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K Y B E R N E T I K A — V O L U M E 33 (1997), N U M B E R 5, P A G E S 5 2 5 - 5 4 6 

ON T H E STABILITY IN S T O C H A S T I C 
P R O G R A M M I N G : T H E CASE OF I N D I V I D U A L 
P R O B A B I L I T Y C O N S T R A I N T S 1 

V L A S T A KAŇKOVÁ 

Stochastic programming problems with individual probability constraints belong to a 
class of optimization problems depending on a random element only through the corre
sponding probability measure. Consequently, the probability measure can be treated as a 
parameter in these problems. 

The aim of the paper is to investigate the stability of the above mentioned problems 
with respect to the distribution functions space. The main effort is directed to some special 
situations in which stability investigation can be reduced (from the mathematical point of 
viewy to one dimensional case. The Kolmogorov metric is employed to specify the stability 
results and, moreover, the achieved stability results are applied to statistical estimates of 
the optimal value and the optimal solution. 

1. I N T R O D U C T I O N 

There is not doubt t h a t the stability problem (considered with respect to the prob
ability measures space) is a serious problem of the stochastic programming theory. 
Namely, any responsible application of empirical estimates, parameter estimates as 
well as many approximate and numerical methods of solution are based on a pos
sibility to replace the theoretical distribution function by some approximating one. 
In the literature, a great attention has been already paid to the stability of the 
stochastic optimization problems (see [1, 5, 7, 9, 13, 21, 22, 23, 24, 26]). 

Let {Vt, S, P) be a probability space, £ = £(w) = [£\{w), £ 2 ^ ) , • • • .£/(-*>)] he an 
/-dimensional random vector defined on {Q, S, P), F{z), Fi{zi), z = {z\,... ,z\), 
i — 1 , 2 , . . . , / , z £ Ei be the joint and the marginal one-dimensional distribution 
functions corresponding to the random vector £{u) and to the component ii{u), 
Z — Zp C Ej, Zi = Zpt C E\, i = 1 , . . . , / denote the supports of the probability 
measures PF{-), PF,{-) corresponding to the distribution functions F{z) and Fi{zi). 

1The research was supported by the Grant Agency of the Czech Republic under Grants 
402/93/0631 and 402/96/0420. 
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Let, moreover, go(x, z), fi(x), i = 1, 2 , . . . , / be real-valued, continuous functions 
defined on En x E\ and En, X C En be a nonempty set. (En, n > 1 denotes the 
n-dimensional Euclidean space.) 

An optimization problem with a random element, in the objective function and 
on the right-hand side of the constraints only, can be introduced as the problem: 

Find 
min{<7o(*, cf(u>)) | x G X : fi(x) < &(u>), i = 1, 2 , . . . , / } . (1) 

If the solution x has to be determined without knowing the realization of the random 
vector £(w); then mostly a deterministic optimization problem is solved instead of the 
original one with a random element. The new problem can depend on the random 
element only through the corresponding probability measure. We shall consider it 
in the form: 

Find 

<p(F, a) = inf{EF<7(.r, £(„)) | x G X : PFi {u : /<(*) < &(w)} > aU i = 1, . . . /} , (2) 

where g(x, z) is a real-valued, continuous function defined on EnxEi, ai G (0,1), i = 
1,2,. . . , / are parameters. EF denotes the operator of mathematical expectation cor
responding to F(-). 

In the literature, this type of the deterministic optimization problems has been 
investigated many times (see e.g. [4, 10, 20]). The distribution function F(-) can 
be considered as a parameter of the problem (2) and, consequently, it is reasonable 
to investigate the stability with respect to it. In the general case, it can mean to 
determine for a 6 > 0 a subset T(F, 6) of the /-dimensional distribution functions 
space and real-valued functions mi(6),m2(6) defined on E\ (having the "suitable" 
properties) such that 

GeT(F, 6) => \<p(G,a)-íp(F,a)\<m1(6), 
GeT(F,6) => \\x(G,a)-x(F,a)\\2<m2(6), (3) 

x(F, a) = argmin{£>#(£, £(u)) \ x G X : PF, {UJ : /,-(x) < &(w)} > <*., * = 1, • • • / } • 

(|| • || denotes the Euclidean norm in En.) 
Of course, the second implication in (3) can be considered only if there exists 

unique x(F, a) fulfilling the last equation in the relations (3). 

The aim of the paper is to deal with special cases in which the stability problem 
can be reduced (from the mathematical point of view) to the one-dimensional case. 
In particular, the aim of the paper is to introduce several special cases in which it 
is possible to determine subsets Ti(Fi, 6i), 6t > 0, i = 1, 2 , . . . J of one-dimensional 
distribution functions space and real-valued functions mi(6),m2(6) defined on E\ 
(having "suitable" properties) such that 

GІЄTІ(FІ,6І), i = 1.2,.. .,/ 
GІЄTІ(FІ,6І), i=l,2,.. . . ' 

(p(G,a)-(p(F,a)\<řň1(6)1 

\x(G, a)-x(F, a)\\2 <m2(6). 2 _. » / * ( 4 ) 

Gi(-), i = 1,... ,1 denote the marginal one-dimensional distribution functions cor
responding to the /-dimensional distribution function G(-), 6 = (6\, 62, ..., 6i). 
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Furthermore, the Kolmogorov metric will be employed to specify the stability re
sults. The new results (in this direction) will be applied to the statistical estimates 
of the optimal value and the optimal solution. 

