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K Y B E R N E T I K A — VOLUME 32 (1996) , NUMBER 1, P A G E S 4 3 - 6 2 

ONE METHOD FOR ROBUST CONTROL OF 
UNCERTAIN SYSTEMS: THEORY AND PRACTICE 

G E O R G E L E I T M A N N 

We present a controller design methodology for uncertain systems which is based on the 
constructive use of Lyapunov stability theory. The uncertainties, which are deterministic, 
are characterized by certain structural conditions and known as well as unknown bounds. 
As a consequence of the Lyapunov approach, the methodology is not restricted to linear 
or time-invariant systems. The robustness of these controllers in the presence of singular 
perturbations is considered. The situation in which the full state of the system is not 
available for measurement is also considered as are other generalizations. Applications of 
the proposed controller are noted, and examples of some resource management problems 
are discussed. 

1. INTRODUCTION 1 

A fundamental feedback control problem is that of obtaining some specified desired 
behavior from a system about which there is incomplete or uncertain information. 
Here we consider systems whose uncertainties are characterized deterministically 
rather that stochastically or fuzzily; for a stochastic approach see [6], and for fuzzy 
one see [34]. 

Our model of an uncertain system is of the form 

x(t) = F(t, x(t), u(t), u) (1) 

where t £ Mis the "time" variable, x(t) G Mn is the state and u(t) £ Mm is the con­
trol input. All the uncertainty in the system is represented by the lumped uncertain 
element u> G fi. It could be an element of Mq representing constant unknown param­
eters and inputs; it could also be a function from M into Mq representing unknown 
time varying parameters and inputs; it could also be a function from M x Mn x JRm 

into Mq representing nonlinear elements which are difficult to characterize exactly; 
it could be merely an index. F : Mx Mn x Mm —+ Mn is known. The only informa­
tion assumed about ui is the knowledge of a nonempty set fi to which it belongs. A 
related characterization of uncertainties is via inclusions see [35]. 

1 Throughout this paper, references are intended to be representative rather than exhaustive. 
For a more complete bibliography see [40], [41]. 
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Discrete systems are usually modelled by a difference equation 

x(k + 1) = F(k, x(k), u(k)) (2) 

where k G Z is the "time", x(k) G Mn is the state, u(k) G Mm is the control, and 
F is not known but rather belongs to a set T, with T known. 

2. CONTINUOUS SYSTEM CONTROL 

For continuous systems modelled by ordinary differential equations of the form (1) 
we consider control to be given by a memoryless state feedback controller 

u(t) = p(t,x(t)). (3) 

Ideally we wish to choose p : M x Mn —* Mm so that the feedback controlled 
system 

x(t) = f(t,x(t),u), (4) 

where 
f(t, x, u) := F(t, x, p(t, x), u), (5) 

has the property of g.u.a.s. (global uniform asymptotic stability) about the zero 
state for all u € 0 and for all initial states in Mn. However to assure g.u.a.s. of an 
uncertain system one sometimes has to resort to controllers which are discontinuous 
in the state; see [26]. To avoid such discontinuous controllers, we relax the problem 
to that of obtaining a family of controllers which assure that the behavior of (1) can 
be made arbitrarily close to g.u.a.s.; such a family is called a practically stabilizing 
family see [17], [20]. 

2 .1 . A specif ic class o f uncer ta in cont inuous s y s t e m s 

An uncertain continuous system under consideration here is described by (1) and 
satisfies the following assumption. 

A s s u m p t i o n C . l . 2 There exist a continuous function B : M x Mn —>• Mn'm, a 
candidate Lyapunov function V : Mx Mn —• M+, a class K function j : M+ —> M+, 
functions ft,ft:Ex Mn x Q —> M+ and continuous functions K, p : M,x Mn —* M+ 
such that 

F(t, x, u, u) = fs(t, x, u) + B(t, x) g(t, x, u, u) (6) 

for some functions fs and g which satisfy: 

1. For each u G Q, fs(-, u) is continuous and 

dV dV 

~dT{t> x) + ~dx~(-t' x) fs{t' x>u) - " T ( l | x | l ) ( 7 ) 

for allt E M, x G Mn. 

!For definition see [13], [20]. 
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2. For each to £ Q, g(-, u) is continuous and 

uTg(t, x, u, u) > -0i(t, x, u>) \\u\\ + j32(t, x, u) \\u\\2 (8) 

where 
Pi(ttx,u>)<p2(t,x,u)p(t,x) (9) 

Pl(t,X,L))<K(t,x) (10) 

for aO t € R, x£Rn, u £ Rm. 

2.2. P r o p o s e d contro l lers 

Here we present some practically stabilizing controller sets for the system considered 
in the previous section. These controllers can be regarded as continuous approxi­
mations of those presented in [26]. 

