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K Y B E R E N T I K A - V O L U M E 26 ( 1990) , N U M B E R 4 

GENERALIZATION OF DISCRIMINATION-RATE 
THEOREMS OF CHERNOFF AND STEIN 

IGOR VAJDA 

We consider a simple hypothesis and alternative about an abstract random observation para­
metrized by A from a directed set A. The asymptotics over A is evaluated for mixed errors of the 
Bayes tests and second kind errors of the Neyman-Pearson tests. Similar asymptotics has been 
first evaluated by H. ChernofT and Ch. Stein when A is the set of naturals and the observation 
consists of the first X terms of a sequence of i.i.d. r.v.'s (cf. [3], [4]). Extensions to the observation 
consisting of segments of random sequences, processes and fields have been studied by many 
authors. We show that the extension essentially depends on the existence of an asymptotic Renyi 
distance of the hypothesis and alternative and that this distance explicitly describes the discrimin­
ation rates attained by the Bayes and Neyman-Pearson tests. We do not use the theory of large 
deviations — all results are deduced from several simple properties of Renyi distances established 
by Liese and Vajda in [20] and from elementary inequalities established for Renyi distances 
by Kraft and Plachky and Vajda (cf. [15], [31]). 

1. INTRODUCTION 

Let A be a directed set containing a dominating sequence (Xn I n — 1,2, . . . ) . 
This means that A is ordered and contains Xx ^ X2 5* ... such that every finite subset 
of A is dominated by at least one Xn. We consider for every X e A a measurable space 
(£x, s/x) and probability measures Px, Qx, Rx on it. We assume that on basis of 
a random observation Xx from (?£x, s/x, Rx), one is testing the hypothesis HA: 
Rx = Px against the alternative Kx: Rx = Qx. By a test corresponding to XeA 
we mean ja^-measurable real valued function <p: ?IX -> [0, 1]. By <PX we denote 
the set of all such functions. For each test <p e <PX we define probability of error 
of first and second kind 

*(<p) = \<p dP;. , P(<p) = J( l - <p) dQx . (1.1) 

Put finally 

$s.(a) = W G $x | 7-(<P) = rA > 0 < a < 1 . 
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Hereafter we consider fixed b > 0 and 0 < a < 1. We define optimum a-tests 
<px, X e A, by the condition 

P(cpx) = inf /?(<?) (1.2) 
<pe0A(ot) 

and Bayes b-tests \j/x, X e A, by the condition 

a(</tA) + 6 fityx) = inf [ a W + b /%>)] . (1.3) 
<P6<PA 

In the terminology of Lehman [18], <px is a most powerful test of level at most a. 
It follows from his version of the Neyman-Pearson lemma that such a test exists 
and that it is a likelihood ratio test of level a for 0 < a < 1 — PXyS(&x), where 
PXs is the singular part of Px with respect to Qx. (If 1 — PXtS(&x) < a < 1 then <px is 
of level less than a and p(cpx) = 0.) Further, it is well known that i//x is a Bayes 
test in the sense of Wald [33] for the zero-one loss function and for the prior prob­
abilities 1/(1 + b), bj(l + b). It is also easy to verify that every likelihood ratio test 
for Px, Qx with the critical value b is \J/X. 

In this paper we evaluate the asymptotics of ($(<px) and of 

s(^x) = a(^x)+b^x) (1.4) 

for X growing above all bounds in A. This asymptotics will be given in term of 
distances of probability measures Px, Qx considered in the next section. 

The following fact is frequently used in the sequel. 

Lemma 1.1. For every real valued function y defined on A and for every dominat­
ing sequence (Xn \n = 1, 2, . . .) , lim y(X) exists iff lim y(Xn) exists, in which case 
the two limits are equal. A "~*oc 

Proof. Clear in one direction. The opposite direction is easily proved by contra­
diction. • 

2. DISTANCES OF HELLINGER, KULLBACK-LEIBLER AND RENYI 

Let P, Q be probability measures on a measurable space (3C, sd) with Radon-
Nikodym densities p, q with respect to a dominating (7-finite measure fi, and let us 
consider a > 0. In accordance with [20] we define Hellinger integrals 

w / V i - / 0 0 if a > 1 and P ^ Q , 
{ ) ~ M ( M > o , M - ) a d<2 otherwise . ^L> 

We see that if P <̂  Q then H(a) is nothing but the bilateral Laplace transform 

H(a) = ^xexp{ay}dF(y) (2.2) 

of the distribution function 

F(y) = Q({pq > 0, In (pjq) < y}), yeU, (2.3) 

which is complete (i.e. E(oo) = 1) if also Q <̂  P. This fact has interesting analytical 
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consequences. These are not however considered in this paper which is based on 
inequalities and convexity rather than on derivatives and analyticity. 