2. PROBLEM ANALYSIS 

If we define the sets XFl(ai), XF(a), a; £ (0, 1), z = 1 , . . . , / , a = ( « i , . . . , a/) by 

XFi(ai) = {z€X:PFi{u,:fi(x)<Zi(u)}><*i}, (5) 

XF(a) = p | **(<*••). (6) 

then we can rewrite the problem (2) as the problem: 

Find 
<p(F, a) = inf{EF<7(x, £(u,)) \ x € XF(a)}. (7) 

If G() is an arbitrary /-dimensional distribution function, then according to the 
triangular inequality we obtain that 

\p(F,a)-<p(G,a)\ < 

+ 

mír s Eғ9(x, ţ(u)) ~ inf EGд(x, ţ(u)) 
xÇ.Xғ{a) x€Xғ(a) 

ЛЧ ч EG9(X, ţ(ш)) - inf EGg(x, ^(u;)) 
xЄXp(a) x£Xc(a) 

(8) 

Consequently, to investigate the stability of the problem (2) it is appropriate to 
investigate the stability of the following problems (see also e.g. [14, 16]): 

Find 

(9) 

Find 

in/ Jo(x) with g0(x) = EGg(x, £(u>)). 
XF(a) 

mfEFg(x,£(Lj)) with X' = XF(a) (10) 

It is easy to see that the stability of the problem (9) depends on the properties of 
the function ^o(^) a n d on the "distance between the values" of the multifunctions 
XF(a) and XG(a). Consequently, it seems to be reasonable to investigate 

A[XF(a), XG(a)), 

where A[-,-] = An[-, •] denotes the Hausdorff distance in the space of nonempty, 
closed subsets of En (for the definition see e.g. [25]). To this end we define the 
multifunctions 

lCi(zi) = {x e X :fi(x)<Zi}, ZiZEu i=l,2,...,l (11) 

and the quantiles 

kFi(ai) = supjz; : PF{" : *i < & H ) > ai)> ai € (°» 1)« l = 1i • • • J- (12) 
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Since it is easy to see that for i = 1, 2, . . . , /, 

x £ XFt(ai) <==> x £ X and simultaneously IV,{a; : /,-(z) < &(w)} > a{ 

<==> x £ X and simultaneously fi(x) < kFi(aA, 

we can obtain that 

XFt(ai)=lCi(kFi(ai)), at £ (0, 1), i = 1, 2,..., I. (13) 

If, furthermore, we define K(z), z = (z\, z2,..., z\) by the relation 

JC(z) = f)Ki{zi), (14) 
i-i 

then 

XF(a) = IC(kF(a)), where kF(a) = (kFl(a\), kF2(a2),..., kFl(a{)). (15) 

According to the relation (15) it is easy to see that to investigate the stability of 
the problem (9) it is suitable to investigate the behaviour of the multifunction /C(-). 
Furthermore, it is easy to see that the assumptions under which 

A[K(z), JC(z')] < C \\z — z'\\ in a neighbourhood of the point kF(a) 

(together with the relation (15), the triangular inequality and additional assump
tions) imply that 

A[XF(a), XG(a)] < £ C f e ( a . ) - *G.(«.-) | . (16) 
,= i 

In general, to investigate the stability of the problem (10) it is necessary to 
find T(F, 6) and the functions mi(<5), m2(8), 5 > 0 fulfilling the relations (3). In 
this paper we shall try to introduce some special cases for which there exist also 
?i(Fi>Si)> 6i > 0, i = 1,2, . . . , / , rfii(6), m2(6), 6 = (Su 62,. •., Sj) fulfilling the 
relations of the type (4). 

3. STABILITY RESULTS 

Before presenting the first assertions we introduce several systems of the assump
tions. Let Zi C Ei, i= 1, 2 , . . . / be nonempty, convex sets, ^ = [1^=1 ^%\ Z(£)> £>0 
denote the ^-neighbourhood of the set Z. 

i.l there exists e > 0 such that 

a) fi(x), i = 1, 2 , . . . , / are linear functions, X = En; 
without loss of generality, we can consider in this case the constraints in (1) 
to be in the form of equations, 

b) for every z £ Z(e), K,(z) is a nonempty, compact set, 
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c) if the matr ix A of the type (/ x n), I < n fulfils for z £ Z(e) the relation 

K,(z) = {xeX : Ax = z] 

then all its submatrices of the type (/ x /) , ^4(1), ^4(2) , . . . , A(m) are nonsin-
gular, 

i.2 there exists e > 0 such that 

a) X is a convex, compact set, 

b) fi(x), i = 1, 2 , . . . , / are convex functions on X, 

c) for every z £ Z(e), IC(z) is a nonempty set. 

i.3 there exist real-valued constants c?i, 72, € > 0 such that 

a) if x E X, z = (z\,..., zi), z £ Z(e) fulfil the relations fi(x) < Zi, i = 1, 2 , . . . , / 
and simultaneously fj(x) = Zj for at least one j £ {1, 2 , . . . , / } , then there 
exists a vector x(0) £ En (generally depending on x) such that 

||ar(0)|| = 1, x + dx(0) £ X, / , (« ) - / , (x + dx(0)) > l2d 

for every d £ (0, c?i), i = 1, 2 , . . . , /, 

b) for every z £ ^ ( s ) , )C(z) is a nonempty, compact set. 

The introduced systems of the assumptions i.l , 1.2 cover both linear and convex 
functions on the left-hand side of the constraints in (1). These special cases were 
investigated in the literature many times (mostly in a connection with parametric 
linear or quadratic programming, see e.g. [2]). They appear also in the connection 
with the stochastic programming problems (see e.g. [17]). To justify the system of 
the assumptions i.3 (in more details) we introduce a simple example. Let n = 2, 
1 = 2, X = (1.5, 4) x (1.5, 4) and, moreover, 

h(x) = xxx2, f2(x) = \og(xi+x2), x = (xi,x2). 

It is easy to see that (in this case) the system i.3 is fulfilled, while the systems of 
the assumptions i.l and i.2 are not fulfilled. 

To introduce assertions concerning stability results we define the constant C by 
the following relations. 

C = min(Ci , C2> C 3 ) , (17) 
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where 

C\ = /max|a l>(s)| if the system of the assumptions i.l is fulfilled, 
I , r'* o-ir(s), i, r = 1, 2, . . . , / for s £ {1, 2 , . . . , m} 

denote elements of the inverse matrix to A(s), 

= +oo otherwise, 

C*2 = if the system of the assumptions i.2 is fulfilled, 
£° £o £ (0, e), Mi = s u p ^ r 2 ( E X \\xl - x2\\, 

= +oo otherwise, 

C3 = — if the system of the assumptions i.3 is fulfilled, 
72 

= +oo otherwise. 