Consider any uncertain system described above and let (B, V, 7, p, K) be a quin­
tuple which assures the satisfaction of Assumption C. l . Choose any continuous 
functions pc, KC which satisfy 

Pc(t, x) > p(t, x) , Kc(t, x) > K(t, x) (11) 

and define 

a(t,x):=B(t,x)T^(t,x)T, (12) 
ox 

r)(t, x) := Kc(t, x) a(t. x). (13) 

A practically stabilizing family of controllers is the set 

V:={pe\e>0} (14) 

where pe is any continuous function which satisfies 

| K * , x)\\pe(t, x) = -\\p£(t, x)\\a(t, x) (15) 

i.e., pe(t, x) is opposite in direction to a(t, x), and 

\\rj(t, x)\\ > 0 => \\Pe(t, x)\\ > Pc(t, x) [1 - \\V(t, x)\\-h]. (16) 

As an example of a function satisfying the above requirements on pe, consider 

f -^Pc(t,x) if |to(i,«)||<* 
pe(t,x):=t (17) 

I -i?{!SW*.«) lf iw*»*)H>ci 
see [14]. 

As another example, consider 

*«•') *-$£$&>*•''>•• (18) 
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see [1]. 
Controllers of a discontinuous type as well as their continuous approximations, re­

lated to those proposed here, have been deduced by employing the theory of variable 
structure control; see [5]. Some early treatments of controller design for uncertain 
systems were based on "games against nature"; see [25]. Another class of controllers 
for systems of type (1) are deduced in [2]. 

2.3 . M a t c h i n g condi t ions 

Given a system described by (1) the choice of B, fs, g to assure satisfaction of 
Assumption C.l (if possible) may not be obvious. This choice is usually easier if 
the uncertainties are matched in the sense that there exist functions /o, B, g with 
B(t, x) G Rn'm such that 

F(t, x, u, u) = f0(t, x) + B(t, x) g(t, x, u, u>); (19) 

that is, the uncertainty ui and the control enter the system description via the same 
matrix B(t, x). 

Much of the literature concerns systems in which the uncertainties are matched. 
[4] and [11] consider systems with unmatched uncertainties; there the norm of the 
unmatched portion of the uncertain term must be smaller than a certain threshold 
value. In [52] linear systems are considered in which the uncertainty satisfies gen­
eralized matching conditions, that is, structural conditions which are less restrictive 
than the matching condition. In these cases, as in the matched case, the norm 
bounds of the uncertain terms can be arbitrarily large. Linear time-invariant sys­
tems with scalar control input are treated in [53], while Schmitendorf [47] requires 
the existence of a positive definite solution of a certain Riccati equation. 

2.4. O t h e r p r o b l e m s 

While global uniform asymptotic stability or at least practical stability can be 
guaranteed provided the control is not constrained, only local stability can be assured 
if the available control is subject to constraints. One class of stabilization problems 
with control constraints is considered in [19], [51]. Controllers which assure not only 
practical stability but also exponential convergence at a prescribed rate are treated 
in [12], [13]. Corless and Leitmann [15] deal with systems in which the uncertainty 
bounds are not known exactly but depend on unknown constants; the controllers 
presented there are parameter adaptive controllers. Problems in which one wishes 
to keep the system state within or outside a prescribed region of the state space 
are considered in [21]. Systems with delay are considered in [55] and [38]. Corless 
and Leitmann [27] treat controllers which linearize a nominal system in addition to 
assuring stability of the actual one. Large scale uncertain systems with decentralized 
control are discussed in [9] and [49]. 



One Method for Robust Control of Uncertain Systems: Theory and Practice 47 

3. DISCRETE SYSTEMS CONTROL 

The control of uncertain discrete systems modelled by difference equations of the 
form (2) has been treated in [22], [44] and [48]. Unlike in the continuous case reviewed 
in the previous section, arbitrarily large uncertainties cannot be tolerated, in general, 
and the region of ultimate attraction cannot be made arbitrarily small. Corless and 
Manela [22] consider the matched case, namely 

x(k + l) = f(k, x(k)) + B(k, x(k)) [u(k) + e(k, x(k), u(k))] (20) 

where k e 2Z, x(k) G Rn and u(k) G Rm. The functions / : 2Z x Rn -> Rn and 
B : 2Z x Rn —* Rn'm are assumed known, with 

rank[H(fc, x(k))] = m. (21) 

The function e : 2Z x Rn x Rm —> Rm is not known; however, it is assumed that 
the class of functions £ to which it belongs is known. We make the following two 
assumptions before stating a stabilization theorem. 

Assumpt ion D . l . 3 Given a positive definite P G Rn'n there exist non-negative 
scalars po, pi and pi such that for all e G £ 

\\B(k,, x)e(k, x, u)\\P < p0 + P I | | X | | P + p2\\u\\R(k,x) (22) 

for all (k, x,u) G 2Z x Rn x Rm, where R(k, x) := B(k, x)TPB(k, x). Next we 
define 

tp(k, x) := [B(k, x)T PB(k, x)}'1 B(k, x)TP , (23) 

anc 

ф(k, x) :=B(k, x)ф(k, x), (24) 

f(k,x):=ф(k,x)f(k,x), (25) 

f(k,x):=f(k,x)-f(k,x). (26) 

Assumpt ion D.2. There exist a positive definite matrix P G Rn'n and a non-
negative scalar c < 1 such that 

||/(Jb. X ) | | P < C | | X | | P (27) 

for all (k, x) G 2Z x Rn. If pi ^ 0, then there also exist non-negative scalars Co and 
c\ such that 

| |/(fc, x)\\P < co + CI\\X\\P (28) 

for all (k, x) G 2Z x Rn. 