Lemma 2.1. It holds 

H(O) = i - QS(%) , H(i) = i - p,(#) 

where Ps, Qs are singular parts of P, Q with respect to Q, P. Further, H(a) is loga­
rithmically convex, i.e. the function 

Q(O) = In H(a) (2.4) 

is convex. Finally, g(a) is continuous on [0, 1] and 

lim A^L = /(p || Q) (2.5) 
a\\ a — 1 

where l(P || Q) is the I-divergence defined by 

oo if P|(i 
I(p J Q) = / (2.6) 

j{Pq>o} ln d^3 otherwise . 

Proof. The first assertion is clear from (2.1). The second assertion is clear from 
(2.1) if P X Q (singularity). For nonsingular P, Q it follows from Holder's inequality 

H(OLQ1 + (1 - a)a 2 ) = Hx(a,) Hl~*(a2) 

for all 0 < a < 1 and all at, a2 = 0 so that the second assertion is clear from (2.4). 
The last assertion follows from (2.14) in [20]. • 

The relation (2.5) motivates our definition of the Renyi distance (cf. [2], [30]): 

J - & . if a + 1 
R(a) = / « - 1 (2.7) 

X / ( P I Q) if a = 1 . 

Lemma 2.2. The Renyi distance takes on values from [0, oo] and is nondecreasing. 
It is null at some point from (0, 1) iff P = Q in which case it is null everywhere. 
It is infinite at some point from (0, 1) iff P X Q in which case it is infinite every­
where. It is continuous on [0, a0] where a0 = sup {a > 0 | R(a) < oo} and where 
it holds a0 = 1 unless P X Q. 

Proof. All stated properties follow directly from (2.11), (2.14) and (2.15) in [20]. 

• 
Let us consider nonsingular P, Q and 0 < a < 1. It holds H(a) > 0 and we define 

probability measures Pa <t n by the Radon-Nikodym derivatives 

naax~a 

Pa^13— (2-8) 

It is clear that Pa <t Q. It follows from here and from (2.1) that for every 0 < t < ija 
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the Hellinger integral 

H(t\P.>Q)=ilP«>o}MAQ> (2-9) 

which coincides with (2.1) for a, P replaced by t, Pa, satisfies the relation 

-t'l'.fl-gg- (-10) 
This relation together with the next two auxiliary results are needed in Section 6 

only. 

Lemma 2.3. Let cp be a likelihood ratio test of H: P against K: Q with the critical 
value t and <pa a likelihood ratio test of Ha: Pa against K: Q with the critical value 
l/H(a) for some 0 < a < 1. Thsn the two tests coincide Q — a.s. 

Proof. Clear from (2.8). • 

The following assertion holds in particular for £(a) = In H(a), or for £(a) = H(a) 
which are convex on (0, 1). 

Lemma 2.4. Let £: (0, 1) -> R be convex. Then there exist right- and left-hand 
derivatives £'+(«), £'-(«)> 0 < a < 1, and they are continuous from the right and 
from the left, respectively. 

Proof. Let us consider 0 < a < s < t. The existence of 

,, , x .. £(s) - go) 
sia s — a 

is the well known consequence of Jensen inequality. Denote by i;'++(a) the limit 
of £'+(s) for s I a. The well known monotonicity of the right-hand derivative implies 

m - t(s) 
t - s 

For s | a we obtain 

£'» ^ r+(S) ^ 

r we obtain 

r+(a)^f++(a)< 
t — a 

Sending t | a we obtain from here the desired identity £'++(a) = £'+(a). D 

3. EXAMPLES 

In this section we present several specifications of testing models of Section 1, 
and evaluate the distances of Section 2 for probability distributions Px, Qx considered 
in these specifications. In the rest of this paper we write 

Hx(a) = H(a | Px, Qx), Qx(a) = g(a \ Px, Qx), Rx(a) = R(a | Px, Qx) , (3.1) 
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i.e. the distances H(a), g(a), R(a) of measures P = Px, Q[ = Qx are denoted by 
Hx(a), qx(a), Rx(a) for X e A. 

