improved and that an analogous procedure can be also used for discrete-
time systems. In particular, the improved test procedure immediately yields the 
tightest stability margin and the "optimal" scaling parameters can be calculated. 
Furthermore, we present a novel algorithm to compute a sequence of stability mar­
gins (for both continuous- and discrete-time systems) converging monotoneously to 
the tightest stability margin, along with a sequence of scaling parameters converging 
to the "optimally" selected scaling parameters. 

The paper is organized as follows. Preliminaries are given in Section 2. Our main 
results will be presented in Section 3. Examples and comparison of the presented 
results with the work of Juang and Shao [6], and Chen [2] are given in Section 4. 
Conclusions are made in Section 5. 

2. PRELIMINARIES 

In this section we shall briefly review the results given by Juang and Shao [6] and 
their improvements given by Chen [2]. The results of [6] are the correct version 
of erroneous results of Argoun [1] based on an extension of Gershgorin's theo­
rem. Recall that according to Gershgorin's theorem every eigenvalue A of an r x r 
matrix A — [atj] must be contained in at least one of the circles given by the 

inequalities |A - aii\ < £ K l - (for i = l , . . . , r ) and hence also Re (A) < 
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Re(a.,) + Yl |ay I, |A|< |a , - . |+ J2 |a,,| for at least one i = 1 , . . . , r. 

For a matrix A E Ai = [B C] we shall write A = A0 + 6A where 

A0 = ^(B + C), AA=^(C-B) and | M | < AA 

(|.| represents the matrix with modulus elements; symbols >, > in a matrix relation 
are considered componentwise). 
After the similarity transformation T~x and T we get 

T-1
J4T=T-1

J4oT + T-1<5,4T. 

Selecting T such that T~rAoT is is a Jordan form we get for A £ Ai such that 
A = Ao + AA = C 

T~xAT=J + T~lAAT, 

where J = A + E = T~lA0 T is the Jordan form of Ao, A = diagfAn, A22, • • •, Arr] 
with A;, being an eigenvalue of Ao. 
Denoting 

F = E+\T~1\ AA |T| 

with F = [fij], we get for A € Ai 

T~lAT< T~1A0 T + | T - 1 | \6A\ |T| < T"1 A0 T + |T - 11 AA \T\ = A + F. 

In what follows we shall assume that the matrix F is positive, i.e. F > 0. Since the 
eigenvalues of the matrices T-1 AT and A are the same, for every eigenvalue A of 

A £ Ai we have Re (A) < Re (A,-,) + J^ fij (f°r • = -> • • • >r)- Hence we can readily 
i=i 

formulate sufficient conditions for the stability of continuous-time interval systems. 
In particular (cf. Theorem 2 of [6]), the system (la) is stable with stability margin 
h, if 

Re (A,-,) + J2 fn < _ft' for a11 » -= l i • • • i r- ( 2 ) 
i=i 

Similar result2 can be also obtained for the discrete-time systems. Since for every 
eigenvalue A of A £ Ai we have |A| < |A,,| + Y^j=i fij (f°r • = -J • • • i r)> ^l16 system 
(lb) is stable with stability margin h (cf. Theorem 3 of [6]), if 

|A.i| + ^fy < 1-h, for all i=l,...,r. (3) 
J = I 

Moreover, since eigenvalues are invariant under similarity transformations, suf­
ficient stability conditions (2.1), (2.2) can be further improved by employing a suit­
able similarity transformation. To this order observe that after the similarity trans­
formation U_1 and U, where U = diag [ « i , . . . , ur] (with Ui > 0, Vz = l , . . . , r ) , 

2 For the sake of brevity, unless otherwise stated, these and subsequent results will be stated 
only in terms of the rows of the matrix F, analogous results can be stated in terms of the columns 
of the matrix F. 
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applied on T lA T < A + F, for every eigenvalue A of A £ Ai we have 

Re(A)<Re(Aii) + u - 1 ^ / , i u j , resp. |A| < lA.il + u" 1 j ] / y uj for i = 1 , . . , r. 
i = i j = i 

Hence we can conclude (cf. Theorem 3.8 of [2]) that the continuous-time system 
(la) is stable with stability margin h, h > 0, if there exist m , . . . ,ur (u, > 0) such 
that 

Re(Aii) + ^ / 0 ^ - < - / i , for all i = l , . . . , r . (4) 

Similarly for the discrete-time models we can conclude that the system (lb) is stable 
with stability margin h, 0 > h < 1, if there exist t i i , . . . ,u r (u,- > 0) such that 

|A»| + ]T, fij ~ < l - h , for all i = 1 , . . , r. (5) 
J = I ' 

Of course, if u, = 1 for all i = 1, . . . , r we obtain the conditions of [6], however 
tighter stability conditions may be obtained by manipulating the values u,'s. 

