
Kybernetika

Ján Chovanec; Ada Chudá; Eduard Kostolanský; Dušan Ondruš
SMAL - The symbol manipulation language

Kybernetika, Vol. 9 (1973), No. 4, (272)--290

Persistent URL: http://dml.cz/dmlcz/125390

Terms of use:
© Institute of Information Theory and Automation AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125390
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 9 (1973), N U M B E R 4

SMÁL - The Symbol Manipulation Language
JÁN CHOVANEC, ADA CHUDÁ, EDUARD KOSTOLANSKÝ, DUŠAN ONDRUŠ

This paper deals with the problem-oriented programming language S M A L (Symbol Mani­
pulation Language) and its implementation on the GIER computer.

0. INTRODUCTION

The SMAL language is a modification of the language defined in [l j . Experience
gained in implementing and programming by SNOBOL-1 influenced the definition
of the syntax and semantics of the SMAL language. The essential difference lies
mainly in the choice of basic symbols, especially delimiters. In choosing them we
followed the idea that the program written in SMAL-language should be as near
as possible to the natural language and that a SMAL-written program might appear
as a string.

The language SMAL is destined to describe algorithmic processes connected with
the solution of problems of mechanical translation, mathematical linguistics, the
simulation of the process of human thinking, etc.

1. THE STRUCTURE OF THE LANGUAGE

The basic notion applied to the description of algorithmic processes referred to
in the introduction, is the string expression. Its components are: string, string
variables and delimiters.

In order to be able to express the algorithmic process, jump statements and the
feasibility of setting up logical values are added by means of which the repetition
of a certain part of the process or its branching can be carried out.

The individual stages of the algorithmic process are expressed by means of program
statements. The implementation of the algorithmic process sometimes requires refer-

ence by one program statement to another. Thus program statements may be fitted
out by labels.

The program is the sequence of program statements. The effect of the program,
i.e. the process passing off while carrying the program out, may be derived from the
program by means of the syntactical analysis of the program and by application of the
corresponding semantics of syntactical units. Subsequently we shall define the syntax
and semantics of the language SMAL.

Note. Although the basis of the SMAL language is made up of operations applied
in the language described in [1], the designation SMAL was chosen for this modifica­
tion for the following reasons:

According to the information available [2, 3] the individual versions of the
SNOBOL language (hitherto four) do not use the delimiters chosen by us. Since we
have no closer knowledge of either of the four versions of the SNOBOL language
we find it reasonable not to denominate our language as one of the modification of
SNOBOL to avoid the presumption that it actually represents one of the versions.

2. SYNTAX AND SEMANTICS OF THE SMAL LANGUAGE

To define the syntax of the SMAL language we have made use of the reverse
Backus-Naur form RBNF [4]. This was done due to the fact that the brackets <and>
better play up the fact that basic symbols introduced in these brackets may be looked
upon as individual symbols.

Let us concisely note the differences between BNF and RBNF.

BNF RBNF

<metalinguistic variable) metalinguistic variable
basic symbol <basic symbol)

• concatenation

2.1. Basic symbols

The SMAL language is made up of the following basic symbols:

basic symbol ::= alphabet symbol | logical value | delimiter j internal variable

alphabet symbol :: = letter | digit | Algol-60 delimiter | blind

letter ::=<a>|<ft>|<c>|<d)|<e>|<j>|<a>|</)>|<i>|0->Kk>|</>Km>Kn>|<o)|<p>|<a>

<r>|<s>Kt>K«>Ku>Kw>K*>K>->Kz>
<A>||<c>|<D>|<£>|<F>|<G>|<ff>|</>|<J>|<K>|<L>|<M>|<iY>|<o>|

<-p>|<e>K-R>Ks>K :r>K t7>KF>K^>K^>Ky>Kz>
digit : := <0>|<2>|<2>|<3>|<4>K5>|<<5>|<7>|<S>K9>

The elements of the alphabet include ALGOL-60 delimiters [5] so that the ALGOL
program may appear as a string.