The most important class of asymptotic testing models of Section 1 is represented 
by martingale models. In these models there is given a measurable space (£, srf) 
and a generalized increasing sequence of sub-a-algebras (s4* 1 X e A) which is ex­
haustive, i.e. stfXi c s/*2 for Xx <, X2 and the union of all sd*x generates s4 (in symbols 
this is denoted by srf* \ s$). Further, there are given two probability measures P, Q 
on (£, sd) with densities p, q with respect to a dominating probability measure \i. 
If we denote by P*, Q*, fix restriction of P, Q, fi on s4\ then the quadruples (SCx, s4x, 
Px, Qx) °f Section 1 are assumed to be defined by 

(£x, sJx, Px, Qx) = (£, st\, P*, Q*) . (3.2) 

Since Px, Qx are dominated by pix, we may consider the corresponding Radon-
Nikodym derivatives px, qx. These derivatives are satisfying the conditional-expecta­
tion relations 

Px = E„(p | s4*x), qx = EM(c2 | s4*x) , (3.3) 

i.e. they are martingales for (stf* | X e A). This fact considerably simplifies evaluation 
of distances Hx(a), Qx(a), Rx(a) as well as of their limits over A. 

The Hellinger integrals have been evaluated and applied in the martingale models 
of sequences and processes by many authors, e.g. by Kakutani [12], Chernoff [3], 
[4], Koopmans [14], Newman [23], [24], Perez [28], Newman and Stuck [25], 
Oosterhoff and van Zwett [26], Memin and Shiryayev [21], Liese [19] and Kolo-
miets [13]. The distance R;.(l) has been studied in the martingale models of sequences 
and processes e.g. by Perez [27], Hajek [8, 9], Pinsker [29], Kullback et al. [16] 
and in the martingale models of random fields e.g. by Kiinsch [17]. The distances 
Rx(a) for martingale models of sequences and processes have been studied by Liese 
and Vajda [20] and Vajda [32], and for martingale models of random fields by 
Janzura [11]. 

Example 3.1. Let us consider the martingale model of stochastic processes on the 
time domain [0, oo), i.e. let A = [0, oo) with the natural ordering and let us consider 
probability measures P, Q induced by two random processes X = (X(t) \ 0 < t < oo), 
Y= (Y(t) j 0 <. t < oo) on the Kolmogorov Borel-lines product (£, srf). The model 
of Section 1 is completely specified for every 0 <. X < oo by probability measures 
Px, Qx induced by processes Xx = (X(t) \ 0 < t < X) Yx = (Y(t) \0 < t < X) on 
the sub-cr-algebra s/x a s4 corresponding to the time-subdomain [0, X] c [0, GO). 

Let us assume that it holds X = mx + Z, Y = m2 + Z, where my. [0, x ) -> U 
are continuous such that m = m, — m2 satisfies the relations m(0) = 0 and 

n(t) - m(s) = jl m*(y) dy , 0 < s < t < x 

for m* measurable and bounded on each bounded subdomain, and where Z = 
= (Z(t) | 0 < t < oo) is a diffusion process satisfying the stochastic differential 
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equation 
dZ(t) = ~A(t) Z(t) dt + B(t) dW(t) 

with the initial condition Z(0) = N(fi, a2
0) for n e U, a\ > 0. In the equation it is 

assumed that A: [0, oo) -> 1R, B: [0, co) -» (0, oo) are continuous and that W = 
= W(t) | 0 ^ t < oo) is the standard Wiener process. We shall show that it holds 
for every 0 <. X < oo 

where 

R » = jlSv2Wd«. (3.4) 

<<.) _ _ _ _ _ ! + _ _ , 0 g , < o o . (3.5) 
B(t) 

By Theorem 3 on p. 90 of [7], it holds Px <| Qx and the Radon-Nikodym derivative 
dPxjdQk is given by 

d ^ = exp{f 0 ^)dW ( t ) - i f 0 ^( t )d t}. 