3 L e t P G Rn'n be a positive definite matrix. We define the norm \\ • \\p i Rn —> J?+ by 

| | r | | p : = VrTPr. 
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3.1. Proposed controllers 

Consider an uncertain discrete system (20) satisfying Assumptions D.1-D.2 and 
subject to the control u(k) = p(k, x(k)) where p(k, x(k)) is defined as follows: 

f 0 if p2 > 1 
p(k, x(k)) := { (29) 

\ -^(k,x(k))f(k,x(k)) if p2<\. 

Suppose that 
c2 + ( p i - i - c t ) 2 < l (30) 

where 
f 0 if p2 = 0 

c\ := { (31) 
I p\cx if p2 ^ 0 

and 

P*2 :=min{p2, 1}- > (32) 

Then for all e 6 8, the feedback controlled system (20) is g.u.a.s. about the set 

BP(d) := {xeMn\ \\x\\P < d] (33) 

where 
d := , P 0 + C S (34) 

^l-P-(p1+c'i) 
and 

f 0 if p2 = 0 
C °H * T -/n (35) 

I p̂ Co if p2 # 0. 

4. ROBUSTNESS IN THE PRESENCE OF SINGULAR PERTURBATIONS 

Consider an uncertain singularly perturbed system described by 

x = Fit, x, y, u, u, to) 
V ^ (36) 

py = G(t, x, y, u, p, u) 

where (x, y) £ Mn x M1 describe the state of the system, p € (0, co) is the singular 
perturbation parameter, and all the other variables are as described above. Here one 
wants to obtain memoryless feedback controllers (generating u) which assure that, 
for all co E fi and for all sufficiently small p, the behavior of the feedback controlled 
system is close to that of g.u.a.s. 
Assuming that, for each x, u, u> there exists a unique vector H(x, u, ui) £ M1 such 
that 

G(t,x, H(x,u,cu),u, 0,w) = Q (37) 

for all t, the reduced order system associated with (36) (let p = 0 in (36)) is given 
by 

x = F(t, x, u, u) (38) 



One Method for Robust Control of Uncertain Systems: Theory and Practice 49 

where 
F(t, x, u, to) : = F(t, x, H(x, u, u>), u, 0, to). (39) 

For each t, x, u, to the boundary layer system associated with (36) is given by 

^L(r) = G(t, x, y(r),u, 0, w). (40) 

[20] require that the boundary layer system satisfies g.u.a.s. about its equilibrium 
state H(x, u, u>) and present stabilizing controllers whose designs are based on the 
reduced order system. This situation occurs for systems with stable "neglected 
dynamics." In [24] the boundary layer system is not required to be stable. The 
"stabilizing" controllers presented there are composite controllers in the sense that 
they consist of two parts; one part is utilized to stabilize the boundary layer system 
and the other part is based on a nominal reduced order system. 

5. OUTPUT FEEDBACK 

Heretofore it was assumed that the complete state is available for feedback. Consider 
now the more general situation in which the output y(t) G Ms available for feedback 
is related to the state by 

y(t) = c(t,x(t),uj) (41) 

for some function c : M x Mn x Q —» Ms. 
Memoryless output feedback controllers are treated in [10], [23], [54]. The dynamic 
output feedback controllers in the literature utilize state estimators. The state is 
fed to a memoryless controller whose design is based on having the complete state 
available for feedback. Full order observers are utilized in [3], [56]. Breinl and Leit-
mann [7], [8] utiLze reduced order observers. There the uncertain terms must satisfy 
certain structural conditions and the differential equation describing the evolution 
of the state estimation error is decoupled from the state equation. 

6. APPLICATIONS 

Controller designs based on a constructive use of Lyapunov stability theory or closely 
related methods have been applied to a variety of uncertain systems. In the realm 
of engineering these applications include tracking control for robotic manipulators 
including hybrid tracking and force control [46], suspension control for magnetical­
ly levitated vehicles [7], [8], control of seismically excited structures [33], of high 
speed rotors [57], and of nuclear power plants [45], as well as various aircraft and 
aerospace systems [42], [50], [53]. Experimental results may be found in [29], [32]. 
[43] concern applications in economics. Resource allocation in fisheries is discussed 
in [28], [30], [31]. Harvesting problems are treated in [16], [36]. Lee and Leitmann 
[37], [38] deal with pollution control in rivers and in [39] they treat a problem in 
pedagogy. 
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7. EXAMPLE: OPTIMAL L O N G - T E R M MANAGEMENT OF A DISTURBED 
ECOSYSTEM 

Consider the following model of an exploited ecosystem 

x(t) = f(x(t)) - Hx(t), x(t0) = x° (42) 

where 

x(t) := (Xl(t), x2(t), ..., xn(t))
T G X C Mn 

is the biomass vector with its ith component representing the biomass of the ith 
species with 

