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KYBERNETIKA — VOLUME 30 (1994), NUMBER 5, PAGES 489-497 

ON THE CHARACTERISTIC MODES 
OF A RIGID BODY UNDER FORCES1 

HOURIA BOURDACHE-SlGUERDIDJANE 

The characteristic modes of a rigid body under forces are determined from its analyt­
ical solution. This solution may be expressed in terms of eigenvalues and eigenvectors. 
The nonlinear feedback control law is deduced from the compatibility conditions of the 
differential equations. 

1. INTRODUCTION 

It is recently shown in [1, 2] that the exact analytical solution of a rigid body con­
trolled by a linear feedback law may directly be written down in terms of eigenvalues 
and eigenvectors. However, this control has been computed in previous work [3] for 
the regulation of satellite angular momentum when the flywheels are at rest. There­
fore, the method will here be extended to deal with the structure of the solution 
when the control is not linear in the state. Moreover, we show that, for the free 
motion, when the initial condition coincides with an eigenvector, the solution then 
remains in rotation about a parallel axis to this eigenvector. The eigenvectors thus 
define the characteristic directions. A preliminary result is given in [4]. 

The characteristic directions are also here determined for the nonlinear controlled 
system. In addition, the eigenvalues of the system under study are real or complex. 
It is claimed in [12] that, in general, it is not possible to evaluate closed form char­
acteristic solutions for complex eigenvectors. This paper and the above author's 
references are devoted to show that it is possible to describe characteristic solutions 
with complex eigenvalues and complex eigenvectors. 

Consider a rigid body in an inertial reference frame. Let uj\, u2l u>3 as usual 
denote the angular velocity components and let I\, I2, I3 be the moments of inertia 
of the body about the principal axes which are the body axes. 

Set x\ = W\I\, x2 = u2I2 and X3 = W3I3. So the motion of the body under 
external forces is described by the Euler equations 

i\ = k\x2x3 + u\ 
1 Presented at the IFAC Workshop on System Structure and Control held in Prague on September 

3-5, 1992. 
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x2 = k2x3Xi + u2 (1) 

-3 = k3XiX2 +u3 

where . , T „-, 
U = (Ui,U2,U3) , u G It 

represents the control vector and 

lc — I2 ~ I3
 L _ I3 ~ Ii , _ Ii ~ I3 

I2I3 I3I1 III3 

are constant parameters such that k\.k2.k3 ^ 0. 
In other words, the system has no symmetries. Assume that Ii > I2 > I3, we 

then have k\ > 0, k2 < 0, and k3 > 0. 

2. MOTION UNDER NO FORCES 

2.1 Suppose that there are no forces acting on the body (i.e. ui = u2 = u3 = 0), 
then the total external torque is zero and the solutions of Euler equations are known. 
This classical problem of the force-free motion is treated extensively in standard 
literature. However, in order to determine the algebraic and the geometric spectra, 
let us express the solutions in terms of eigenvalues and eigenvectors. Such a form 
may obviously provide more insight into the problem. For this, it is more convenient 
to use Jacobi functions because the derivative of each function is proportional to 
the product of two copolar functions. The structure of the solutions has then the 
following form 

_i = ikvi wo cra(w0 At) 

x2 = -kv2^osn(w0Xt) (2) 

x3 = iv3 w0 dn(w0 Af) 

where v = (v\ V2 v3)
T is an eigenvector of system (1) (with u = 0) and A is the 

associated eigenvalue. The initial time is supposed to be to = 0. k is the so-called 
modulus of the elliptic function (k2 < 1) and i2 = —1. It is also possible to use 
Weierstrass functions but in this case the eigenvalues appear implicitly through the 
invariants of the functions. 

2.2. By using the derivative formulae of Jacobi elliptic functions and by entering 
the solutions into equations (1) we obtain the following algebraic equations satisfied 
by the eigenvalues and the eigenvectors 

Aui = &i v2 v3 

Xv2 = k2v3vx (3) 

Al>3 = &3 v 1 v2 

These characteristic nonlinear equations may also be obtained from the theory of 
Section 6. 
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3. CHARACTERISTIC DIRECTIONS UNDER NO FORCES 

3.1. When no forces are acting on the body, the angular momentum M and the 
kinetic energy T of rotation are constant. These equations follow from the principles 
of the conservation law, 

M2 = x\ + x\ + x\ 

2T = x\/h+x\/h + x\/h 

From (4) and using (2), it immediately follows that 

(4) 

and 

JЬ = 

l(2TҺ - M2)h 

V (Ii-- IзЬ2 

l(2TҺ- M2)hv2 

(M2 - 2TҺ)I3v\ 
(5) 

provided that M2 < 2Th- The quantity M2/2T must lie between the minor and 
the major moment of inertia for the existence of a solution. Moreover, the condition 
M2 > 2Th holds when en is replaced by dn in equation (2) and conversely. 