The proper strings are formed from the elements of the alphabet. The set of elements
of the alphabet may be suitably narrowed or broadened by new recognizable elements.

Identifiers of variables and labels are formed of characters and digits.

blind : := <o>

The symbol blind has no functional significance and serves only as a typohraphical
adjustment.

logical value : := <TRUF>|<FALSF>

Logical values have an obvious engrained significance.

delimiter :: = operator [separator | bracket

operator ::= <AiVD>|<PUT>|<RFFLACF>|<SFARCH>|<FoR>|<Do>
sequential operator

sequential operator : := <GooTo>|<GooFY>|<FLSFoTo>|<FLSFoRY>|</F>[

separator ::= <7iVTo>|<LFiVGT/T>|<7iV>|<FRoM>|<To>|<oF>|<Too>|
basic separator

basic separator :: = new line | space
new line ::= <

>
space : := space . space [< >|<°>

bracket : := <START>|<F/MSH>|<[>|<]>

Delimiters are used in designing string expressions, assignment statements and
jump statements. Their closer meaning will be discussed in the relevant section.

Defined symbols for space are interchangeable.

Brackets STARTand FINISH define the beginning and termination of the program
text and the function of brackets [and] will be described in section 2.2.

To make it possible for arbitrary text to be put into the program text in terms of
comment and to divide a statement into several rows (2.4) the separator Too is
introduced.

The equivalent of the sequence of basic symbols

{TOO} . space . arbitrary sequence of basic symbols not involving new line . new line,
is space

internal variable : := {EFFECT}

The internal variable may acquire arbitrary value. The mode of acquiring the logical
value will be described in section 2.4.1.

2.2. Strings

proper string :: = proper string . alphabet symbol | empty

open string ::= open string . open string |<[> . open string . <]> | proper string

string : : = < [> . open string . <]>

To enable the language to handle an arbitrary sequence of basic symbols, string
brackets [and] are introduced and the value of the string is the open string between
these brackets. String length is the number of elements of the alphabet, string brackets
and basic separators in the open string.

If S is a string, its length will be denoted as l(S).

The value is a string or a logical value. The values of the string expression and its
components will be defined in section 2.3.

Examples. Strings

[Ezo Vlkolinsky}
[begin real a, b; a := 2 . 3; b := a] 3 end]
{START INTO a PUT{ab~l
FINISH}

have values

Ezo Vlkolinsky
begin real a, b; a := 2 . 3; b := a \ 3 end
START INTO a PUT {ab}
FINISH

and their lengths are

14, 24, 28 .

2.3. Variables. String variables. String expressions

identifier :: = identifier . identifier | letter | digit

Identifiers have no (original) meaning of their own. They serve to denote variables,
labels and functions. Identifiers must differ from delimiters.

variable : := internal variable j identifier

operand :: = string | variable

length designation :: = operand

constant length string variable : := variable . space . (LENGTH} . space .

length designation

string variable : := variable | constant string variable

The variable denotes a value. This value can be used in expressions to create new
values and can be changed by the assignment statement.

The constant length string variable denotes a string with an indicated length given
after the delimiter LENGTH. If the length designation is a string then its value
must consist only of digits and is considered a decimal notation of the length. If it
is a variable then the length of this variable determines length. The constant length
string variable appears only within the construction of pattern (2.4.1). In string ex­
pressions only its identifier is used.

Examples. Variable:

program
EFFECT
DATE

Operand:

NAME
{Mr. Smith}

Constant length string variable:

HOP LENGTH ten
BOND LENGTH {007}

string expression : := string expression . space . {AND} . space . operand | operand

The string expression is a rule for obtaining the string value. This value is obtained
by carrying out the operation of concatenation on actual string values. (If Vx and V2

are values of strings Sx and S2, then the result of operation Sx AND S2 is the string S3

whose value is VXV2.) The operation of concatenation is associative.