(In (17) we calculate min(c, c', +oo) = min(c, c'),min(c, +oo, +oo) = c for every 
c, c' eEi.) 

If we consider a special case of the function g(x, z) when 

A.l a) g(x, z) = g~(x), x £ En, z £ E{, where ~g~(x) is a real-valued, Lipschitz 

function on X with the Lipschitz constant L , 

then we can already introduce the first assertion. 

Proposition 1. Let a; £ (0, 1), i = 1, 2 , . . . , /. If 

1. the assumption A.la is fulfilled, 

2. G(z) is an arbitrary /-dimensional distribution function, 

3. Zi = (mm(kFi(oti), kGi(ai)),m&x(kFi(ai), kGi(&i))), i = 1, 2 , . . . , / , 

4. at least one of the systems of the assumptions i.l, i.2, i.3 is fulfilled, 

then 

\<p(F, a) - <p(G, a)\ < Ct £ \kFi(ai) - kQi(at)\. 
i = l 

P r o o f . First, by a little modification of Lemma 1 [18] (see also [2]) we can 
obtain that 

A[lC(z(l)), K(z(2))] < C\\z(l)-z(2)\\ for every z(l), z(2) £ Z(e) and some e > 0, 

whenever the assumption 4 is fulfilled. The assertion of Proposition 1 follows from 
the last inequality, the relation (15), the triangular inequality and the fact that 
(under the assumptions) XF(a), XG(a) are nonempty, compact sets. • 

It follows from Proposition 1 that a dependence of the changes of the optimal 
value (in the case A.l) on the perturbations of the underlying probability measure 
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can be estimated (of course, under some additional assumptions) by the distance of 
the corresponding one-dimensional quantiles. 

To introduce the next assertion we define for 6% > 0, i = 1 / the one-
dimensional distribution functions JP,- $.(zi), Fijt(zi) by the relations 

Eij.(zi) = Fi(zi - 6i), Fi,6t(zi) = Fi(z{ + 6i), z{ E Ex. (18) 

We introduce the following assumptions. 

ii. X is a convex set and, moreover, fi(x), i — 1, 2 , . . . , / are quasi convex func
tions on X, 

A.l b) ]j(x) is a strongly convex function on X with the parameter p > 0 (for 
the definition of strongly convex functions see e. g. [19, 28]). 

The assumptions A.lb, ii. guarantee just unique x(F, a) fulfilling the last equation 
in the relations (3). In [11] the assumption on strongly convex property is replaced 
by a little more general assumption on uniformly convex property. These both 
assumptions give possibility to employ the results on the stability of the optimal 
value (by a rather simple manner) to the investigation of the stability of the optimal 
solution. The investigation of the optimal solution set is (generally in optimization 
problems) rather more complicated (see e.g. [2, 23]). 

Proposi t ion 2. Let for i = 1, 2 , . . . , /, 6i > 0, a; 6 (0, 1) be given, Zi = (kFt(ai) 
-26i, kFt(ai) + 26i). If 

1. the assumption A.la is fulfilled, 

2. at least one of the systems of the assumptions i.l, i.2, i.3 is fulfilled, 

3. G(z) is an arbitrary /-dimensional distribution function such that for i € 
{1 ,2 , . . . , / } 

Gi(zi) 6 (Ei!Si(zi), ~Fit8t(zi)), Zi e (kFt(ai) - 6{ - e, kFt(ai) + 6t + e), 

then / 

\f(F,a)-<p(Gfa)\<L'cY,6i- (19) 
f=i 

If, moreover, 

4. the assumptions A.lb and ii. are fulfilled, 

then also , 

\\x(F, a)-x(G, a)\\2 < — L'c]T«5,. (20) 
;=i 

The proof of Proposition 2 is given in the Appendix. 

To consider another special case of the function g(x, z), let 6i > 0, i = 1, 2,... ,1. 
We introduce the new system of assumptions. 
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A.2 a) g(x, z) = ]T) 9i(xt z,), x e En, z = (z\, z2,... ,zt) e Ei, where 
i = i 

0,(«c, _.,•), i = 1, 2 , . . . , / are real-valued functions defined on En x E\, 

b) for every x £ X,gi(x, Zi), i = 1, 2 , . . . , / are Lipschitz functions on ZF,(6i) 
with the Lipschitz constants Lt- not depending on x £ X, 

c) for every Zi £ ZF,(6i), gi(x, z^, i = 1, 2 , . . . , / are Lipschitz functions on 
X with the Lipschitz constants L\ not depending on Zi £ 2Vt(<$;), 

d) for every x £ x, i £ {1, 2 , . . ., /} there exists a finite Ep,gi(x, £i0~0)> 

e) for every z; £ Zp,(6i), i £ {1, 2 , . . . , / } , 0,(a?, _,,-) is a convex function on 
En and simultaneously there exists j £ {1, 2 , . . . , /} such that gj(x, Zj) is 
a strongly convex function on En with a parameter p > 0. 

P r o p o s i t i o n 3. Let for i = 1, 2 , . . . , /, 6, > 0, a,- £ (0, 1) be given, Zi = (kp^Qi)-
26i, kFt(ai) + 26i).U 

1. the assumptions A.2a, A.2b, A.2c and A.2d are fulfilled, 

2. at least one of the systems of the assumptions i . l , i.2, i.3 is fulfilled, 

3. G(z) is an arbitrary /-dimensional distribution function such that 

Gi(zi) £ (F^6i(zi),Fi)Si(zi)) for every z{ £ Eu i = \,2,...,l, 

then 

\<p(F,a)-v(G,a)\<J2 
i = \ 

Li + Cj^Ц 
j=\ 

6І. (21) 

If, moreover, 

4. the assumptions A.2e and ii. are fulfilled, 

then also 
19 -

\\x(F,a)-x(G,a)\\*<-Y, 
P 7=1 

Li + Cj^Ľj 
i = i 

6І. (22) 

The proof of Proposition 3 is given in the Appendix. 

To deal with the last special case, let 6,- > 0, i = 1, 2 , . . . , / . We introduce the 

following system of assumptions. 