X := {x G Mn | Xi > 0, i = 1, 2, . . . . n}, 

and where 
H := diag(/ji, h2, ..., hn) 

is the constant harvest effort matrix; a constant harvest effort vector h := (hi, h2,. .. 
. . . , hn)

T is admissible if h G H, where H C Mn is prescribed. The corresponding 
non-trivial solution of 

f(x)-Hx = 0 (43) 

is assumed to be unique. Let h* denote the harvest effort which maximizes (3THx 
for all h G ft and subject to (43), and let x* denote the corresponding equilibrium 
state of (42), where /3 := (0i, /32, ..., j3n)

T is a given constant price vector. Thus, 
under optimal steady state harvesting, the exploited ecosystem (42) becomes 

x(t) = f(x(t))-H*x(t), x(t0) = x°. (44) 

If the exploited ecosystem (44) is undisturbed, then the harvest rate II*x* is indeed 
optimal for the long-term management of the ecosystem, that is, in the steady state. 
However, real ecosystems are continually disturbed by unpredictable events such as 
diseases, migrations, climatic changes, and others. To include such disturbances, we 
modify the model in the following way: 

x(t) = f(x(t)) - H*x(t) + A f(x(t), v(t)) + u(t) (45) 

where A / ( - ) : Mn x Mp —* Mn is a known continuous function, v(t) G 11 C MF 
is a vector of uncertain disturbances with V, a compact bounding set which may 
be known or unknown. To assure that the disturbed ecosystem can be practically 
stabilized, an additional harvest rate u(t) G U C Mn is provided where U is a known 
or unknown depending on 7Z (the bounding set of v). 

Since we are concerned with x; > 0, i = 1, 2, ...,n, we consider transformed 
variables 

Zi = \n(xi/x*), i = 1, 2 , . . . , n (46) 

which is valid for .r,- and x* > 0. Under this transformation, eqn. (45) leads to 

i(t) = g(z(t)) + Ag(z(t), v(t)) + B(z(t)) u(t), z(t0) = z° (47) 
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where 

uW 
Ag(z, v) 

B(z) 

X* 

E~z 

ez 

E~zX*-1[f(X*ez)-H*X*e2 

B(z)Af(X*ez,v) 

E-zX*-l 

diag(x*, . . . , x*) 

diag(e" 2 1 , . . . , e~*») 

(< Г . ) 

= (ln(x?/x*), . . . , Mx°Jx*n)). 

The problem then is that of determining a feedback controller in the case of known 
uncertainty bound 7Z, or an adaptive (dynamic) controller in the case of unknown 
uncertainty bound 71, such that the corresponding harvest rate u(-) assures at least 
practical stability of the disturbed ecosystem model (47) regardless of the realization 
of disturbance v(-); in particular, such a controlled harvest guarantees that z(t) •—> 0 
(that is, x(i) —> x*) arbitrarily closely within finite time. Furthermore, since then 
Zi(t) remains bounded, it follows that Xi(t) > 0, i = 1, 2, . . . , n. 

A detailed discussion the controllers mentioned above can be found in [36] for 
known 7Z and in [16] for unknown 71. Here we present a simple example of a single 
species harvested population 

i(t) = ^-x(t)[K-x(t)]-hx(t), x(0) = x° (48) 

whence the maximum harvest rate at equilibrium ŝ 

h = h* = r/2 

with corresponding equilibrium population 

x = x* = K/2 . 

Now consider that the growth is subject to unpredictable disturbances of the form 
v(t) x(t), where v(-) : M —» 71, 71 := {v \ \v\ < a = const. > 0}. Thus, we have 

x(t) = — x(t) [K - x(t)] - h*x(t) + v(t) x(t) + u(t) (49) 

where the control u(t) corresponds to adjusting the total harvest rate — h*x(t) + u(t). 
Of course, if u(t) > h*x(t), harvesting is replaced by stocking (replenishing) which 
is not ruled out here. If stocking is not allowred, a constraint u(t) < h*x(t) must be 
imposed; see, for instance, [19], [51]. 

On employing transformation (46), eqn. (49) leads to 

W = ^ ( l -e г ( ť ) ) + Ч0 + | e - •-(«) u(t) 

corresponding to eqn. (47). For this system, the result of Sec. 2.2 yields a stabilizing 
feedback control. After retransformation from z to x, one such control u(t) = p(x(t)) 
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is one with 

p(x) = 
[-sgna(^-l)] 

* ( » - - ) Ks 

Kx 
2x* 

2x* 

Іf | « ( - Ł - 1 ) | > Є 

(50) 

where e > 0 is at our disposal; however, the smaller e, the smaller is the assured 
value of \x(t) - x*\ for a l H > T for some computable T. 