Examples.

tress: J
ITY

iress-J AND CITY

2.4. Statements

Units of language having operational significance, are called statements. In the
considered language under consideration there occur statements of assignment,
jump and function. The program statements are carried out successively one after
the other. This successive processing of statements may be interrupted by a jump
statement. To be able to define the order of performance of statements they can be
furnished with labels.

2.4.1. Assignment statements 277

simple pattern ::= (FROM) . space . string expression . space . (TO) . space .
string expression . space . (FOR) . space . string variable |
string expression

pattern ::= pattern . space . pattern [(SEARCH) . space . simple pattern

assignment by pattern ::= (IN) . space . variable . space . pattern

replace : := assignement by pattern . space . (REPLACE) . space . string expression

left part : := left par t . space . left part | (INTO) . space . variable

simple assignment ::= left part . space . (PUT) . space . string expression

logical value assignment ::= left part . space . (PUT) . space . variable

assignment statement : := assignment by pattern | replace | simple assignment |

logical value assignment

Assignment statement are used to assign values to one or several variables. With
the individual kinds of assignment statements the assignment process runs as follows:

Simple assignment. The values of the string expression is defined in statement
and assigned to all variables in the left part.

Logical values assignment. The value of the variable on the right side of the state­
ment is assigned to all variables in the left part. If this value of the variable is not
a logical value the statement becomes a simple assignment statement.

Assignment by pattern. The pattern in the statement can be made up by the se­

quence of simple patterns or string expressions.

Let the assignment statement in terms of the form

(1) IN V SEARCH FROM SEXX TO SEl2 FOR V, SEARCH FROM SE2l

TOO TO SE22 EoR V2 ... SEARCH FROM SEnl To SE„2 EoR V„

where SEn, SE12, SE2i, SE22, ••• SEnX, SEn2 are string, expressions and Vx, V2,... V„
are string variables.

Let S be string which is the value of variable V. Let Sxx, S12, S21, S22, ... Snl, S„2

be the values of string expressions SEn, SE12, SE2], SE22,... SE„X, SE„2 respectively

Assignement by pattern is carried out as follows:

Let us consider the following conditions:

1. There exist such strings Tt (1 ^ i ^ n) and Uj (1 < j £ n + 1), that string S
is the value of the string expression

(2) Ux AND S u AND Tx AND Si2 AND U2 AND S2X AND T2 AND

S22 AND ... AND U„ AND Snl AND T„ AND S„2 AND U„ + i

278 whereby the 2n-tuple of strings Uu Tu U2, T2,..., U„, T„ has the smallest length*
of all of these 2n-tuples which may occur in designing (2) so that string S is the value
of (2).

2. If in the (1) (Vn,Vi2, ...,Viz) <= (VUV2, ...,V„) are constant length string
variables with lengths of Lu L2,..., Lz and 2n-tuple of strings Uu Tu U2,..., U„, T„
is such that

/(T;1) = L 1 , l(Ti2) = L2,...,l(Tiz) = Lz

where

(Tu , Ti2,...,Tfz)c:(Tl5T2,...,T),)

then values Tu T2, ..., T„ are assigned to the variables Vu V2, ...,V„ in the pattern.
The assignment is not performed if those conditions are not satisfied. If a simple

pattern is a string expression then it is only ascertained whether it appears as substring
in string S.

Change. Change is a broadening of assignment by pattern. If in the assignment
by pattern statement, being a part of a change a value was assigned to all variables
or all occurrences of string expression values were found, the following change is
made:

String expressions S;1 AND T; AND Si2, i = 1, 2, ..., n ,

are replaced by the value of the string expression to the right of REPLACE.
A side effect of assignment by pattern is the asquisition of the logical value of the

internal variable EFFECT. The internal variable EFFECT acquires logical value
TRUE, if to all variables in the pattern were assigned values, i.e. each incidence of
string expression values was found. In the opposite case the internal variable EFFECT
acquires logical value FALSE.