Moreover, Chen [2] gives also some condition under which (2.3) is fulfilled. To 
this order define a matrix 

r„ = [7„], where 7 t f a — • & _ for i,j = 1 , . . . , r. (6) 

According to Theorem 3.10 of [2], the system (la) is stable with a margin h, if 
Re (A,-,) -f h < 0 for i = 1 , . . , r and the spectral radius of 1~\ is less than one. 

In the present paper we show that the above stability criterion can be considerably 
improved. In particular, we show that a sufficient condition for the stability of the 
system (la) , along with the tightest stability margin in (2.3), can be obtained by 
calculating the spectral radius of some matrix M (cf. Theorem 1). The optimal 
scaling parameters in (2.3) are elements of a right eigenvector corresponding to the 
spectral radius of the matrix M. Similar procedures can be also used for discrete-time 
systems (cf. Theorem 3). Furthermore, in Theorem 2, resp. Theorem 4, we show 
how to find (by a simple algorithmic procedure) the values u,'s giving the tightest 
stability margin h in (2.3), resp. (2.4). Throughout the paper we shall assume that 
the system is stable if A = AQ . 

In what follows, we shall also need some basic properties of nonnegative matrices 
and of matrices with nonnegative off-diagonal elements. Recall that, by the well-
known Perron-Frobenius theorem (cf. e.g. [3]), the spectral radius of a nonnegative 
matrix is equal to its largest positive eigenvalue (called the Perron eigenvalue) and 
the corresponding eigenvector (called the Perron eigenvector) can be selected non-
negative. In case that the matrix is irreducible, the Perron eigenvalue is simple, 
the Perron eigenvector is unique up to a multiplicative constant and can be selected 
positive. A nonnegative irreducible matrix is acyclic if the Perron eigenvalue is the 
unique eigenvalue with the largest modulus. 

Similarly, for a matrix with nonnegative off-diagonal elements the eigenvalue with 
the largest real part is real and the corresponding eigenvector (called the Perron 
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eigenvector) can be selected nonnegative. Moreover, if the matrix is irreducible, this 
eigenvalue is simple, the Perron eigenvector is unique up to a multiplicative constant 
and can be selected positive. Observe that all the above mentioned facts of matrices 
with nonnegative off-diagonal elements trivially follow from the corresponding prop­
erties of nonnegative matrices. 

3. MAIN RESULTS 

In this section we improve the stability conditions provided in Juang and Shao [6] 
and in Chen [2]. Furthermore, we suggest simple iterative procedures (both for 
continuous- and discrete-time systems) that generate sequences of stability margins, 
based on (2.3) or (2.4), converging monotoneously to the tightest stability margin. 

First we shall analyze sufficient conditions for the stability of continuous-time 
dynamic interval systems. Let a = — min (Re (A,,) + /,-,) and introduce the (non-
negative) matrix 

M = [rriij] where my = (Re (A,-.) + a) 6y + ftj, (7) 

(6ij denotes the Kronecker symbol). 
Observe that since the similarity transformation T is fixed (and selected such that 
T~lA0T is a Jordan form), also all A,.'s and /,-,'s are fixed and hence the number 
a and the matrix M are well defined. Since F > 0 the matrix M is irreducible; 
moreover, we shall assume that the matrix M is acyclic (if M were cyclic, it suffices 
only to choose a > — min (Re (A,-,) + / , , ) , cf. Example 2 of Section 4). In what 

follows, p(M) is reserved for the spectral radius of M. Since we assume that the 
system (la) is stable if A = A0, all the eigenvalues of A0 have negative real parts, 
i.e. if continuous-time system (la) is considered, we assume that Re (A,-,) < 0 for 
i = 1 , . . . , r. 