For simulation purposes we use K = 1.5, r = 0.25, a = 0.1, and the uncertain 

disturbance realization v = - 0 . 1 cost. Figure 1 shows the biomass evolution of the 

uncontrolled (u(t) = 0) and undisturbed (v(t) = 0) ecosystem (49) for two initial 

values. Figure 2 portrays the biomass evolution for the disturbed but uncontrolled 

system, while Figures 3(a) and 3(b) present the biomass evolution of the disturbed 

and controlled system for two values of the design parameter e. Finally, Figures 4(a) 

and 4(b) show the accumulative yield 

Y(t):= Л/Y 
Jo 

x(т) — u(т)] dт 

corresponding to the biomass history of Figure 3(b), as a function to time t. Clearly, 

in the long run the yield of the controlled system exceeds that of the uncontrolled 

Fig . 1. Harvested one species system, undisturbed and uncontrolled. 

Fig. 2. Harvested one species system, disturbed and uncontrolled. 
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0O 5.0 ЮO 

F i g . 3 . Harvested one species system, dis turbed and controlled, (a) e = 0.01, 

(b) e = 0.001. 

DO 50 -00 50 гoo гso :oo 

І O гo.o 

F i g . 4 . Harvested and dis turbed one species system, (a) x(0) = 0.276, (b) x(0) = 2.039. 
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Fig. 5. Biomass responses for uncertain model with non-adaptive controller. 
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Fig. 6. Biomass responses for uncertain model with adaptive controller. 

adaptive. 

Fig. 7. Accumulative yields for x(0) = 2.039. 

As mentioned above, if the bound of the disturbance, here a, is not known, we 
may employ a dynamic controller. As shown in [16], for the example treated here 
such a controller is 

u(t) = s(t) a(t) x(t) (51) 
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where 

í(í) :: 
-sgn[x(t) - x*] if \á(t) [x(t) - x*] | > e(t) 

-&^~xt]- if \á(t)[x(t)-x*]\<e(t) 
(52) 

å(t) = L | x(t) - x* | , â(0) > 0 

è(t) = -lє(t), є(0) > 0 

(53) 

for L, I = const. > 0. 
The use of adaptive control (cf. [15]) in this problem is illustrated in Figures 

5-8. For comparison with the feedback control (50) we present simulation results 
with the same parameter values K and r, and for the same disturbance realization 
of v(-), as those used in the preceding simulations. As can be seen, the adaptive 
control results in improved behavior, that is, a more rapidly convergent biomass and 
increased long-term yield (albeit, for "small" initial biomass, replenishing is required 
at the outset). 

For a detailed discussion and a multi-species example see [16], [36]. 

> 2 

-.--

Fig. 8. Accumulative yields for x(0) = 0.276. 

8. EXAMPLE: STABILIZING EMPLOYMENT IN A FLUCTUATING RE­
SOURCE ECONOMY 

Now we consider a resource management problem in which the management objec­
tive is the suppression of fluctuations in resource economics. In particular, we desire 
to stabilize the employment level of fishermen in an open-access common-property 
fishery subject to uncertain fluctuations in the resource level and in the value of the 
resource. This is to be accomplished by using a subsidy/tax policy based on current 
resource and employment levels. 

Unlike in the previous example, here we adopt a discrete model. We consider an 
uncertain density-dependent resource described by a difference equation 

N(k + 1 ) = F[N(k), v(k, N(k), l(k))] - H[N(k), l(k)] (54) 
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where k G {• • •, —1, 0, 1, .. .} is the time, N(k) is aggregate stock size at time k, 
F() : M? —• M is the resource growth function, and l(k) is the fishing effort during 
period [k, k + 1). The uncertainty in the system is modelled by v(-) which depends 
on time, stock level and fishing effort; H() : M2 —> M is the catch during period 
[k,k + l). 

We assume again that the growth function is of the logistic type 

F[N(k), v(k, N(k), l(k))] = N(k) l + (r + v(k, N(k), l(k))) (l - - ^ 1 

where r and K are positive constants, while the harvest rate is of the form 

(55) 

for l(k) > 0, and a is a positive constant. Finally, we take the growth uncertainty 
to be bounded by a known constant v < r, that is, 

\v(k, N(k), l(k))\ < v. (57) 

Next we investigate the possible range of stock levels for the fishery model (54) - (57). 
In particular, it is readily shown that 

N(k) G (0, A'] => N(k + I) G (0, A'] (58) 

for non-negative fishing effort, l(k) > 0, provided 

r + v <1. (59) 

Since one major goal of regulation is the avoidance of species extinction, we 
restrict the subsequent treatment to the case for which this can be assured; namely 
N(0) G (0, A'] and condition (59). 

Next we postulate a regulatory agency which can employ a subsidy/tax policy 
with the aim of supressing employment fluctuations ascribable to varying economic 
conditions in an open-access fishery. The model of the entry/exit behavior of fisher­
men is based on the assumption that the change in the number of employed fishermen 
depends on the short-term revenues which they can receive. Let •K denote the value 
of unit resource and c the cost of unit fishing effort. With fishing effort l(k) equiv­
alent to the number of fishermen employed (labor-intensive fishing), the entry/exit 
behavior is modelled by 

ł(к + l) = ł(к) + tl(к) 
ҡN(к) 

a + Щ 
(60) 

where t > 0 is an entry coefficient. Thus, the number of employed fishermen increases 
as long as the enterprise is profitable; it decreases when cost exceeds profit. 
We assume that 

tc<l (61) 
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so that, since N(k) > 0, 
l(k) > 0 = > l(k + 1) > 0 ; (62) 

that is, the fishing effort (employment level) remains non-negative. 