A.3 a) the components of the random vector £(u;) = (£i(t-0, &(u), • • • ,£i(u)) a r e 

stochastically independent, 

b) for every x £ X, 6 = max6 t-, g(x, z) is a Lipschitz function on ZF(6) with 
i 

the Lipschitz constant L not depending on x £ X, 
c) for every z £ ZF(6), g(x, z) is a Lipschitz function on X with the Lipschitz 

constant V not depending on z £ ZF($), 

d) for every x £ X there exists a finite EFg(%, £0<0), 

e) for every z £ ZF, g(x, z) is a strongly convex function on En with a 

parameter p > 0. 
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Proposi t ion 4. Let for i = 1, 2 , . . . , / , 6i > 0, on £ (0, 1) be given, Zi = (kp,(ai) 
-28ilkFi(ai) + 28i).If 

1. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilled, 
2. at least one of the systems of assumptions i.l, i.2, i.3 is fulfilled, 
3. G(z) is an arbitrary /-dimensional distribution function such that 

Gi(zi) £ (E_i6i(zi), Fit Sl(zi)) for every z{ £ Eu i = 1, 2, . . . . . /, 
and simultaneously 

I 

G(z) = JJGi(zi), z = (zi, z2j . . . ,z/), 
t = i 

then / 

\(p(F,Q)-cp(G,a)\<[lL + CL']J2^- (23) 
t = i 

If, moreover, 

4. the assumptions ii. and A.3e are fulfilled, 

then also . 

\\x(F, a) - x(G, a)\? < — [/L + CL>\ Y] ft• (24) 
' tel 

The proof of Proposition 4 is given in the Appendix. 

4. KOLMOGOROV METRIC AND STABILITY 

In the sequel we employ the Kolmogorov metric to specify the stability results. To 
this end let on £ (0, 1), 8% > 0, i = 1 , . . . , /. We define the intervals Zi(oti, 8{) by the 
relations 

Zi(ai, Si) = (max (zj, ^(o;,) - 2<5j) , min (zj, &,(<*,) + 2^-)) , (25) 

zj = supjzi : Ef(zt) = 0}, z\ = infjzi : Fi(z{) = 1} 

(where we calculate max(zf, z,-) = z,- if zf = —oo, z% G La, min(z*, z4) = z% if 
Z- = +oo, Zi £ E\, i = 1,2,..., I) and, moreover, we introduce the following system 
of the assumptions. 

B.l a) for i = 1, 2 , . . . , / the probability measures Pp, (•) are absolutely continu
ous with respect to the Lebesgue measure in E\, 

b) for i = 1, 2 , . . . , / and an e > 0 there exist constants di > 0 such that 

hi(zi) > di for every z,- G 2j(af, 6t- + e), 

c) for i = 1, 2 , . . . , / there exist a;, 6,- G Li, a; < 6,-, i?» > 0 such that 

^ F , = (of, bi), hi(zi) > di for every Zi G ^ F , -

(hi(zi) denotes the probability density corresponding to Fi(zi), i = 1, 2 , . . . , / . ) 
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L e m m a 1 . Let for i = 1, 2 , . . . , /, a, G (0, 1), <§,- > 0 be arbitrary. Let, moreover, 
G(z) be an arbitrary /-dimensional distribution function. If 

1. B . l a and B. lb are fulfilled, then for every i = {1, 2 , . . . , /} 

\Fi(zi) — d(zi)\ < 6idi, Zi G Zi(ai, 6i + e) and simultaneously either 

ZG, C ZFi(6i) or FSi(kFl(ai) - 6{ - e) > 0, F6i(kFi(ai) + 6{ + e) < 1 = > 

= > Gi(2i) G (£ . - ) 2^(zi) , F . - . ^^z , ) ) , Zi G (fcT.(ai) - <5, - £-, fcE,(ai) + 6{ + e), 

2. B . l a and B. lc are fulfilled, then for every i = {I, 2,..., 1} 

\Fi(zi) - Gi(zi)\ < 6idi, Zi G ZFi, ZGi C ZFi(6i) = > 

= > G»(z,-) G ^ ^ ( Z t ) , Fi,26,(zi)), Zi G £?i. 

P r o o f . First we consider the case 1. Let z'G {1, 2 , . . ., / } , Zi G (£Et(c*i) — <Si — £, 
£E, (c*i) + <5i + £) be arbitrary. Two cases can happen. 

a) Zi G (z? + <5i, ?} - <5i), 

b) Z i g ( ^ + $«,*}-6*) . 

If the case a) happens, then since (in this case) 

Fi(Zi - 6i) < Fi(zi) - dz6i < Fi(zi) < Fi(zi) + t ^ i < Fi(z{ + 6{) 

and simultaneously 

| E i ( z i ) - G i ( ^ ) j < t f i < 5 i 

we can see that Gi(zz) G (Ei 5 (z»), Fi<Si(zi)) in the case a). 
If the case b) happens, then either Fi(zi — 6%) = 0 or Fi(zi + 8i) = 1. Without 

loss of generality we can consider only the case Fi(zi — 5,-) = 0. However, then for 
z[ G (zf — <5,-, zf + 6i) we can see that 

0 = Fiiz'i - 6i) < Ef(4) < F ^ + 6i) + #& < Fi(z[ + 26{), \Fi(z$) - Gi(z'{)\ < « 

and simultaneously 

Gi(zi - 26i) = 0, Gi(z°i) < di6i, 2d,6{ < Fiffi + 26{). 

Consequently, we can see that also in this case Gi(z%) G (E,- s (zi)> I7"?', s,(zi))-

The proof of the Assertion 2 is very similar and consequently it can be omitted. 

