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KYBERNETIKA — VOLUME 20 (1994), NUMBER 5, PAGES 489-497

ON THE CHARACTERISTIC MODES
OF A RIGID BODY UNDER FORCES!

HoURIA BOURDACHE-SIGUERDIDJANE

The characteristic modes of a rigid body under forces are determined from its analyt-
ical solution. This solution may be expressed in terms of eigenvalues and eigenvectors.
The nonlinear feedback control law is deduced from the compatibility conditions of the
differential equations.

1. INTRODUCTION

It is recently shown in [1, 2] that the exact analytical solution of a rigid body con-
trolled by a linear feedback law may directly be written down in terms of eigenvalues
and eigenvectors. However, this control has been computed in previous work [3] for
the regulation of satellite angular momentum when the flywheels are at rest. There-
fore, the method will here be extended to deal with the structure of the solution
when the control is not linear in the state. Moreover, we show that, for the free
motion, when the initial condition coincides with an eigenvector, the solution then
remains in rotation about a parallel axis to this eigenvector. The eigenvectors thus
define the characteristic directions. A preliminary result is given in [4].

The characteristic directions are also here determined for the nonlinear controlled
system. In addition, the eigenvalues of the system under study are real or complex.
It is claimed in [12] that, in general, it is not possible to evaluate closed form char-
acteristic solutions for complex eigenvectors. This paper and the above author’s
references are devoted to show that it is possible to describe characteristic solutions
with complex eigenvalues and complex eigenvectors.

Consider a rigid body in an inertial reference frame. Let wq, ws, w3 as usual
denote the angular velocity components and let Iy, I3, I3 be the moments of inertia
of the body about the principal axes which are the body axes.

Set £y = wy I, 2 = wely and z3 = w3 I3. So the motion of the body under
external forces is described by the Euler equations

1 = ki1zaza + uy

1Presented at the IFAC Workshop on System Structure and Control held in Prague on September
3-5, 1992.
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Zg = kazszy +uy (1)

I3 = ka2 +us

where T 3
u=(up,uz,u3), w€R

represents the control vector and

A _[2—13 & _13—-11 . _[1——]3
UL T RL T I

are constant parameters such that ky.kg.ks # 0.
In other words, the system has no symmetries. Assume that Iy > I > I3, we
then have ky > 0, k2 <0, and k3 > 0.

2. MOTION UNDER NO FORCES

2.1 Suppose that there are no forces acting on the body (i.e. u; = up = uz = 0),
then the total external torque is zero and the solutions of Euler equations are known.
This classical problem of the force-free motion is treated extensively in standard
literature. However, in order to determine the algebraic and the geometric spectra,
let us express the solutions in terms of eigenvalues and eigenvectors. Such a form
may obviously provide more insight into the problem. For this, it is more convenient
to use Jacobi functions because the derivative of each function is proportional to
the product of two copolar functions. The structure of the solutions has then the
following form

zy = ikvywpen(wg At)
Ty = —kvawgsn(wo At) 2)
T3 = ivgwpdn(wp At)

where v = (v1 v2 vs)T is an eigenvector of system (1) (with u = 0) and X is the
associated eigenvalue. The initial time is supposed to be tg = 0. k is the so-called
modulus of the elliptic function (k2 < 1) and > = —1. It is also possible to use
Weierstrass functions but in this case the eigenvalues appear implicitly through the
invariants of the functions.

2.2. By using the derivative formulae of Jacobi elliptic functions and by entering
the solutions into equations (1) we obtain the following algebraic equations satisfied
by the eigenvalues and the eigenvectors .

Ay = kivavs
vy = kyvsu 3)
Aus = kzvivp

These characteristic nonlinear equations may also be obtained from the theory of
Section 6.
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3. CHARACTERISTIC DIRECTIONS UNDER NO FORCES

3.1. When no forces are acting on the body, the angular momentum M and the
kinetic energy T of rotation are constant. These equations follow from the principles
of the conservation law,

M? = zl4zi42d
2T 2}/ L+ 22/ + 23/ (4)

From (4) and using (2), it immediately follows that

(TL — M?)I5
(I = I)v3

and
(2T'Is — M?)I v} ,
k=)t
\ (7 22T Iyo? ®)

provided that M2 < 2T I,. The quantity M?/2T must lie between the minor and
the major moment of inertia for the existence of a solution. Moreover, the condition
M? > 2T, holds when cn is replaced by dn in equation (2) and conversely.