Now we consider bounded fluctuations in the value (price) of the resource. The 
entry/exit equation (66) is modified to reflect this price uncertainty: 

Џ + 1) = Џ) +1Џ) (ҡ + w(k)) 
N(k) 

а + l(k) 

ith 

(63) 

(64) 1^(^)1 < W < 7C 

where w is a known (assumed) bound. 

Thus, both the resource growth rate and the value of the resource are subject to 
unknown but bounded variations with known bounds. And while we suppose that 
N(k) and l(k) are known, due to uncertainties v(-) and w(-), the resource manager 
cannot predict their future values. However, as stated above, he can control the 
entry/exit behavior so as to drive it to and maintain it "near" a target level, /s, by 
supporting (subsidy) or penalizing (tax) the fishermen. Thus, the model reflecting 
such social control becomes 

Џ + 1) = Џ) + 1 Џ ) (ҡ + w(k)) 
N(k) 

а + l(k) 
c + u(k) (65) 

where u(k) > 0 denotes a subsidy and u(k) < 0 a tax. 

On letting 
x(k) := l(k)-ls 

equation (65) becomes 

x(k + 1) = f(k, x(k)) + C(k, x(k)) [u(k) + e(k, x(k), u(k))] (66) 

włк 
f(k, x) := x + t(x + ls) 

C(k,x) := t(x + ls) 

e(k,x,u) := *®Ш 

ж а+x+ls 

a+x+ls 

On applying the results given in Sec. 3.1, the stabilizing control is 

u(k) = -f(k, x(k)/C(k, x(k)). 
(67) 

Now one can show that use of control (67) assures the non-negativity of fishing 
effort, that is, 

l(k) > 0 for all k > 0 (68) 

for all possible realizations of the uncertainties v(-) and w(-), if 

т + v < 1 , twK < L (69) 
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provided 

N(0) Є (0, K], 1(0) > 0 (70) 

To illustrate the efficacy of control (67), we present simulation results for the 

system with parameter values 

r = 0.25, K = 1000, a = 500, TT = 1, c = 1, t = 0.7, 

uncertainty bounds 

and uncertainty realizations 

5 = 0.1, w 0.1 

with initial values 

v(k, N(k), l(k)) = ?)sin0.2& 

w(k) = wsinO.bk 

N(0) = 700, 1(0) = 50 . 

In the absence of disturbances, employment stabilizes at / = 61.6 with corre­

sponding stock level N = 562. The resource manager prefers a higher employment 

level, namely, ls = 80; the corresponding steady-state stock level of the undisturbed 

controlled system is N = 448. 

Figures 9 and 10 show the behavior of the stock level and of the employment 

level in the presence of the assumed uncertainty realizations for the system without 

and with control (67). Clearly, the use of the proposed subsidy/tax policy serves to 

suppress the fluctuations in employment, albeit with increased intensity of resource 

utilization. 

800. 

200 

TIME 

Fig. 9. Stock level. 
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Fig. 10. Employment level. 

Detailed derivations as well as further discussions can be found in [30]. More 

complex systems allowing for labor as well as capital intensive fishery sectors are 

treated in [28], [31]. 

(Received April 27, 1995.) 

REFERENCES 

[1] G. Ambrosino, G. Celentano and F. Garofalo: Robust model tracking control for a 
class of nonlinear plants. IEEE Trans. Automat. Control AC-30 (1985), 275-279. 

[2] B. R. Barmish, M. Corless and G. Leitmann: A new class of stabilizing controllers for 
uncertain dynamical systems. SIAM J. Control Optim. 21 (1983), 2, 246-255. 

[3] B. R. Barmish and A. R. Galimidi: Robustness of Luenberger observers: Linear system 
stabilized via nonlinear control. Automatica 22 (1986), 413-423. 

[4, B. R. Barmish and G. Leitmann: On ultimate boundedness control of uncertain sys­
tems in absence of matching conditions. IEEE Trans. Automat. Control AO-27(1982), 
153-158. 

[5] G. Bartolini and T. Zolezzi: Variable structure systems nonlinear in the control law. 
IEEE Trans. Automat. Control AC-30 (1985), 681-684. 

[6] R. W. Bass: Discussion of: "Die Stabilitat von Regelsystemen mit nachgebender 
Ruckfiihrung" by A.M. Letov. In: Proc. Heidelberg Conf. Automatic Control 1985, 
p. 209. 

[7] W. Breinl and G. Leitmann: Zustandsriickfuhrung fur dynamische Systeme mit Pa-
rameterunsicherheiten. Regelungstechnik 31 (1983), 95-103. 

[8] W. Breinl and G. Leitmann: State feedback for uncertain dynamical systems. Appl. 
Math. Comput. 22 (1987), 65-87. 