• 
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Theorem 1. Let for i = 1, 2 , . . . , / , a, £ (0, 1), Si > 0 be arbitrary, ~Zi - (kFt(ai) 
-26i,kFi(ai) + 26i).tt 

1. the assumptions B.la and B.lb are fulfilled, 

2. G(z) is an arbitrary /-dimensional distribution function such that for z, G 
Zi(&i, f>i+e), \Fi(zi) — d(zi)\ < (5,t?,-and simultaneously either ZGX C -Jfp.(-'i) 
o r F , ( * F > , ) - ^ - e ) > 0, F,-(*Fi(<*,•)+*;+£) < l,tS{ = £ s u p i i ( a j 5 ,+ e ) |.fi(*) 
-G,(z.-)|, . = 1,2, . . . , / , 

3. the assumptions A.la is fulfilled, 

4. at least one of the systems of the assumptions i.l, i.2, i.3 is fulfilled, 

then 
' i 

\ip(Fia)-ip(Gta)\<2L'C^2T sup \F{(zi) - Gi(Zi)\. (26) 

i= l Xfl £i(ai,6i+e) 

If, moreover, 

5. the assumptions A.lb, and ii. are fulfilled 

then also 

IKE , a) - x(G, a)\\2 < -L'CJT I sup |E,-(zt) - Gt(zi)\. (27) 
P i-x "I Zt(ai,6x+S) 

P r o o f . To verify the assertion of Theorem 1 we employ Lemma 1 and we 
substitute <5; =: 2b\, i £ {1 , . . . , /} in Proposition 2. O 

The assumption 2 of Theorem 1 can seem rather badly understandable. However 
this complicated form gives possibility to include the cases when G(-) is "closed" to 
F(-) only in a neighbourhood of the point kF(a). 

Theorem 2. Let for t = 1, 2 , . . . , / , a, G (0, 1), Si > 0 be arbitrary, Zi = (kFi(ai) 
-26i,kFi(ai) + 26i). If 

1. the assumptions B.la and B.lc are fulfilled, 

2. G(z) is an arbitrary /-dimensional distribution function such that 

Sidi > sup{|E,-(z,-) - Gi(z.-)| : Zi G ZFj}, i = 1, 2 , . . . , /, 

and simultaneously 

• ZatCZFi(
m?mZil-G<(z<)\)\i = 1,2,. ' . . ,1 , 

3. the assumptions A.2a, A.2b, A.2c, A.2d are fulfilled, 

4. at least one of the systems of the assumptions i.l, i.2, i.3 is fulfilled, 
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then 

\<p{F,a)-<p{G, a)\<2Ýi 

i = l 
u+c^ц 

i=i 

sup \Fj(zj) - Gj(zj 

p Ůi 

(28) 

If, moreover, 

5. the assumptions A.2e and ii. are fulfilled, 

then also 

MF, a) - ,(Q, o)U- < ~g£[£. + g E £ ; ] 8 " P |f>(*|~"G,(j,)l • (29) 
i= l j = l 

P r o o f . To verify the assertion of Theorem 2 we employ Lemma 1 and we 

substitute 6{ = : 2 s u p | F ' ^ 0 ~ G ' ^ 0 l , i <= { 1 , . . . , / } in Proposition 3. • 

T h e o r e m 3 . Let for % = 1, 2 , . . . , / , a,' € (0, 1), <5; > 0 be arbitrary, Z ; = (fcjpt(a:i) 
-26 , - , jb F i ( a i ) + 26i). If 

1. the assumptions B . l a and B.lc are fulfilled, 

2. G(z) is an arbitrary /-dimensional distribution function such that 

bi$i > sup{\Fi(zi)-Gi(zi)\ : ZieZFi}, i = l,2,...,l, 

SUp|Ei(Zi) - Gi(zi)\ 
ZG, C Zpi 

and simultaneously 

ŮІ 
i = l,2,...,l, 

G(z) = Y[GІ(ZІ), Z = ( Z Ь 2 2, . . . , 2 ř ) , 

ł = l 

3. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilled, 

4. at least one of the systems of the assumptions i.l, i.2, i.3 is fulfilled, 

then . 

| y ( f ,a)- y (G,a) |< 2 [ /L + Cn^ , M ' ' | f iW-G 'W |. 
irsl l 

If, moreover, 
5. the assumptions A.3e and (ii.) are fulfilled 

then also 

|KF, a )-x(G,a) | | 2 <^[IL + C I ' ] V S " P | F i ( 2 i ) " G l ( Z | ) l . 

(30) 

(31) 

P r o o f . To verify the assertion of Theorem 3 we employ Lemma 1 and we 
substitute St = : -"Pl-M'O-g-^OI | j e { l , . . . , / } in Proposition 4. • 
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5. APPLICATION TO ESTIMATES 

If statistical estimates replace the theoretical distribution functions Et(zt), i = 1,. • • 
. . . , / , then it is possible to employ the assertions of Theorems 1, 2 and 3 to investigate 
the properties of the corresponding estimates of the optimal value and the optimal 
solution. Evidently, if the case A.l happens, then the behaviour of these estimates 
follows from the behaviour of the estimates of the quantiles (see e. g. [6]). 

To investigate the cases A.2 and A.3 let {!;f(u;)}fc=-oo' ' = 1, 2 , . . . , / be se
quences of random values defined on (Q, S, P) such that for every k = . . . ,—1,0 , 
1,. .. the random value £f(u>) has the same distribution function as the random value 
&(w). For i = 1,2,.. . ,/ , Ni = 1 , . . . we denote by the symbol F[fi(zi) = FN>(zi,uj), 
Zi G Ei an arbitrary statistical estimate of E.(zt) determined by {̂ f (-^)}jtL1 and by 
the symbol FN(z), z £ E\ an arbitrary joint /-dimensional distribution function cor
responding to the FNl(zi), i = 1, 2 , . . . , /. Evidently, under quite general conditions, 
the theoretical values </?(E, a), x(F, a) can be estimated by the values 

<p(FN,a) = inf EF-7y(*. *(«)), 
* 77(a) 

where 

x(FN, a) = argmin{EF77g(a;, £(w))| x E Xpl7(a)}, 

Xғтr(a) = p l X_*ť (ai), N = (Nг,..., Nř). 
i = l 

T h e o r e m 4. Let for i = 1,2,...,/, a, 6 (0, 1), 6t- > 0 be arbitrary, Zi — 
(kFi(ai)-26i,kFi(ai) + 28i).lf 

1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are fulfilled, 
2. for ie {1, 2,...,/}, 