Examples. Simple assignment:

INTO variable PUT{]
INTO VI INTO V2 INTO V3 PUT [a] AND string TOO
AND [z]
INTO EFFECT PUT [:=] AND expression
INTO VARIABLE PUT EFFECT

Simple pattern:

FROM [if] To [then] FOR expression
FROM [abj TO VAR AND variable FOR STRING LENGTH [3] .
[ZYZ]

AND INN AND [Z]

* Let A be the set of «• tuples of strings. We say that the n-tuple of strings (Au A2,..., A,) is
shorter in length than the n-tuple (Bu B2,..., B„) e A if for the smallest i , l g / £ n , for which
l{At) ^ l(Bt) is I(At) < /(5;).

Pattern: 279

SEARCH FROM name TO address FOR city LENGTH [5]
SEARCH a AND b SEARCH FROM m TO s FOR VALUE

Assignment by pattern:

IN STRING SEARCH a AND b

IN program SEARCH FROM [begin] To [end] FOR block TOO
SEARCH FROM [] To string AND [;] FOR var TOO
LENGTH L TOO
SEARCH DECLARATION

Change:

IN string SEARCH FROM [] To var FOR V REPLACE []
IN express SEARCH {a + bj REPLACE {a - b} AND variable

2.4.2. Jump statements

label :: = identifier

destination : := identifier

go clause ::= <Go ° To> . space . destination |

<Go o BY> . space . variable

if clause :: = <TF> . space . variable . space . logical value

else clause ::= {ELSE ° To> . space . destination |

<EL5F ° BYy . space . variable

unconditional jump ::= go clause

conditional jump : := go clause . space . if clause |
go clause . space . if clause . space .

else clause

jump statement : := unconditional jump | conditional jump

The significance of the label is obvious.
Destination is the identifier of the label. If the go clause or if clause involves

a variable, then the last value (in a dynamic sense) of the given variable is label per­
taining to the jump statement.

The unconditional jump statement has the effect that as the subsequent program
statement the having the same label as in the jump statement will be carried out.

The semantics of the conditional jump statement depends on the logical value of the
variable featuring in the if clause. If its value complies with the logical value indicated
in the if clause then effect of the conditional jump "go clause . if clause" equals the
unconditional jump. In the opposite case the statement has no effect whatsoever.

If the conditional jump has the form "go clause . space . if clause . space . else
clause .", first the "go clause . if clause" part is evaluated. If this part has the effect

of an unconditional jump, then this is carried out and "else clause" is not considered.
In the opposite case the unconditional jump is carried out upon the label in the
"else clause".

The label, determined by the same identifier, can appear just once in the program
(2.4.4). If the destination or value of the variable in the jump statement has not
adequate label, then this jump statement has no operational effect.

Examples.

GO o TO LABEL
GO o BY variable
GO o TO L2 IF EFFECT TRUE
GO o TO L3 IF variable FALSE ELSE ° BY VARIABLE

2.4.3. Function statement

function identifier :: = identifier

function statement ::= {DO} . space . function identifier . space .
(OF) . space . operand

Function identifiers and the effects of function statements are defined by the im­
plementation of SMAL language.

2.4.4. Program statements. Program

unlabeled program statement :: = assignment statement. new line |
jump statement. new line |
function statement. new line |
new line

program statement ::= label. space . program statement |
unlabeled program statement

proper program :: = proper program . program statement |
program statement

program ::= basic separator . <START> . basic separator .
proper program . (FINISH} . basic separator

The semantics of the program statement is given by the semantics of the statement
of assignment, jump and function. The program is made up to the sequence of
program statements. The effect of the program consists in successively performing
the program statements.