Thus it follows from (2.1) 

HM = l (d^J dG/l = CXP \~2 ti n2{t) dt\ E 6XP {a fi *W d^)} • 
The exponent behind the expectation has the normal density (p(yja)jo for 

Thus the expectation is equal to 

Ĵ oo exp {y} i -A Q dj; = exp K ft ^2(t) dt} . 

Therefore 

H/l(.) = exp|í^-l )í^2(t)dt} 

and the rest follows from (2.4), (2.7) and from the continuity of Rx(a) from the left 
at 1 (see Lemma 2.2). 

Example 3.2. In order to illustrate the relevance of results that follow in testing 
of hypotheses about random fields let us consider A = {1,2, ...} x {1,2,.. .} 
ordered by the condition 

Xl = (X\, X"2) ^ X2 = (X2, X'2) iff X\ S X"2 a n d X[ ^ X"2 . 

Obviously, (Xn = (X'n, X'n) \n = 1, 2, ...) is dominating in A iff 

lim min {X'n, Xn] = oo . 
n-> cc 

For example, (Xn = (n, n)\ n = 1, 2, ...) is dominating in A. 
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Let us consider a martingale model of binary random field. In this case 3C is the set 
of all binary arrays x — (^tJ | (i,j) e A). For every X = (X1, X") e A we consider the 
algebra s4\ of subsets of $4 generated by the sub-arrays xx = (£y \i = I,..., X', 
j = 1, ..., X"). It suffices to define probability distributions Px, Qx on the sets 3Cx 

of all arrays xx consistent in the usual Kolmogorov sense for different Xx,X2e A, 
Xx S X2. To this end decompose 3CX into the singleton 3C\ containing the zero array 
xx consisting of pure O's, the set 3C\ containing all arrays xA with £xx = 1, and the 
set 3C\ = 3CX - (3C\ u 3CX

X). Put 

P,W) = T - « (cf .Sec . l ) , PX(3C2
X) = 0, 

and assume that Px is uniform on 3C\ and Qx is uniform on the whole 3Cx. The second 
assumption implies that the ^probabil i ty of all arrays xx is 

h~-~, for X = (X',X"). 

It is easy to see that QX(3CX
X) = \. By (2.1) 

and by (2.6) analogically 

Rx(i) = (1 - a) In — — + a In 2a . 
PA 

Hence, by (2.4) and (2.7) 

. ln2 + — ^ - l n - if 0 = a < 1 
lim RA(a) = / 1 - a a (3.6) 
^ X oo if a ^ l 

where the asymptotics in case a >. 1 may be expressed as follows 

(1 — a) In — if a = 1 

J ^ a ) * / j A (3.7) 
x In — if a > 1 . 

4. R-DISTANCE 

In this section we define an asymptotic distance for the hypothesis and alternative 

H = (Hx | X G A) and K = (Kx\Xe A) 

considered in Section 1. This distance is based on the Renyi distance studied in 
Sections 2 and 3. 

Let us consider a0 > 0 and a neighborhood A c; [0, oo) of a0. We shall say that 
the asymptotic distance of H and K in the neighborhood A of a0 exists if Rx(a0) 
is positive and unboundedly increasing on A and if for every a e A there exists in the 
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topological space [0, oo] the limit 

R(a) = Um-^ja\. (4.1) 
A Rx(a0) 

The function R(a), a e A, is then considered to be the asymptotic distance — it is 
called briefly R-distance. 

If there exists the R-distance in the neighborhood (0, 1) of a0 = \ then we define 

g(a) = (a - 1) R(a), 0 < a < 1 . (4.2) 

It follows from the relations (a — 1) Rx(a) = Qx(a), R*(§) = - 2<2A(1)
 t n a t t n e R-dis­

tance in the neighborhood (0, 1) of \ exists iff — Qx(i) is positive and unboudedly 
increasing on A and there exist in the topolgical space [0, GO] the limits 

Q(O) = lim - i - M , 0 < a < 1. (4.3) 
A 2QX($) 

In the positive case the limits (4.1) and (4.3) are related by (4.2). 