[9] Y. H. Chen: Deterministic control of large scale uncertain dynamical systems. J. 
Franklin Inst. 323(1987), 125. 

[10] Y. H. Chen: Robust output feedback controller: Direct design. Internat. J. Control 46 
(1987), 1083-1091. 



60 G. LEITMANN 

Y. H. Chen and G. Leitmann: Robustness of uncertain systems in the absence of 
natching assumptions. Internat. J. Control 45 (1987), 1527-1542. 
M. Corless: Control of uncertain nonlinear systems. ASME J. Dynam. Syst. Meas. 
Control 115 (1993), 362-380. 
M. Corless, F. Garofalo and G. Leitmann: Guaranteeing exponential convergence for 
uncertain systems. In: Proc. Internat. Workshop on Robustness in Identification and 
Control, Torino 1988. 
M. Corless and G. Leitmann: Continuous state feedback guaranteeing uniform ul­
timate boundedness for uncertain dynamic systems. IEEE Trans. Automat. Control 
AC-26 (1981), 1139-1144. 
M. Corless and G. Leitmann: Adaptive control of systems containing uncertain func­
tions and unknown functions with uncertain bounds. J. Optim. Theory Appl. J^l 
(1983), 155-168. 
M. Corless and G. Leitmann: Adaptive long-term management of some ecological 
systems subject to uncertain disturbances. In: Optimal Control Theory and Economic 
Analysis 3 (G. Feichtinger, ed.), Elsvier Science Publishers, Amsterdam, Holland 1985. 
M. Corless and G. Leitmann: Deterministic control of uncertain systems. In: Proc. 
Conf. on Modeling and Adaptive Control, Sopron 1988 (Lecture Notes in Control and 
Inform. Sci. 105), Springer Verlag, Berlin 1988. 
M. Corless and G. Leitmann: Deterministic control of uncertain systems: A Lyapunov 
theory approach. In: Deterministic Control of Uncertain Systems, Chapter 11 (A. S.I. 
Zinober, ed.), Peter Peregrinus, London 1990. 
M. Corless and G. Leitmann: Bounded controllers for robust exponential convergence. 
J. Optim. Theory Appl. 75(1993), 1-12. 
M. Corless, G. Leitmann and E. P. Ryan: Uncertain systems with neglected dynamics. 
In: Deterministic Control of Uncertain Systems, Chapter 12 (A.S.I. Zinober, ed.), 
Peter Peregrinus, London 1990. 
M. Corless, G. Leitmann and J.M. Skowronski: Adaptive control for avoidance or 
evasion in an uncertain environment. Comput. Math. Appl. 13 (1987), 1-11. 
M. Corless and J. Manela: Control of uncertain discrete-time systems. In: Proc. 
American Control Conf., Seattle, Washington 1986. 
A. R. Galimidi and B. R. Barmish: The constrained Lyapunov problem and its appli­
cation to robust output feedback stabilization. IEEE Trans. Automat. Control AC-31 
(1986), 410-419. 
F. Garofalo and G. Leitmann: Nonlinear composite control of a class of nominally 
linear singularly perturbed uncertain systems. In: Deterministic Control of Uncertain 
Systems, Chapter 13 (A.S.I. Zinober, ed.), Peter Peregrinus, London 1990. 
S. Gutman and G. Leitmann: On a class of linear differential games. J. Optim. Theory 
Appl. T7(1975), No. 5-6. 
S. Gutman and G. Leitmann: Stabilizing feedback control for dynamical systems with 
bounded uncertainty. In: Proc. IEEE Conf. Decision Control, Clearwater, Florida 
1976. 
I.-J. Ha and E. G. Gilbert: Robust tracking in nonlinear systems. IEEE Trans. Au­
tomat. Control AC-32 (1987), 763-771. 
M. Hilden, V. Kaitala and G. Leitmann: Stabilizing management and structural de­
velopment of open access fisheries. In: Advances in Dynamic Games and Applications 
(T. Basar and A. Haurie, eds.), Birkhauser Verlag, Basel 1994. 
R. Horowitz, H.I. Stephens and G. Leitmann: Experimental implementation of a 
deterministic controller for a D.C. motor with uncertain dynamics. ASME J. Dynam. 
Syst. Meas. Control 111 (1989), 244-252. 



One Method for Robust Control of Uncertain Systems: Theory and Practice 61 

[30] V. Kai ta la and G. Lei tmann: Stabilizing employment in a fluctuating resource econ­
omy. J. Opt im. Theory Appl. 67(1990) , 1-16. 

[31] V. Kai ta la and G. Lei tmann: Income subsidizing and fisheries development - an anal­
ysis of stabilizing management . In: Dynamic Economic Models and Opt imal Control 
(G. Feichtinger, ed.) , Elsevier Science Publishers, Amste rdam 1992. 

[32] C . G . Kang, R. Horowitz and G. Lei tmann: Robust deterministic control for robotic 
manipula tors . In: Proc. ASME, Annual Meeting 1991. 

[33] J. M. Kelly, G. Lei tmann and A. G. Soldatos: Robust control of base-isolated s t ructures 
under ear thquake excitation. J. Opt im. Theory Appl. 53 (1987), 159-180. 