'suplE^-ЬE^Ыf 
Øi 

E u, : 2 > t C ZFi : i ì Ł I І І І Í l l _ i _ _ _ ] > _ ^ _ І 

and simultaneously for every t > 0 and a v > 0 

P {u; : (NiY sup |E;(z t) - FN>(Zi)\ > t} ->JV,-*CO 0, 

then for every t > 0 

P {_> : ( r a i n N t y \<p(Fta) - tp(FN

ta)\ > t} ^ m l n ( i V l ) ^ o o 0. (32) 

If moreover 

3. the corresponding assumption 5 of Theorem 2 or 3 is fulfilled, 

then also for every t > 0 

E{_> : (minNO' lKE , a ) - x(FN, a)\\2 > t} - , m i n ( , , h o o 0. (33) 
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P r o o f . Let, first, the corresponding assumptions of Theorem 2 be fulfilled. It 
follows from the assumptions and from the elementary properties of the probability 
measure that (in this case) for every / > 0 

PLO : (min Ni)" \<p(F, a)-<p(FN, a) \ > t\ 

<P<U>:2J2(NІУ 
i = i 

Li+cү: ц 
J = l 

sup ' it——l- > t 

+P L : ZpNl £ ZFi (•"pyPM-F^A f o r a t l e a s t one i € { 1 , . . . J } } 

+P lu : sup \FÍ(ZÍ) - FN'(ZÍ)\ > ŮÍ6Í for at least one i G {1, 2, . . . , /}} 

< É P [" • (NiY sup \FN'(z%) - Fi(zi)\ > 2 l [ L i + ^ 'iTl 

+pL:ZpNl £ZFi (™P\F-(*0-F?'(Z,)\\ f o r a t l e a s t o n e f G { l , . . . , / } } 

+P (u : sup \Fi(z{) - FN'(zi)\ > dibi for at least one i € {1, 2 , . . . , /}} . 

(34) 
The first assertion (the relation (32)) of Theorem 4 follows (under the assumptions 
corresponding to Theorem 2) from the last system of the inequalities and from the 
assumptions. If the corresponding assumptions of Theorem 3 are fulfilled, then 
replacing (in the last relations) the constants Li + C ^ . = 1 L'-, i — 1, 2 , . . . , / by the 
constant / L + CV we can obtain 

P \LO : (mm N) " \<p(F, a) - <p(FN, a)\ > t } 

< g ? { W : (Nr sup \FN'(Zl) - Fi(Zi)\ > 2l[l[%LI]} 

+P L : ZpNl qL ZFi ^»Pl^(^)-^(^)A for at leagt 0ne i G {1, . .., /}} 

+ P {a; : sup ^(z,-) - ^ ( z , - ) > $& for at least one i G {1, 2 , . . . , / }} . 

(35) 
Evidently, the assertion (32) (under the corresponding assumptions of Theorem 3) 
follows from the last inequality. 

Replacing, furthermore in the relations (34), (35) (min,- Ni)v\ip(F, a) - (p(FN, a)\ 
by (mini Ni)u\\x(F, a) - x(FN, a)\\2 and employing the corresponding results of 
Theorem 2 and Theorem 3 we obtain (by the same technique) the validity of the 
relation (33). D 

Theorem 4 deals with arbitrary statistical estimates F{ '(•), N = 1, 2 , . . . of the 
one-dimensional marginal distribution functions Fi(-), •''• — 1 ,2, . . . , / . Furthermore 
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we focus our attention on the case when Fi ' ( •) , N% = 1, 2 , . . . are empirical distri
bution functions. 

The investigation of the convergence rate of empirical estimates was started by the 
papers [12, 29] in the case of recourse problems and independent random samples. 
The first result was directed to the optimal value estimates. Satisfactory results 
(on the estimates of the optimal solution) are due to [30]. The original results were 
furthermore generalized in [11, 14] and [24]. The article [27] deals with the case of 
complete integer recourse. The results concerning some types of weakly dependent 
random samples are presented in [16]. In this paper we continue in this last direction. 
To this end, first, we recall some types of weakly dependent random sequences [3, 31]. 

Let {Ck(<^)}t=-oo^ Cfc(w) = (k, k = .. .,-1,0,1,... be a one-dimensional sta
tionary random sequence defined on (Q, S, P), B(—oo, a) be the cr-algebra given by 
. . . , C - 1 , C , B(b, +oo) given by Cfe, C 6 + 1 , . • •, B(a, b) given by C , . . . , Cfe, a < b, a, b 
integer. Let, furthermore, Bm, m > 1 be the Borel cr-algebra of the subsets of Em. 

D e f i n i t i o n 1. {Ck(w)}t=-oo *s a n m _ d e p e n d e n t random sequence (m > 2) if there 
exists a sequence of independent random values {^(^^t^-oo defined on (Q, S, P) 
and a Bm measurable function / ( • ) defined on Em such that 

Ck(u>) = / V - m + 1 ( u , ) , . . ., r,k(u)) for every k = . . .,-1, 0, 1,.. .. 

Def in i t i on 2. Let {C*(<^)}t=-oo ^ e a strongly stationary random sequence. We 

say that {Ck(w)}t=-oo is an absolutely regular random sequence with (3(N) if 

/ ? ( / ¥ ) = sup sup \P(A\B(-oo,k))- P(A)\[0 (N — o o ) . 
k A£l3(N+k,+oo) 

Def in i t i on 3 . We say that strongly stationary random sequence {C*(a;)}+___<-.oo 
fulfils the condition of O-mixing if there exists a real-valued function <£(•) defined 
on the set of natural numbers M such that 

\P(B1 n B2) - P(B1)P(B2))\ < <b(N)P(Bx), 

Hi G B(—•oo, u), H2 G B(u + N, oo), —oo < u < +oo, N > 1, wan integer. 

To recall some auxiliary assertions, let F^(-) denote the distribution function 
of C(w), F("N(-) an empirical distribution function determined by {Ck(UJ)}iV=i a n d 
EFc, EF(,N the corresponding operators of the mathematical expectation. 