3. IMPLEMENTATION

In this part processing system for the program written in the SMAL language
is described. Components of this system are the translating program (translator)

and the interpreting program (interpreter). According to the operation of the 281
translator and interpreter we speak of the program translation and program inter­
pretation stage.

The main for choosing this mode of the SMAL language implementation are:

1. The length of the translated program is smaller than in generating a machine
code of the translated program.

2. Such mode does not require the design of a pretentious running system needed
for the computers with such storage organization as that of the GIER computer
on which the SMAL language has been implemented.

3. The system is easily expandable in connection with the possible expansion of
the SMAL language.

Translation consists of three passes described under headings 3.1, 3.2 and 3.3.
Interpretation is described in chapter 3.4.

In the headings 3.1 and 3.3 we try to give semiformal definition of the L; and Lf I
languages.

3.1. First pass

The first pass executes the transformation of the program written in SMAL
language into the intermediate language L,.

sentence in L; :: = intermediate program . tables

tables ::= constants and label identifiers table .

operands table . labels table

The division of "sentence in L" into these four portions ensues from the segmenta­
tion of the accessible storage section P as shown in Fig. 1.

intermediate program ::= intermediate program .
intermediate word | intermediate word

intermediate word ::= operand address | delimiter address |
function address

operand address constitutes the connection of intermediate program with "operand
table" and with "label table". "Operand address" may be the address
of the operand and in that case it refers to the "operand table" or
in case of respectively the label address or "destination" it refers to
the "label table".

delimiter address is the internal representation of "delimiter".

function address is the address of the position of the function interpretation program.

constants and label identifiers table :: = constants and label identifiers table .
constant or label I constant or label

282 constant or label : := constant in L ; | label in Lt

constant in L ; is the internal representation of the constant (string), depending on the
actual implementation.

Fig. 1.

label in L ; is the inner representation of the label identifier, identical with the inner
representation of "constant in L".

operand table : := operand table . operand item | operand item

operand item :: = variable item | constant item

constant item :: = constant position . length

operand table constitutes a connection between the "intermediate program" and the
"constants and label identifiers table" and offers complete information
on constants and variables occurring in the program.

variable item is the inner representation of the variable identifier, identical with the
inner representation of "constant in L".

constant position is the constant position address in the "constants and label identi­
fiers table" the length of which is given by

length—they constitute together the "constant item",

lab;l table ::= label table . label itsm | label item

label item :: = label position . destination address 283

label table constitutes connection between "intermediate program" and "constants
and label identifiers table" and offers complete information on label occur­
ring in the program.

label position is the position address of the inner label representation in the "constants
and label identifiers table".

destination address indicates the address of statement designated by the label.

3.2. Second pass

The second pass performs a syntactic check on the program transformed into the
"intermediate program". Syntactic checking is done from left to right whereby
label, string expression, simple pattern and statement are looked upon as syntactic
units.

The construction of the SMAL language allows to check the correctnees of the
individual statements syntax independently and the check itself is implemented
through a system of subroutines for the individual statements within the framework
of which the subroutines for checking the relevant syntactic units are utilised. The
following procedures for syntactic check ensues from the abovesaid and from the
fact each statement may be provided with a label:

The actual "intermediate word" is the first "intermediate word" in the "intermediate
program".

a) ascertain whether "operand address" of the actual "intermediate word" de­
signates label. If it is so, proceed at point d), otherwise

b) ascertain whether "delimiter address" of the actual "intermediate word" de­
termines the statement. If this is so, syntactic check of the statement determined by
that address is made. In the opposite case, if the "delimiter address" is FINISH
the second transition ceases to operate, otherwise

c) the subsequent "intermediate word" is considered as actual and action is
resumed at point a);

d) ascertain whether "delimiter address" is the "end" of the statement; if yes,
action is resumed at point c), otherwise at point b).

Within the statement the correctness of those syntactic units is checked that are
in compliance with the statement syntax.