The following theorem improves the results provided in Theorem 3.10 of Chen 

[2]-

T h e o r e m 1. The system (la) is stable if p(M) < a. Then h* = a - p(M) is the 
least upper bound on the tightest stability margin of the system (la) that can be 
produced by (2.3), and "optimally" selected scaling parameters in (2.3) are elements 
of the right eigenvector u(M) corresponding to p(M). Furthermore, if h > h* (2.3) 
cannot hold for positive Uj's (j = 1 , . . . , r). 

P r o o f . Introducing the (positive column) vector u = [«.], diagonal matrix A = 
diag[Re(A.,')], condition (2.3) can be written in a matrix form 

(A + F)-u< -h -u •$==> Mu<(a-h)u. (8) 

By the Perron-Frobenius theorem M • u(M) = p(M) • u(M) > 0, v(M) • M = 
p(M) • v(M) > 0, (u(M), resp. v(M), is a right, resp. left Perron eigenvector), and 
(3.2) holds for u = u(M) and any h > 0 such that h < a - p(M) = h* = -a. 
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Observe that cr is the eigenvalue with the largest real part of the matrix (A + F) 
with nonnegative off-diagonal elements, hence also (A + F) • u(M) = er • u(M). 
To finish the proof suppose that M • u < (a — h) • u for some h > h* and positive u. 
On premultiplying the above matrix inequality by v(M) we immediately get 

v(M) • M-u = p(M)-v(M) u <(a-h)-v(M)-u = > p(M) < a - h 

that contradicts h > h*; hence (2.3) can be fulfilled for u > 0 only if h G (0, h*). • 

Now we present an algorithmic procedure generating an increasing sequence of 
stability margins converging to the tightest stability margin that can be produced 
by (2.3). 

T h e o r e m 2. Let for i = 1 , . . . , r {u,(n), n = 0,1,...} be defined recursively by 

Ui(n + 1) = (Re (Xu) + a) ut(n) + ] T / y Uj(n) where Uj(Q) > 0 (9) 
i=i 

and let 
. , . Re(A.-8>,-(n) + E ; = 1 / ^ ( " ) 

- k{n) = .3£r u^nf • (10) 

Then 

i) lim Ui(n)/ui(n) = u,- exists for i = 1 , . . . , r, 

ii) fulfillment of condition h(n) > 0 for some n = 0 , 1 , . . . is sufficient for stability of 
the system (la), and under this condition h(n) is a stability margin of the system 
(la), 

iii) the sequence {h(n),n = 0,1, . . .} is nondecreasing (and if M > 0 even increasing) 
and h(n) —* h* as n —» oo, 
where 

( A « ) + Ê Л / ^ = -A* f o r г - = l , . . . , r (11) Re ч . 
І = l 

and h* is the least upper bound on the tightest stability margin of the system (la) 
that can be produced by (2.3). 

P r o o f . Let us introduce the vector u(n) = [u,(n)], set p = p(M) and recall that 
M = (A + F + a I). Iterating (3.3) we get u(n) = Mn u(Q). Since the matrix M is 
irreducible and acyclic, there exists lim p~n Mn = M* > 0 (cf. e.g. [3]). 

n—*oo 

To establish part i) observe that lim p~" u(n) = M*u(0), and hence 
n—*oo 

lim udn)/ui(n) = «,• > 0 for i = 1,.. . , r (and also lim Uj(n)/uk(n) V j,k = 
n—*oo n—•oo 

l , . . . , r ) exist. Moreover, the r-column vector u = [«,] is an eigenvector of M 
corresponding to p. 