L e m m a 2. ([16] Lemma 2.2.) Let {Ck(u)}t=-oo ^ e a n m-dependent random 
sequence, m > 2. If K(Z) is a B1 measurable function defined on E% such tha t 
\K(Z)\ < M(M > 0) for z € E1} then it holds for t > 0, t G E\ tha t 

P{u> : \EF<,»K(C(LJ)) - EF(K(C(U))\ > t} 

< 2r exp {~m"k
2
+l) 2 7 ^ } + 2(m - r) exp [ S i 2 ^ } » 

where N, k, r are natural numbers such that N = mk + r, r G {0, 1 , . . . , m — 1}. 
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Lemma 3. ([16] Lemma 2.4.) Let {(k(u)}ff^ be an absolutely regular random 
sequence with 0(N). If K(Z) is a Bl measurable function defined on E\ such that 
\K(Z)\ < M (M > 0) for z E Ei, then it holds for every v < N, v a natural number, 
t>0,t<=Ei, N =1,2,... that 

I i\i i\i -t" I 

+AN(3(v). 
, ' ^ *' ' ' Г дг 

P {w : |E ғ c . .vк(CH) - Eғ<ic(C(w))j >t}< 2vexp l — 
N ť 

N-l+v2M2 

Lemma 4. ([16] Lemma 2.6.) Let K(Z), Z £ E\ be a Bl measurable function 
defined on Ex such that \K(Z)\ < M (M > 0) for z <E E\. If {(k(u)}t=-oo i s a 

random sequence fulfilling the ^-mixing condition, then it holds for t 6 E\t t > 0, 
N = 1, 2 , . . . that 

2/W2 

P{u, : |EF<,N«(C(O;)) - EF<«(C(a;))| >t}<WzH 
t2N< 

N-l 

N+ J2(N -k)Ф(k) 
k = í 

Employing the assertions of Lemmas 2, 3 and 4 and the properties of the one-
dimensional distribution functions we can obtain the following auxiliary assertion. 

Lemma 5. Let t > 0 be arbitrary. If the probability measure P((-) is absolutely 
continuous with respect to the Lebesgue measure in Ei and if {(k(ul)}t=-oo ls 

1. an m-dependent random sequence, m > 2, then 

P{u :sup\F^N(z)-F<(z)\ > t} 

< f J2r exp {-^fj^ i£^} + 2(m - r) e x p { - ^ j ^ } } , 

where N, k, r are natural numbers such that N = mk + r, r £ { 0 , 1 , . . . , m— 1}, 

2. an absolutely regular random sequence with 0(N), then for every v < N, v, N 
natural numbers it holds that 

P{LO :sup\F<>N(z)-F<(z)\ > t} 

<|{2,exp{-^]^rT^} + 4N/5(,)}, 

3. a random sequence fulfilling the ^-mixing condition, then for every N natural 
number it holds that 

J V - 1 

P{LO :sup\F^N(z)-F<:(z)\>t} < ЗбM^ 

t3N2 N + J2(N - k)Ф(k) 
k = i 

Theorem 5. Let for i = 1,2,...,/, ctj £ (0, 1), <5Z- > 0 be given, Z% = (kFi(oti) — 
2Si, kFi(ai) + 26i).J£ 

1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are fulfilled, 

2. at least one of the following assumptions is fulfilled (simultaneously) for every 
• € { 1 , 2 , . . . , / } 
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a ) {^f(t-,)}fc=i ^s a sequence of independent random vectors, 0 < v < 5, 

-0 {^f(w)}jb=loo *s a n "^-dependent random sequence m > 2, 0 < ^ < 5, 

c) {^( a ,)}jt^-oo ^s a n absolutely regular random sequence with /?(N»), 

0 < 1/ < -f-, 4(N i)
1 + r i i //?[N J

7] ^iv.-^oo 0 for a 7 G (0, 1), 

d) {^(u;)}^^<ioo *s a ^"mixing random sequence such that 

1 Nt~1 1 
l imsup — 2 J (IV. - fc)$(fc) < +00, 0 < 1/ < - , 

3. FNl(zi), i = 1,..., I is one-dimensional empirical distribution function deter-

mined by { # ( « ) } * -

then for every I > 0 

P {a; : (mill N,-)" \<p(F, a) - <p(FN\ a)\ > t] - m i n ( i V l ) - o o 0. (36) 

If moreover the corresponding assumption 5 of Theorem 2 or 3 is fulfilled, then also 
for every t > 0 

P {to : (min NiY\\x(F, a) - x(FW, a)\\2 > t] - , r a m ( W i ) . w 0. (37) 

([x] = kiffk<x<k+l,k integer.) 

P r o o f . The proof of Theorem 5 follows from Theorem 2 [8], Theorem 4 and 
Lemma 5. 0 

6. CONCLUSION 

In the paper the stability of the stochastic programming problems with the indi
vidual probability constraints was investigated. In particular the main attention 
was focused on the special cases in which the regions T(F, 6) (fulfilling the re
lation (3)) can be replaced by several subsets (fulfilling the relation (4)) of the 
one-dimensional marginal distribution functions space. Employing the Kolmogorov 
metric the achieved results were applied to the empirical estimates of the optimal 
value and the optimal solution for some types of weakly dependent random samples. 

APPENDIX 

The aim of this section is to prove Propositions 2, 3 and 4. 

L e m m a A . l . Let 61 > 0, a i G (0, 1), e > 0 be arbitrary. If Gi(zi) is an arbitrary 
one-dimensional distribution function such that 

Gi(*i) € ( Z M l ( * i ) , FIJX(H)) for *i 6 (kFl(<*i)-6i - e, kFl(a1) + 61 +e), 
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then 

I^Fi(ai) -kGl(ai)\< 6\. 

P r o o f . Since it follows from the assumptions that 

GiOWofi) - Si - e') < Fi(kFl(ai)) < Gt(kFl(ai) + fc + e') 
for every e' > 0, we can see that the assertion of Lemma A.l holds. 

For a better imagination we present a simple picture. 

-M~x) 

1 - a 

fcFi(«l)-*l 
kғi(<*x) 

п 

We recall one well-known assertion that deals with the relationship between the 
optimal value and the optimal solution. 