wp =

3.2. Remark. One may notice that if v; = 0 (resp. w3 = 0) then M? = 2T I3
(resp. M? =2T1Iy).

3.3. Furthermore, let £ and A be the geometric and algebraic spectra respectively,
in view of Section 6, we have

(8) = (3) = (2) (1)
Vi=1 0}, Va=| 1 |, Va=} 0 |, Va={| 1],
F= (10 Oa 1 B b , (©)
Vsz( 1 ),%:( 1 ,V7=( 1
b —b —b
k1 k3
a:\/g;b:\/;—:, (7)

A:{AIZA2:A3~_—O;A4:A7:\/]—€TE)}, (8)

where

and

As = Ae = —Vkik3

3.4. We now focus our attention on the role of these eigenvectors particularly
whether or not any sense may be pointed out. Assume that the initial condition,
for solution (2), coincides with the eigenvector V3 = (10 0)7. We have z(0) = oV}
where o is an arbitrary constant. From the third equation of (2), it therefore follows
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that wp = 0 which implies that M2 = 2TI;. One has to notice that we = 0 while
wok # 0. We obtain o = M and hence

z(t) = 0 (9)

The rigid body is thus spinning around the axis of the greatest moment of inertia.

3.5. Similarly, if 2(0) = aV3, « is again an arbitrary constant and V3 = (0 0 1)7".
We find that M2 = 2713 and o« = M and hence

)=1 0 (10)

The rigid body is thus spinning around the axis of the least moment of inertia.

3.6. However, if the initial condition coincides with the eigenvector V5 = (01 O)T,
the rotation does not remain spinning around the intermediate axis, which corre-
sponds to the fact that this rotation is known as being unstable. A similar procedure
may be followed when the initial condition coincides with the remaining eigenvectors.

4. CHARACTERISTIC DIRECTIONS UNDER FORCES

4.1. Consider now that u; # 0, us # 0 and ug # 0. As we are looking for
a feedback control law, then u = u(z). The problem has been reduced to the
construction of an exact solution in terms of the eigenvalues and the eigenvectors of
systern (1).

Let v = (v1 vz va)T be an eigenvector of system (1) and A the associated eigenval-
ue. From the theory of Section 6, v and A satisfy the following algebraic equations

Avy = kivgus+u(v)
Avg = kavgvr +up(v) (11)
Avs = kavyvg +uz(v)

where u(v) is the unknown function u(z) evaluated in v.

4.2. If we want the closed loop system to have a linear behaviour, the solution

should obviously be

T = wp vett “(12)

where the eigenvalue and the eigenvector are possibly specified a priori.
By differentiating equations (12), using equations (11), and by entering the solu-
tions into equations (1) lead to the linearizing feedback controls
ul(m’) = ki TyZTa +,51.’L‘1
ug(z) = kaziza+ foza (13)
us(z) = kzziz2+ Pazs
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where f1, §> and f3 are constants. In this case, the algebraic and the geometric
spectra and therefore the characteristic modes are easy to determine.

4.3. The solution with the closed loop u = u(z), in terms of Jacobi elliptic functions
of pole ¢ namely, nc, sc and dc may have, for instance, the following desired form

zy = wovy (a1 sc(dwot) + az ne(Iwot))
zy = wovz (B sc(Awgt) + B2 ne(Iwet)) (14)
z3 = wov3 (7 sc{dwot) + y2 de(Awgt))

where «;, B; and 7; are constants. Proceeding in a manner similar to the above
manner, the compatibility conditions thus lead to the following expression of the
feedback control law

u(z) = —z?
uy(z) = -z (15)
uz(z) = -z

4.4. Recall that the derivatives of the functions se, nc and de with respect to a
variable s are

nc'(s) = sc(s)de(s)
sc'(s) ne(s) de(s) (16)
dc'(s) k2 sc(s) ne(s)

il

k. is the complementary modulus of the Jacobi elliptic functions (k2 < 1).

4.5. Remark. These solutions are obtained when the complementary modulus of
the Jacobi functions is 1, this amounts to say that nc = dc. Moreover and for the
sake of simplicity, the parameters «;, f; and +; are chosen such that the feedback
gain is —1.