3.3. Third pass

It ensues from the syntax and semantics of the SMAL language that the most
suitable mode of the program interpretation consists in independent performing
individual statements by unique interpretation programs.

284 The third pass performs the transformation of the "intermediate program" in
"sentence in L" into the "object program", thereby making informal adjustements
in the "tables" consisting in shifting sections Plc and P20 so as attain a continuous
section. In this way one attains a sentence in the Lf language, which is suitable for
interpretation.

object program :: = object program . statement | statement

statement : := statement address . parameter list

statement address :: = INTO address | IN address j GO address |
DO address

parameter list : := SEARCH param list | GO param list |
PUT param list

delimiter address in Lf :: = SEARCH address | FOR address |
LENGTH address | GO TO address | GO BY address |
ELSE TO address | ELSE BY address | PUT address |
REPLACE address | TRUE address | FALSE address |
OF address

statement address indicates the position address of the interpretation program imple­
menting the given statement.

parameter list is determined by the type of statement address and its structure is given
below.

delimiter address in Lf is the internal representation of "delimiter" in the Lf language.

The transformation of the "intermediate program" into the "object program" is
performed as follows:

The actual "intermediate word" is the first "intermediate word" in the "intermediate
program". It is ascertained whether the actual "intermediate word" determines the
label or the statement. In case the given word determines the label, the "destination
address" is completed in the corresponding "label item". If the given word determines
the statement, operation continues according to the type of the given statement.
Having processed it the subsequent "intermediate word" becomes the actual "inter­
mediate word".

The structure of the statement for each type of "statement address" in the Lf

language is the following:

assignment statement :: = INTO address . left part list.

PUT param list

left part list : := left part list. opsrand address | operand address

PUT param list :: = PUT address , string expression

string expression :: = string expression . openard address I operand address

assignment by pattern : := IN address . operand address. pattern 285

pattern ::= pattern. SEARCH param list | SEARCH param list

SEARCH param list : := SEARCH address . string expression .

FOR address . operand address . string expression |

SEARCH address . string expression . FOR address.

operand address . LENGTH address . operand address .

string expression | SEARCH address . string expression

replace :: = assignment by pattern . REPLACE address . string expression

jump statement :: = GO address . GO param list

GO param list :: = go expression | true expression . go expression |

false expression . go expression |

true expression . go expression . else expression |

false expression . go expression . else expression

go expression : := GO TO address . operand address | GO BY address .

operand address

true expression :: = TRUE address . operand address

false expression :: = FALSE address. operand address

else expression :: = ELSE TO address. operand address [

ELSE BY address . operand address

function statement :: = DO address. operand address .
OF address. operand address

The semantics of the Lf language is defined by interpretation. After the third pass
storage distribution is obvious from Fig. 1.

3.4. Interpretation programs

By performing statements in the SMAL language new values of variables are
obtained. Information on the value of the given variable is provided by the variable
item which in the course of interpretation assumes the form:

variable item :: = variable position . value specification . length

value specification :: = undefined | logical | empty | string

variable position position address of variable value, whose length it indicates

length

value specification indicates whether a value was assigned to the variable, if so, it
defines its type.

3.4.1. Storage allocation and storing of the variables

During interpretation the allocation of storage section P is shown in Fig. 1., only
section PF is divided into three parts;

free table — list of free section in Pw,
Pw — work area for values of variables
Pf — free area.

If the variable value is a logical value or an empty string, the complete information
on that value is provided by the value specification in the variable item. If an unempty
string is assigned to the variable, information on value if provided by the variable item
and the string being its value, is stored in section Pw having variable length. By filling
section Pw section Pf is shortened and the initial address, where actual Pf begins,
is considered as a variable position in creating the value of the new variable.

If the list on the left hand side in the simple assignment includes more variables
and their value is an unempty string this is stored in Pw only once and the same vari­
able item is stored at the relavant places in the operand table.