3.2. Remark. One may notice that if ^i = 0 (resp. 113 = 0) then M2 = 2Th 
(resp. M2 = 2TIX). 

3.3. Furthermore, let E and A be the geometric and algebraic spectra respectively, 
in view of Section 6, we have 

E=l 

V = 

v5 = 

љ = 

,v6 = 

,V3 = ,vĄ = 

where 

and 

ÍЏ;Ь = 
ki 

,vv = 

fkҙ 

—а 
1 

A = 
Ai = A2 = A3 = 0; A4 = A7 = v^i^a 
A5 = A6 = -y/kikl 

(6) 

(7) 

(8) 

3.4. We now focus our attention on the role of these eigenvectors particularly 
whether or not any sense may be pointed out. Assume that the initial condition, 
for solution (2), coincides with the eigenvector ^ = (10 0) T . We have x(Q) = aVi 
where a is an arbitrary constant. From the third equation of (2), it therefore follows 
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that u>0 = 0 which implies that M2 = 2T7i. One has to notice that w0 = 0 while 
u)0k ^ 0. We obtain a = M and hence 

x(t) = j 0 j (9) 

The rigid body is thus spinning around the axis of the greatest moment of inertia. 

3.5. Similarly, if x(0) = aV3, a is again an arbitrary constant and V3 = (0 0 1)T . 
We find that M2 = 2TI3 and a = M and hence 

x(t) = f 0 j (10) 

The rigid body is thus spinning around the axis of the least moment of inertia. 

3.6. However, if the initial condition coincides with the eigenvector V2 = (0 1 0)T , 
the rotation does not remain spinning around the intermediate axis, which corre­
sponds to the fact that this rotation is known as being unstable. A similar procedure 
may be followed when the initial condition coincides with the remaining eigenvectors. 

4. CHARACTERISTIC DIRECTIONS UNDER FORCES 

4.1. Consider now that u\ ^ 0, u2 ^ 0 and u3 7̂  0. As we are looking for 
a feedback control law, then u = u(x). The problem has been reduced to the 
construction of an exact solution in terms of the eigenvalues and the eigenvectors of 
system (1). 

Let v = (vi v2 V3)T be an eigenvector of system (1) and A the associated eigenval­
ue. From the theory of Section 6, v and A satisfy the following algebraic equations 

Xvi = k1v2v3 + u1(v) 

Xv2 = k2v3vi+u2(v) (11) 

Xv3 = k3vi v2 +u3(v) 

where u(v) is the unknown function u(x) evaluated in v. 

4.2. If we want the closed loop system to have a linear behaviour, the solution 
should obviously be 

x=u0vext (12) 

where the eigenvalue and the eigenvector are possibly specified a priori. 

By differentiating equations (12), using equations (11), and by entering the solu­
tions into equations (1) lead to the linearizing feedback controls 

ui(x) = k1x2x3 + (11x1 

u2(x) = k2xix3+f32x2 (13) 

U3(x) = k3xix2+p3x3 
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where /?i, /?2 and /?3 are constants. In this case, the algebraic and the geometric 
spectra and therefore the characteristic modes are easy to determine. 

4.3. The solution with the closed loop u = u(x), in terms of Jacobi elliptic functions 
of pole c namely, nc, sc and dc may have, for instance, the following desired form 

xi = u>0vi(axsc(Xuj0t) + a2nc(\uj0t)) 

x2 = OJ0 v2 (/?! sc(\u0t) + /?2 nc(\uj0t)) (14) 

x3 = w0 v3 (71 sc(Xuj0t) + 72 dc(Xu)0t)) 

where a;, /% and ji are constants. Proceeding in a manner similar to the above 
manner, the compatibility conditions thus lead to the following expression of the 
feedback control law 

ui(x) = -x\ 

u2(x) = -x\ (15) 

u3(x) = -x\ 

4.4. Recall that the derivatives of the functions sc, nc and dc with respect to a 
variable s are 

nc'(s) = sc(s)dc(s) 

sc'(s) = nc(s)dc(s) (16) 

dc'(s) = klsc(s)nc(s) 

kc is the complementary modulus of the Jacobi elliptic functions (k% < 1). 

4.5. R e m a r k . These solutions are obtained when the complementary modulus of 
the Jacobi functions is 1, this amounts to say that nc = dc. Moreover and for the 
sake of simplicity, the parameters or;, /?,• and 7,- are chosen such that the feedback 
gain is —1. 