4.6. From equations (11) and (15}, it yields

2
)
= 17
v2 k3 ~ k103 an
and w2
2 2
=2 = 18
"= ks k03 (18)
substituting this into (17) )
vo(vh + azvh + a2v3 + ajvy + ap) =0 (19)

where
ap = kz(kzka ~ 1)/ ki(krks — 1),
ay = (k2 - 1) / kl(k'lk'3 - I),
a; = —Q/kl,
as = (k1 —1)/ ky(kiks—1)
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Equation (19) may be written as

v2(v3 + muz + p1)(v3 + nava + p2) = 0 (20)
where
_ @ Vakao — 4a; (21)
M2 = 2 + PN ,
—ay +azag Fé
= — 22
t,2 g (22)
with
&= \/a% — 2apa1a3 + a?al — 4ad
By setting

A=/~ Ap (23)

the roots of equation (19) are thus

W=0, vh=(-nFA)2 j=12fori=1landj=34dfori=2  (24)

4.8. The characteristic equation when combined with equation (15) gives the geo-
metric and the algebraic spectra respectively,

1 0 0 1
Vi=| 0 ), ve={1)va=(0 |, va=]| v |,
0 1 vl

E= (25)

1 1 1 !
Vs=| v Vo= 3 | va=1 v}
v3 5

and
A={hm=-Ld=X=0N=hd P —1(G=4...7} (26

4.9. Remark. The above calculations have been done by using the sym‘bolic
calculus package MATHEMATICA.

4.10. Remark. The number of non equivalent solutions according to the Defini-
tion given in the Section hereafter, is at most (p™ ~ 1) / (p— 1) where p is the degree
of homogeneity. This is connected to the transcendence degree of a homogeneous
polynomial dynamical system [11]. In our case, p = 2 and n = 3 so the set E is of
dimension 7.
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5. CONCLUSION

We pointed out the fact that a rigid body may possess characteristic directions and
thus characteristic modes for both free motion and controlled motion. In linear
systems, as known, the characteristic modes are determined from a general solution.
However, they can also be determined from all the particular solutions and that is the
way used all throughout this paper. A construction of a general solution, in terms
of eigenvalues and eigenvectors, for a rigid body is being carried out by the author
and will be published in some future work. When a given desired solution is linear,
the method described in this paper leads to the linearizing feedback law. Of course,
this feedback is the expecting feedback. Otherwise, it will mean that something is
wrong in the theory. Only in this case we can trivially write the general solution.

6. APPENDIX. CHARACTERISTIC NONLINEAR EQUATION
6.1. Let us consider the differential equation
i = f(2) (27)
where f(z) is a homogeneous polynomial vector field of degree p, and each compo-
nent f;(z) is homogeneous of degree p. = denotes the state vector of components
(#1,22,...,2a), T € R™. So,
;= fi(z);, i=1,...,n (28)
Recall that a polynomial field P is called homogeneous of degree p if, for any a € R
P(az) = a® P(z), for all x € R.
Let z be a new vector z = (21,22, ...,2,) € C™ such that for any non vanishing
Zj
r=z;z
clearly, when i = j, z; = 1. By differentiating with respect to time , we obtain
=gz 4 x5z (29)
and by using the fact that f is homogeneous of degree p , it yields
=2 (1) - £(9)9) (30)
Hence, the non-trivial singular solutions satisfy the vector equation

f(z) - fi(z)z=0 (31)

which is called the nonlinear characteristic equation.
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6.2. In order to consider all non-trivial solutions of (30), the components of z

must belong to an algebraically closed field. Let us denote by v = (v1,v2,...,v,)T
a solution of equation (30) for a given j, v; € C. So,
fw) - (=0 (32)
Post multiplying the left-hand side of (31) by v7, we get
oT f(v
() = T (39)

Let A = f;j(v), the vector v and the value X are called the characteristic vector and
its associated characteristic value, respectively.

6.3. Let R; denote, for a given j, the representation (31). It is clear that if the
state vector x has no zero component, n representations &; may then be obtained.

6.4. Definition. Two vectors V; and V3, belonging to the set £ of all solutions
of the algebraic nonlinear equation f(v) — fj(v)v = 0, j = 1,...,n, are said to be
equivalent if and only if there exists a non zero element ¢ of the complex field C
such that Vi = ¢V,.

6.5. Consequence. When an eigenvector is multiplied by a nonzero element ¢ €
C, the associated eigenvalue is therefore multiplied by ¢?~1.

6.6. Remark. These definitions are identical to those obtained by non-associative
algebras in [6, 9, 10, 11]. Equation (30) is observed in {5, 12] and in [7] where a
transformation which projects the trajectories of equation (27) onto a unit sphere
is described. For real characteristic vectors solution of equation (27) in terms of
eigenvalues and eigenvectors is given (5, 12].

(Received February 23, 1993.)
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