When changing the value of the variable which is part of Pw (the old value is a
unempty string) and the same value is not the value of other variables, Pw does not
become smaller at once, only the variable item corresponding to the old value is
stored in the free table. Thus, in the course of interpretation, section Pw is not homo­
geneously filled with variable values. If free table is filled, or section Pf has zero length
the operation is transferred to program compress. This program according to the
free table, carries out a narrowing of Pw, free sections are moved over to Pf, and Pw

retains only those parts that are variable values.

Thereby the variable position in the variable item changes so as to determine the
positions of the variable values. After the termination of the program compress the
free table is empty. If the program compress is called and Pf and the free table are
zero, the program is ended by the inability to store the string that has to be the value
of some variable.

3.4.2. The operation of interpretation programs

Interpretation programs for the implementation of individual statements process
the entire statement completely. In addition there must be an organization program,
setting the free table to zero initially and storing into all variable items the value
specification corresponding to undefined.

Then, according to the statement address in the first word of the object program,
it transfers the operation to the corresponding interpretation program that carries
out the given statement. After performing the statement, the interpretation program
returns into the organizational program and offers it a word that involves the state­
ment address of the subsequent statement.

Simple assignment forms a value that corresponds to the right side and stores the
relevant variable item into the operand table at points given by the operand address
on the left side.

Assignment by pattern and change defines whether the given pattern occurs in the
defined string and creates a table whose items determine the initial and final symbols

of substrings Tu T2,..., T„ (2.4A). If an change is to be carried out simultaneously, 287
a table is created, the items of which determine the initial and final symbols of sub­
strings Sn and s(2, respectively (2.4.1) that are to be substituted by the value of the
string expression occurring in the change. If the given pattern is included in the defined
string and a table of initial and final symbols has been created the relevant assignment
are carried out. If the statement also involves change, the value of the string expression
is formed in the change and the new variable value is formed from the original string.
The corresponding logical value is assigned to variable EFFECT.

The jump statement offers the organizational program a word from the final
program that includes the statement address of the statement given by label.

Function statement depends on the selection of functions applied at actual realiza­
tion.

4. GIER - SMAL COMPILER

The GIER — SMAL compiler is a compiler of the language SMAL written for the
GIER computer (Regnecentralen, Copenhagen). The features of this computer are
described in [6].

Since the implementation of the SMAL language has been generally described
in part 3, here we shall concentrate on storage distribution, indication of errors
occurring in the translated program and on function statements.

The layout of the GIER computer for which the SMAL compiler is written, has
the following types of storages:

operational: ferrite core memory 1024 words
backing store: drum 320 tracks per 40 words

buffer 4096 words
external store magnetic type free block structure

One word has 42 bits two of which are without weight and destined only for the
marking.

4.1. First pass

Storage section P (3.1) consists of the magnetic drum part (array "free" [7])
constituting Pl and of the buffer part, forming P2.

Intermediate word is placed in a cell, 20 bits of which contain the operand address
and rest the delimiter address.

Constant labels identifiers and variable identifiers are placed so that one alphabet
symbol corresponds to an 8 bit byte, hence one word may maximally include 5 alpha­
bet symbols.

The operand item or label item are placed in one word of the operand table or
label table respectively.

Constraints. The label identifier is placed in the label table at the point of label
position. In forming the operand table the variable identifiers are placed into the
variable item. From this identifier length delimination follows. The first 3 alphabet-
symbols are determinant.

Error messages:

compound complex symbol not pertaining to alphabet symbols
termination before and after bracket [and] no basic separator follows
Jimproper bracket is use outside string
length notation of length missing
+ label labels occured with the same identifier
- label there is no label for destination
too many identifiers label table and operand table overlap
program too big intermediate program and constants overlap

If one of the last two messages turns up the translation process ends in contrast
to the others when the process is brought to the finish.