Lemma 4.1. The function defined by (4.3) is finite, negative, continuous and convex 
on its domain of definition (0, 1). 

Proof. By Lemma 2.1, the function behind the limit in (4.3) is nonpositive, conti­
nuous and convex on (0,1). Consequently g(a) is nonpositive and convex on (0, 1). 
Since it is finite at £,it is finite and continuous on (0,1). The negativity of g(a) follows 
from the fact that the nonnegative convex function behind the limit in (4.3) cannot 
exceed the piecewise linear function f(a) the graph if which is passing through the 
points (0, 0), (i , - 2 ) , (1, 0) of the («,/)-plane. • 

Example 4.1. Let us consider the diffusion processes of Example 3.1 and let the 
integral figuring in (3.4) satisfy the condition 

lim jo t]2(t) dt = oo . 

Then the R-distance exists in the neighborhood A = [0, oo) of an arbitrary point 
0 < a0 < oo and is linear on A, 

R(a) = aja0 . (4.4) 

The function (4.3) takes on the form 

g(a) = - 2 a ( l -a), 0 < a < 1 . (4.5) 

Example 4.2. Let us consider the random fields of Example 3.2. It follows from 
(3.6), (3.7) that the R-distance exists in no nontrivial neighborhood of 0 < a0 < 1. 
The R-distance in the neighborhood A = [0, oo) of a0 = 1 is given by 

0 if 0 < a < 1 

R(a) = / 1 if a = 1 
, (4-6) 
— if a > 1 . 

1 

280 



5. GENERALIZED THEOREM OF STEIN 

Let us consider the testing model of Section 1, in particular optimum a-tests 
<px and corresponding second kind error probabilities fi(<Pi), A e A. Results of this 
and of the following section are to the great extent based on the following fact 
proved as Theorem 1 in [15]: For every 0 < a < l < T i t holds 

(1 - a ) t / ( t _ 1 ) exp {-RX(T)} = $(<px) = (1 - a) (a/a)fl/(1"a) exp {-R,(a)} . 
(5.1) 

Theorem 5.1. Let the R-distance exist in an open neighborhood A _ [0, oo) of 
a0 = 1 and let R(a) be continuous at a = 1. Then 

H m ^ y ^ ^ e x p J - l } . (5.2) 
A 

Proof. Let (Xn | n = 1, ...) be a dominating sequence in A. It follows from the 
right-hand inequality in (5.1.) and from (4.1) that it holds for every a, x e A, a < 1 < x, 
(with (p„, R„ written instead of <pXn, R; J 

lim sup (P((pn)Y
/R"a)

 = exp {-R»} , 
n-> oo 

lim sup (/?(<?,,)) 1/K"{1)
 = exp {-R(x)} . 

n -» oo 

Hence, by the continuity of R(a) at a = 1 and by the identity R(l) = 1, 

lim sup (p(<pn))
1/Rna)

 = exp {-1} . 
n-> co 

The rest is clear from Lemma 1.1. • 

Example 5.1. For diffusion processes of Example 4.1 the assumptions of Theorem 
5.1 hold for A = [0, oo) so that in this case (5.2) holds for R;.(l) equal to half of the 
integral figuring in (3.4). 

Example 5.2. We shall show that (5.2) need not be true without the continuity 
of R(a) at a = 1. This is an argument justifying also the assumption of existence 
of the R-distance in Theorem 5.1. 

Let us consider the random fields of Example 3.2. It follows the definition of Px, Q? 

that if 0 < a < \ then the optimum a-test <px is nonrandomized, equal for every 
/ = (/', X") e A to the characteristic function of %'x — X\. ft is clear that y.(<p?) = 
= Px(&x - #"2) = 1 - (1 - a) = a. It is also clear that p(<px) = Qx(%x) = px. 
Therefore it follows from (3.7) that in this case 

l i m ( ^ ) ) 1 ^ 1 > = e x p { - l / ( l - a ) } 
A 

so that (5.2) is not true. By (4.6), R(a) in this case exists in the neighborhood [0, oo) 
of 1, but it is discontinuous at 1. 