Part ii) follows immediately from (2.3) or it is a direct consequence of part iii). 
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To establish part iii) observe that from (3.4) 

(-h(n) + a)u(n)> (A + F + aI)u(n) (12) 

(recall that > means that equality holds in (3.6) for at least one row). 
Premultiplying (3.6) by M = (A + F + a I) and employing (3.3) we conclude that 

-h(n)u(n+l)>(A + F)u(n+l). (13) 

Observe that if M > 0 a strict inequality holds in (3.7) implying that -h(n+l) u(n+ 
1) > (A + F)u(n + 1) for some h(n + 1) > h(n). However, {h(n),n = 0,1, . . .} 
is bounded since by part i) {uj(n)/ui(n),n = 0 ,1, . . .} must be bounded for any 
i, j = l , . . . , r . Hence h(n) —> h* as n —• oo. To finish the proof observe that on 
letting n —* oo from (3.6) we can conclude that (-h* + a) it > Mu = pit. Hence 
—h* is the eigenvalue of (A + F) with the largest real part and (3.5) must hold. • 

Now we shall focus our attention on sufficient conditions for the stability of 
discrete-time interval systems. Since we assume that the system (lb) is stable if 
A = AQ, all the eigenvalues of the matrix AQ lie in the unit disc; hence if the 
discrete-time system (lb) is considered, we assume (cf. (2.4)) that |A..| < 0 for all 
i = l , . . , , r . 

The following theorem is a discrete-time version of Theorem 1. Let 

P = \Pij] w n e r e Pij = |A,-»|£.j + fij> lor i,j = l,...,r (14) 

and let p(P) be the spectral radius of P and u(P) the corresponding right eigenvec­
tor. 

T h e o r e m 3. The system (lb) is stable if p(P) < 1. Then h* = 1 - p(P) is the 
tightest stability margin on the system (lb) that can be produced by (2.4), and 
"optimally" selected parameters in (2.4) are elements of the right eigenvector u(P). 
Furthermore, if h > 1 — p(P) (2.4) cannot hold for positive u / s (j = 1 , . . . , r). 

P r o o f . Let A = diag[Ax l , . . . , Xrr]. Condition (2.4) can be written in a matrix 
form as 

(\A\ + F)-u<(i-h)-u ^=> P-u<(x-h)u (15) 

By the Perron-Frobenius theorem P• u(P) = p(P)-u(P) > 0, v(P) • P = p(P) • v(P) > 0 
and (3.9) holds for u = u(P) and any 1 - h > p(P). 
To finish the proof suppose that Pit < (1 — h) • u for some 1 — h > p(P) and positive 
u. On premultiplying the above matrix inequality by v(P) we immediately get 

v(P)-P-u=p(P)-v(P)u<(l-h)-v(P)u = > p(P)<l-h 

that contradicts our assumption. Q 

The following theorem presents an algorithmic procedure for generating an in­
creasing sequence of stability margins converging to the tightest stability margin 
that can be produced by (2.4). 
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Theorem 4 . Let for «' _ 1 , . . . , r {ut(n), n = 0,1, . . .} be defined recursively by 

ui(n+l) = \Xii\ui(n) + Y^fijUj(n) where u^O) > 0 (16) 

i=i 

and let 

'<">-._?£- ~Tn) (1?) 

Then 

i) lim Ui(n)/ui(n) = in exists for i = 1 , . . . , r, 
n—*oo 

ii) fulfillment of condition g(n) < 1 for some n = 0 , 1 , . . . is sufficient for stability of 
the system (lb), and under this condition h(n) = 1 - g(n) is a stability margin of 
the system (lb), 
iii) the sequence {g(n), n = 0,1, . . .} is nonincreasing (if P > 0 even decreasing) and 
g(n) —* g* as n —• oo, 
where 

g*ui = \Xii\ui+J2fijuj fori = l , . . . , r (18) 
i=i 

and h* = 1 - g* is the least upper bound on the tightest stability margin of the 
system (lb) that can be produced by (2.4). 

P r o o f . The proof is strictly similar to that of Theorem 2. For the sake of 
simplicity we write only p instead of p(P). Iterating (3.10) we get lim p~n u(n) = 

n—*oo 

P*u(0), where P* = lim p~n Pn > 0, and hence lim Ui(n)/ux(n) = iii exists for 
n—»-oo n—*co 

i = l , . . . , r . From (3.11) we immediately get that g(n)u(n) > Pu(n) and after 
premultiplying this inequality by P we conclude that g(n + 1) u(n + 1) > P u(n + 1) 
for some g(n + l) < g(n) (and <;(n+l) < g(n) if P > 0). However, g(n)'s are positive 
and hence g(n) —+ g* as n —> oo. Letting n -+ oo in (3.11), we get g*ii > Pu = pu, 
hence g* = p. O 

4. ILLUSTRATIVE EXAMPLES 

In this section we compare our methods on concrete examples with the approaches 
of Juang and Shao [6] and of Chen [2]. The following examples are borrowed from 
[6]. 