Lemma A.2. ([19] pp. 54.) Let K C En be a nonempty, convex set. Further, 
let h(x) be a strongly convex with a parameter p > 0, continuous function on K. If 
XQ is defined by the relation 

then 

XQ = arg min h(x), 
x£K 

\x — XQ\\'2 < —\h(x) — h(xa)\ for every x G K. 
P 

P r o o f of P r o p o s i t i o n 2. Since it follows from the relations (15), (16), Lem
ma 1 [18] and Lemma A.l that 

l 

A[XF(a),XG((y)]<Cj2^, 
i '=l 

we can (according to the assumption 1) see that the relation (19) holds. Consequent
ly, it remains to prove the second part of the assertion (relation (20)). To this end, 
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first, it holds from the assumptions 2, 4 of Proposition 2 that X' = Yli=l IC{(kFl(
ai)+ 

6{) is a nonempty, compact, convex subset of En. Consequently, according to the 
assumption 4 of Proposition 2 there exists unique x(X') = a.vgm'm{g(x)\x G X'}. It 
follows, successively, from the properties of the Euclidean norm that 

\\x(F, a) - x(G, a)\\2 = \\x(F, a) - x(X') + x(X') - x(G, a)\\2 

= \\x(F, a)-x(X')\\2 + \\x(X')-x(G, a) | |2 + 2(x(F, a)-x(X') * x(X')-x(G, a)), 

and simultaneously 

||(x(F, a) - x(X')) - (x(X') - x(G, a))\\2 

= \\x(F, a)-x(X')\\2 + \\x(X')-x(G, a))\\2-2(x(F, a)-x(X') * x(X')-x(G, a)), 

where (• * •) denotes the scalar product corresponding to the Euclidean norm in En. 
Evidently, it follows from the last two relations that 

\\x(F, a) - x(G, a)\\2 < 2 {\\x(X') - x(G, a)\\2 + \\x(X') - x(F, a)\\2} . (38) 

It follows from Lemma 1 [18], Lemma A.l and the relations (6), (14), (15) that 
xp(a), Xa(a) are convex sets such that X^(a) , Xa(a) C X' and, moreover, 

i 

A[XF(a),X']<CYJ^- (39) 
i-l 

Since Xp(a), XG(&), X' are convex sets employing, moreover, Lemma A.2 and re
lation (19) we obtain 

\\x(G, a)-x(F, a)\\2 

< ± {\g(x(X')) - g(x(G, a))\ + \g(x(X')) - g(x(F, a))\] . 

< i {\g(x(G, a)) - g(x(F, a))\ + \g(x(F, a)) - g{x{X'))\ 

+ \g(x(X')) - g(x(F, a))\] < l-JL'C £ b%. 
i= i 

Evidently, the last system of the inequalities finishes the proof. • 

To prove Propositions 3 and 4 we recall the following auxiliary assertion. 

Lemma A.3. ([15] Lemma 6.) Let b\ > 0, e > 0 be arbitrary. If 

1. K(ZI) is a Lipschitz function on ZFI(^I +£) with the Lipschitz constant LK, 

2. there exists a finite - E F ^ ^ I ^ ) ) , 

and if Gi(zi) is an arbitrary one-dimensional distribution function such that 

Gi(zi) G [Flt6l(zi), Fij^zi)) for every zx G Eu 
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then 
| E F I I C ( 6 ( W ) ) ' - E C I K « I ( ( - ) ) | < W I . 

P r o o f of P r o p o s i t i o n 3. First, since XF(a) is a compact set it follows from 
Lemma A.3 and the assumptions that 

inf EFg(x, £(_)) - inf EGg(x, £(_>)) 
XF(a) XF(a) 

< yjiLj. (40) 
г = i 

According to the fact that EG £_i=i gi(x, ^i(w)) is a Lipschitz function on X with 
the Lipschitz constant Y2i=i --"('J employing the assertion of Proposition 2, we obtain 
that 

in/ . ^ E 5 ^ 1 ' &(-0) " vІП/ . EGГ__- -"(*• fc^) Xғ(a) 
г = l 

* _ í » 
i = l 

- c E£í _>• («) 
J = l / i=l 

The validity of the relation (21) follows from the relations (8), (40) and (41). The 
second part of the assertion (relation (22)) can be proven by the technique employed 
in the proof of Proposition 2. D 

P r o o f of P r o p o s i t i o n 4. First, it follows from the assumptions and from 
the elementary properties of the integral that 

\EFg(x,^))-EGg(x,^))\ 

< f g(x, (zľ,z2,..., _,)) dFi(zi) dF2(z2)... dF,(z,) 
- i 

• f g(x, (_!, z2,. .., z,)) dGi(_i) d F 2 ( z 2 ) . . . dFi(zi) 
E, 

+ f g(x,(zl,z2,...,zl))dGl(zl)dG2(z2) ...dG|_i(_i_i))d.f>(*i) 

- J 

- / g(x, (zx, z2,..., zi))dGi{zi)dG2(z2) •. .dG»_i(-7-i)) dG,(_,; 
E! 

Moreover, for t € {1, 2, . . . , - } , x € X 

I g(x, (_i, ^ 2 , . . . , ^ ) )dGi (_ i ) . . . dG i_ i ( z i_ i )dE z + i ( z i + i ) . . . dE,(z,) 

is a Lipschitz function on ZFx(6i) with the Lipschitz constant L. Consequently, since 
xE(a) is a compact set we obtain (according to Lemma A.3 and the assumptions) 
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that 

inf Eғд(x, Ç(u)) - inf EGg(x, ţ(u>)) 
Xғ(а) Xғ(а) 

< ILүбi. (42) 
i = i 

Furthermore, it follows from the assumptions that EGg(x, $(u)) is a Lipschitz func
tion on X with the Lipschitz constant V'. Consequently, employing the first result 
of Proposition 2 we obtain 

/ 
inf EGg(x,Z(u>))- inf EGg(x, £(u)) \< C L ' V f t . (43) 

XF(a) XG(a) | i = l 

The first assertion of Proposition 4 follows from the relations (8), (42) and (43). The 
second part of the assertion can be proven by the technique employed already in the 
proof of Proposition 2. • 

(Received December 31, 1993.) 
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