4.6. From equations (11) and (15), it yields 

and 

substituting this into (17) 

&з-Мз 

"3 = 1 ^ 2 (18) 
k2-kiv% 

v2(v2 + a3vl + a2vl + aiv2 + a0) = 0 (19) 

where 

do = k2(k2k3 - l)/ki(kik3 - 1), 

ax = (*2-l)/fci(M3-l), 

a2 = -2/fci, 

a3 = (* i- l )/J fe i(Ms-l) 
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Equation (19) may be written as 

V2(v\ + mv2 + Vi)(vl + mv2 + ^2) = 0 

where 

with 

By setting 

а3 л/а|а^4а7 
т'2 = Т " 2 ^ •' 

^ 1 , 2 = 
—a\ + a2ao + 8 

2a~o 

6 = ҳja\ - 2а0аiа2 + a\al - 4аg 

(20) 

(21) 

(22) 

A = y/r,? - 4/ii (23) 

the roots of equation (19) are thus 

v° = 0, »'2 = ( - I , T A ) / 2 ; j= 1,2 for i = 1 and j = 3,4 for i = 2. (24) 

4.8. The characteristic equation when combined with equation (15) gives the geo­
metric and the algebraic spectra respectively, 

E=l 

Vi = 

v5 = 

,v2 = 

,v6 = 

,Vз = ,v4 = 

, V7 = v 

ч 

(25) 

and 

Л = {Ai = - 1 ; A2 = A3 = 0; A; = k, vJf3 Ą~э - 1 (j = 4 , . . . , 7)}. (26) 

4.9. R e m a r k . The above calculations have been done by using the symbolic 
calculus package MATHEMATICA. 

4.10. R e m a r k . The number of non equivalent solutions according to the Defini­
tion given in the Section hereafter, is at most (pn — 1) / (p— 1) where p is the degree 
of homogeneity. This is connected to the transcendence degree of a homogeneous 
polynomial dynamical system [11]. In our case, p = 2 and n = 3 so the set E is of 
dimension 7. 
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5. CONCLUSION 

We pointed out the fact that a rigid body may possess characteristic directions and 
thus characteristic modes for both free motion and controlled motion. In linear 
systems, as known, the characteristic modes are determined from a general solution. 
However, they can also be determined from all the particular solutions and that is the 
way used all throughout this paper. A construction of a general solution, in terms 
of eigenvalues and eigenvectors, for a rigid body is being carried out by the author 
and will be published in some future work. When a given desired solution is linear, 
the method described in this paper leads to the linearizing feedback law. Of course, 
this feedback is the expecting feedback. Otherwise, it will mean that something is 
wrong in the theory. Only in this case we can trivially write the general solution. 

6. APPENDIX. CHARACTERISTIC NONLINEAR EQUATION 

6.1. Let us consider the differential equation 

x = f{x) (27) 

where f(x) is a homogeneous polynomial vector field of degree p, and each compo­
nent fi(x) is homogeneous of degree p. x denotes the state vector of components 
(xi,x2, • • -,xn), x G R". So, 

ii = fi(x); i=l,...,n. (28) 

Recall that a polynomial field P is called homogeneous of degree p if, for any a G R 
P(ax) = apP(x), for all x G Rn • 

Let z be a new vector z = (z\,z2,..., zn) G Cn such that for any non vanishing 
Xj 

X = XjZ 

clearly, when i = j , Zj = 1. By differentiating with respect to time , we obtain 

x = XJZ + Xji (29) 

and by using the fact that / is homogeneous of degree p , it yields 

z = xp-1(f(z)-fj(z)z) (30) 

Hence, the non-trivial singular solutions satisfy the vector equation 

f(z)-fj(z)z = 0 (31) 

which is called the nonlinear characteristic equation. 
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6 .2 . In order to consider all non-t r ivia l solut ions of (30), the componen t s of z 

mus t be long to an algebraical ly closed field. Let us denote by v = (v\, V2, • • •, vn)
T 

a solut ion of equa t ion (30) for a given j , Vj ' C. So, 

f(v)-fj(v)v = 0 (32) 

Post mul t ip ly ing the lef t -hand side of (31) by vT, we get 

*e> = W (33) 

Let A = fj(v), the vector v and the value A are called the character is t ic vector and 
its associated character is t ic value, respectively. 

6 . 3 . Let Rj denote , for a given j , the representa t ion (31). I t is clear t h a t if the 

s t a te vector x has no zero componen t , n representa t ions Rj m a y then be ob ta ined . 

6 .4 . D e f i n i t i o n . T w o vectors V\ and Va, belonging to t he set E of all solut ions 

of t he algebraic nonl inear equa t ion / ( D ) — fj(v)v = 0, j = 1 , . . . , n, are said to be 

equivalent if and only if there exists a non zero element c of the complex field C 

such t h a t V\ = cVi-

6 . 5 . C o n s e q u e n c e . W h e n an eigenvector is mult ipl ied by a nonzero element c € 

C, t he associa ted eigenvalue is therefore mult ipl ied by c p _ 1 . 

6 .6 . R e m a r k . These definitions are identical to those obta ined by non-associat ive 

a lgebras in [6, 9, 10, 11]. E q u a t i o n (30) is observed in [5, 12] and in [7] where a 

t rans fo rmat ion which projects the trajectories of equat ion (27) onto a uni t sphere 

is descr ibed. For real character is t ic vectors solut ion of equa t ion (27) in t e rms of 

eigenvalues a n d eigenvectors is given [5, 12]. 

(Received February 23, 1993.) 
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