Example 1. Consider the continuous-time dynamic system (la) with the following 
interval matrix 

_ [ [-4.1 -3.5] [ 1.3 1.9] 
1 ~ [ [ 0.3 0.9] [-4.5 -3.9] J 

As it is stated in [6] 

„ _ , - 3 0 1 [ 1 -0 .8 1 1 = f 0.6 0 . 8 ] 
1 0 - 5 ' ~ 0.5 0.6 ' -0 .5 1 ' 
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From (2.1), we get 

ľ-lг-ЧAл-i-[•;_„_] 

Re(An) + j^fij = - 3 + 1.22 = -1.78 

Re(A2 2) + VJ/ 2 j . = - 5 + 1 . 3 1 = -3.69 

j=i 

so (cf. [6]), we know that the system is stable with stability margin 1.78. 
Now we check the stability and stability margins according to methods suggested 

in Chen [2]. To this order we need to construct the matrix Fu given by (2.5) for the 
considered stability margin h. Choosing h = 0, 2 we get 

0.21 0.196 1 _ [ 0.63 0.59 
0.1360 0.126 ' 2 _ 0.230 0.21 Гo = 

and for the spectral radii we have p(F0) = 0.323, p ( r 2 ) = 0.84. Since the both 
p(T0), p(T2) are less than one, the system is stable and has at least stability margin 2. 

Now let us compare this test procedure with the approaches suggested in Theo­
rem 1. We only need to construct the matrix M given by (3.1). We get a = 4.37 and 

hence M = _ ' with p(M) = 2.183. By Theorem 1 the system is stable 

and h* = a — p(M) = 2.187 is the tightest stability margin that can be produced 
by (2.3). 

Now we apply the iterative procedure suggested in Theorem 2. Since a = 4.37, 
by (3.3) for n = 0 , 1 , . . . 

u i ( n + l ) = 2ui(n) + 0.59u2(n) 

u 2 ( n + l ) = 0.68 _i(n) 

Setting «i(0) = u2(0) = 1, the obtained values are displayed in the following table: 

n 0 | 1 2 3 4 

_i(n) 1 2.59 5.58 12.20 26.63 

u2(n) 1 0.68 1.76 3.79 8.30 
h(n) 1.78 1.78 2.18 2.18 2.18 

Conclusion: The considered system is stable with stability margin 2.18. 

Note. Observe that since every A G Aj has nonnegative off-diagonal elements, 
then A\ > A2 (where A\, A2 G Aj) implies that a(A\) > a(A2). (This property 
can be easily verified since the eigenvector correspoding to o~(A) can be selected 
positive, cf. e.g. [3].) Hence, within the interval matrix At, A G Ai, where A = 

n ' „ Q , is the matrix with the largest real eigenvalue, and for every A G Aj 

the real part of any eigenvalue of A is nonngreater than a(A) = -2.375. Hence 2.37 
is the largest stability margin (up to two decimal points) of the considered system. 
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E x a m p l e 2. Consider the continuous-time dynamic system (la) with the following 
interval matrix 

-3.20] [ 0.7 л,= П-з 

As it is stated in 

1.3] 
-0.55 0.05] [-2.8 -2.2] 

A = 
0 - 3 

T = 
1 -0.8 

0.5 0.6 
г - i = 

-0.5 1 

F = \T-1\AA\T\ = 
0.63 1.59 
0.68 0.63 

From (2.1), we obtain 

2 

Re(An) + V^/ l j- = - 3 + 2.22 = - 0 . 7 8 

2 

Re(A 2 2) + V ^ / 2 j = - 3 + 1 . 3 1 = -1.69 

i-i 

so (cf. [6]), we know that the system is stable with stability margin 0.78. 