4.2. Second pass

The second pass performs a syntactic check of the program translated by the first
pass into the intermediate program, as described in 3.2.

Error messages:

basic delimiter not defining type of statement
assign after left part no PUT delimiter follows
jump erroneous structure of jump statement
design erroneous structure of simple pattern
function erroneous structure of function statement
— operand missing operand
+ operand incorrect type of operand
— delimiter missing delimiter
+ delimiter occurrance of incorrect delimiter

4.3. Third pass

With respect to the placing of sections P . and P2 after the first pass (4.1) it is not
necessary to shift sections PiC and P20 as described in 3.3. It follows therefore that
in the constant item constant position does not alter during the third pass and in the

object program the operand address remains consistent with those in the intermediate 289
program.

4.4. Interpretation

After the third pass PF is part of the drum, namely the section between object
program and constants. Free table is formed in the buffer store. Values of variables
are stored into Pp after the object program thus constituting section Pw.

Since the operational storage is small, the interpretation programs -must be in the
buffer and the organizational program provides for shifting the corresponding inter-
pretational program into the operational store.

Limitation. Since in interpreting assignment by pattern and replace statements
tables of initial and terminal substring symbols defining simple patterns are formed
(3.4), the number of simple patterns within the pattern is limited. In the GIER-SMAL
compiler the maximum number of simple patterns is 20.

Error messages:

kind variable featuring as operand in the statement has assigned a value

of another type than admitted by the semantics of statement;

value variable featuring in the statement as operand has no value assigned;

— label the value of the jump statement variable is not consistent with any
label in the program.

too long string compress is called and free table is empty.

4.5. Functions

The function statement is interpreted similarly to any arbitrary statement with the
difference that the statement address of function requires further information in­
dicating which function is to be interpreted. This information is provided by an ope­
rand address whose value depends on the function identifier.

In the GIER-SMAL compiler the following functions handling input and output
units are implemented:

select input and output units are selected so that the first two alphabet symbols
of the variable or string featuring as operand are used as a by-address [6];

input to the operand that may be only a variable is assigned an open string read
from the selected input unit;

lyn to the operand that may be only a variable is assigned the value of one
alphabet symbol from the selected input unit;

output value of variable or string featuring as operand in the function statement

is written on the selected output unit;

length length of variable or string featuring as operand is written in decimal form

on the selected output unit.

These functions may be enlarged by an arbitrary number of further functions.

(Received March 24, 1972.)

REFERENCES

[1] E. Kostolanský: Definícia syntaxe a sémantiky jazyka SNOBOLI. Kybernetika 3 (1967), 3,
3, 253-268.

[2] D. Farber, R. Griswold, I. Polonsky: SNOBOL, A String Manipulation Language. J ACM II
(January 1964), 1, 2 1 - 3 2 .

[3] R. Griswold: String Manipulation and SNOBOL Language. Sommer Schoole Text, Copen­
hagen, August 1969.

[4] J. Rohl: A Note on Backup Naur Form. The Computer Journal 10 (August 1967), 2, 336—337.
[5] P. Naur et al.: Revised Report on the Algorithmic Language ALGOL 60. Communications

of the ACM 6 (January 1963), 1 , 1 - 1 7 .
[6] C. Gram et al.: GIER a Danish Computer of Medium Size. IEEE Trans, of Electronic Com­

puters EC-12 (December 1963), 5, 629-650.
[7] S. Lauesen et al.: A Manual of HELP 3. A/'S Regnecentralen, Copenhagen, 1967.

Ján Chovanec, prom, mat., Ada Chudá, prom, mat., RNDr. Eduard Kostolanský, Dušan Ondruš,
prom, mat.; Ústav technické) kybernetiky SAV (Institute of Technical Cybernetics — Slovak
Academy of Sciences), Dúbravská cesta 1, 809 31 Bratislava 9. Czechoslovakia.

		webmaster@dml.cz
	2012-06-04T23:18:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