[34] G . J . Klir and T . A . Folger: Fuzzy Sets, Uncertainty and Information. Prent ice Hall, 
Englewood Cliffs, N . J . 1988. 

[35] A. B. Kurzhanskii : Evolution equations for problems of control and est imation of 
uncertain systems. In: Proc . In ternat . Conf. Math. , Warsaw 1983. 

[36] C .S . Lee and G. Lei tmann: On opt imal long- te rm management of some ecological 
systems subject to uncer ta in dis turbances. In ternat . J. Systems Sci. 14 (1983), 979-
994. 

[37] C. S. Lee and G. Lei tmann: Uncertain dynamical systems: An application to river pol­
lution control. In: Proc. Modeling and Management of Resources Under Uncertainty, 
Honolulu (Lecture Notes in Biomathemat ics 72), Springer Verlag, Berlin 1987, p. 167. 

[38] C .S . Lee and G. Lei tmann: Continuous feedback guaranteeing uniform ul t imate 
boundedness for uncertain linear delay systems: An application to river pollution 
control. Comput . Math . Appl. 16 (1988), 929-938. 

[39] C .S . Lee and G. Lei tmann: Some stabilizing s tudy strategies for a s tudent - re la ted 
problem under uncertainty. Dynamics Stability Systems 6 (1991), 1, 63-69. 

[40] G. Lei tmann: Determinist ic control of uncertain systems via a constructive use of 
Lyapunov stability theory. In: Proc. 14th IF IP Conf., Leipzig, 1989 (Lecture Notes in 
Control and Inform. Sci. 143), Springer Verlag, Berlin 1990. 

[41] G. Lei tmann: On one approach to the control of uncertain systems. ASME J. Dynam. 
Syst. Meas. Control 115(1993), 373-380. 

[42] G. Lei tmann and S. Pandey: Aircraft control for flight in an uncertain environment: 
Takeoff in windshear. J. Opt im. Theory Appl. 70(1991) , 25-55. 

[43] G. Leitr ann and H . Y . Wan, Jr.: A stabilization policy for an economy with some 
unknown characterist ics. J. Franklin Inst . 306 (1978), 23-33. 

[44] M. E. Magana and S. H. Zak: Robust ou tpu t feedback stabilization of discrete- t ime 
uncertain dynamical systems. I E E E Trans. Automat . Control AC-33 (1988), 1082-
1088. 

[45] A. G. Parlos, A. F . Henry, F . C. Schweppe, L. A. Gould and D. D. Lanning: Nonlinear 
multivariable control of nuclear power plants based on the unknown-bu t -bounded 
dis turbance model. I E E E Trans. Au toma t . Control AC-33 (1988), 130-137. 

[46] E. Reithmeier and G. Lei tmann: Tracking and force control for a class of robotic 
manipula tors . Dynamics and Control 1 (1991), 2. 

[47] W. E. Schmitendorf: Stabilizing controllers for uncertain linear systems with additive 
dis turbances. In ternat . J. Control ^ 7 ( 1 9 8 8 ) , 85-95. 

[48] M. E. Sezer and D. D. Siljak: Robust stability of discrete systems. Internat . J. Control 
48 (1988), 2055-2063. 

[49] D. D. Siljak: Decentralized Control of Complex Systems. Academic Press, New York 
1991. 

[50] S.N. Singh: At t i tude control of a three rotor gyrostat in the presence of uncertainty. 
J. As t ronaut . Sci. 35 (1987). 

[51] A. G. Soldatos, M. Corless and G. Leitmann: Stabilizing uncertain systems with 
bounded control. In: Third Workshop on Control Mechanics (Lecture Notes in Control 
and Inform. Sci. 409), Springer Verlag, Berlin 1991. 



62 G. LEITMANN 

[52] H.L. Stafford: Robust control of uncertain systems in the absence of matching condi­
tions: Scalar input. In: Proc. IEEE Conf. Decision and Control 1987. 

[53] H. L. Stalford: On robust control of wing rock using nonlinear control. In: Proc. 
American Control Conf., Minneapolis 1987. 

[54] A. Steinberg and E. P. Ryan: Dynamic output feedback control of a class of uncertain 
systems. IEEE Trans. Automat. Control AC-31 (1986), 1163-1165. 

[55] A. Thowsen: Uniform ultimate boundedness of the solutions of uncertain dynamic 
delay systems with state-dependent and memoryless feedback. Internat. J. Control 37 
(1983), 1135-1143. 

[56] B. L. Walcott and S. H. Zak: State observation of nonlinear uncertain dynamical sys­
tems. IEEE Trans. Automat. Control AO-s£ (1987), 166-170. 

[57] U. Weltin: Aktive Schwingungsdampfung von Rotoren mit Parameterunsicherheiten. 
Dr.-Ing. Dissertation, TU Darmstadt 1988. 

Prof. Dr. George Leitmann, College of Engineering, University of California, Berkeley, 
CA 94720. U.S.A. 


		webmaster@dml.cz
	2012-06-06T06:13:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