However, using the approach suggested in Theorem 1, we get a = 2.37, M = 

[ neon n > P(M) — 1-04 and the system is stable with margin h* = a—p(M) = 
U.boU U J 

1.33. 
Now we apply the iterative procedure suggested in Theorem 2. Since a = 2.37, 

[ 0 1 59 1 
n nR n a n c ^ ' s 0 l 3 V i 0 U S ly cyclic, we choose 

a = 3.37 and apply the iterative procedure suggested in Theorem 2. We have for 
n = 0 , 1 , . . . 

U I ( T I + 1 ) = Ul(n) +1.59 u2(n) 

u2(n+l) = 0.68«i(n) + u 2(n) 

The obtained values are displayed in the following table (we set «i(0) = u2(0) = 1): 

n 0 1 2 

ui(n) 1 2.59 5.26 
u2(n) 1 1.68 3.44 

h(n) 0.78 1.32 1.33 

Conclusion: The considered system is stable with stability margin 1.33. 
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E x a m p l e 3. Consider the discrete-time dynamic system (lb) with the following 
interval matrix 

_ I" [-0-20 0.16] [-0.34 0.02] 
1 " [ [-0.24 0.12] [—0.16 0.20] 

As it is stated in [?] 

„ = 
-0.1 

0 
0 

0 1 

From (2.2), we get 

T = 
1 

0.5 
- 0 . 8 
0.6 

г - i _ 

-и-iГ,= [й й]. 

0.6 
- 0 . 5 

0.8 
1 

|Aц| + 5_/ц = | - 0 1 | + 0.74: 
i = i 

2 

|A22І+ __./.., = 0 1 + 0.79 = 0. 

0.84 

so (cf. [?]), the system is stable with stability margin 0.11. 
Now we check the stability and stability margins according to methods of The­

orem 3. We only need to construct the matrix P given by (3.8), hence P = 
[ n *}Q n *̂ fi 1 

n 41 (]\Q a n c ^ -"(I") = 0-794. Since p(P) is less than one, the system is stable 

at least with the margin 0.116. 
Now we apply the iterative procedure suggested in Theorem 4. We have for 

n . -0 ,1 . . . . 

ui(n + l) = | - 0 . 1 | w i ( n ) + 0.74u2(n) 

u2(n + 1) .. = 0.1 ui(n) + 0.79 u2(n). 

Setting «i(0) = u2(0) = 1, the obtained values are displayed in the following table: 

n 0 1 2 

til(n) 1 0.84 0.742 
u2(n) 1 0.89 0.787 

h(n) 0.11 0.115 0.116 

Conclusion: The considered system is stable with stability margin 0.116. 

Note. The obtained stability margin is not satisfactory in this particular case. For 

example, considering A G Ai, where A = _(.' _ n ' 1 f i , we get p(A) = 0.467 

and hence 0.53 seems to be close to the tightest margin of the considered system. 
Obviously, the spectral radius of every A G Aj is nongreater than p(B) = 0.486 

>f the matrix B = ' „ . „' _ , obtained by replacing elements of Ai by their 

maximum possible absolute values. Hence we are sure that the stability margin of 
the considered interval matrix Aj does not exceed 0.51. 
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5. C O N C L U S I O N S 

We have suggested s imple i terat ive procedures generat ing sequences of s tabi l i ty mar­
gins of b o t h cont inuous- and discrete-t ime d y n a m i c interval sys tems. T h e o b t a i n e d 
results improve the sufficient condi t ions for s tabi l i ty m a r g i n h suggested in J u a n g 
and S h a o [?] a n d are also t h e t ightest in t h e class of s tabi l i ty m a r g i n s discussed in 
Chen [?]. We have s t a t e d our results only in t e r m s of t h e m a t r i x rows, analogous 
p r o c e d u r e s can be s t a t e d in t e r m s of t h e m a t r i x columns; however, t h e s a m e m a r g i n s 
will be o b t a i n e d since t h e suggested procedures generate t h e t ightest m a r g i n s wi th in 
t h e considered class of s tabi l i ty marg ins . E x a m p l e s show t h a t t h e m a r g i n s o b t a i n e d 
on t h e base of e x t e n d e d Gershgor in ' s t h e o r e m can be somet imes worse t h a n m a r g i n s 
o b t a i n e d by o t h e r m e t h o d s . T h e o b t a i n e d results are useful t o robust control design. 
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