A less general version of Theorem 5.1 appeared in [13] (cf. also the inner references 
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to further more special versions). The proof presented here is essentially simpler. 
Another less general version appeared also as Theorem 11.19 in [32]. 

Now we present a variant of Theorem 5.1 with a weaker continuity assumption. 

Theorem 5.2. Let us consider 0 < ax < 1 decreasing on A to zero and let cpx be 
the optimum attest. If 

lim(aA)1 / K ' ( n = 1 (5.3) 
A 

and if there is 0 < s < 1 such that the R-distance exists in the neighborhood (s, 1] 
of 1 and is continuous from left at 1, then 

l i m ( ^ ) ) 1 / R - ( n = e x p { - l } . (5.4) 
A 

Proof. Analogically as in the proof of Theorem 5.1 we prove that for every 
s < a < 1 

limsup(/i(^))1/ i?" (1) < exp{-R (a)} 
71-+ OC 

so that, by continuity, ' 

lim sup (P((pn))
t/RnW

 = exp {- 1} . 
7 1 - > CO 

To prove the converse for lim inf take first into account that the family of prob­
abilities ((<px(x), 1 — <px(x)) | x e %'x) defines a Markov kernel from (S£x, s/x) to the 
binary set {0, 1}. The images of measures Px, Qx defined by this kernel on {0, 1} are 
(<x(<px), 1 - x(<px)), (1 - P(<px),P(<px)). Therefore Theorem (1.24) of [20] yields the 
inequality 

RA(1) . a(<px) In - ^ L - + (1 - « I n L ^ ) 
1 - P(<Px) P(<Px) 

where 0 In (0//i) = 0 for /i _ 0 and a In (a/0) = oo for a > 0. Since Rx(i) in (4.1) 
is assumed to be finite, it holds Px <4 Qx. Thus the singular part PXs considered 
in Section 1 below (1.3) is zero and, consequently, cc(<px) = aA. Since 0 < a ; < 1, 
it follows from the above inequality 0 < P(<px) < 1. Therefore the above inequality 
yields 

RA(1) = ax In a, + (1 - a j In (1 - aA) - (1 - ccx) In $(<px) . 

The desired inequality 

lim inf (life,))1 / i U n
 = exp { - 1} 

7 1 - > OO 

follows obviously from here. • 

Example 5.3. It follows from the formula for R^(l) in Example 3.2 that if a = aA 

is satisfying (5.3) then (5.4) holds in spite of that the R-distance (4.6) is discontinuous 
at a = 1. 

To illustrate the applicability of Theorem 5.2 let us take the Borel line for (3Cx, stf x), 
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Xe A arbitrary, and consider on R the densities 

PA(x) = i e x p { - | x | } , qx(x) = —<p(JL-\ 
a{X) \a{X)J 

where <p is the standard normal density and a: A —> (0, oo) is increasing to oo. After 
some calculations one obtains that the R-distance in the neighborhood [0, oo) of 
arbitrary 0 < a0 ^ 1 is given by 

0 if a = 0 
R{a) _ ^ 1 if 0 < fl _ 1 (5.5) 

oo if a > 1 . 

(Note that a martingale model with independent observations satisfying (5.5) is 
easily implanted here.) We see that Theorem 5.1 is not able to say anything 
about the asymptotics of P((px). Theorem 5.2. says that if (5.3) holds then also (5.4) 
holds with 

R A ( l ) - i l n ^ + - i - - - l , (5.6) 
" W 2 a2{X) K ' 

i.e. in fact with R^l) = In a{X). The formula (5.6) is obtained by a routine integration 
after substitution to (2.6). • 

Let us note that the case where the R-distance considered in Theorem 5.2 exists 
and is null for 0 ^ a < 1 (and consequently discontinuous at 1 from left) has been 
studied by Janssen [10]. He restricted the attention to special models with sequences 
of i.i.d. observations. 

Let us also note that if A is the set of natural numbers, i.e. if we restrict ourselves 
to the statistical observation of segments of random sequences, then one easily obtains 
from the Shannon-McMillan-Breiman theorem (cf. [1] that, in the model of Theorem 
5.1, 

lira (P(<px))
m*l) ^ e x p { - l } 

A 

provided the limit of R;{i)jX is non-zero and finite (cf. [28]). The assumption here is 
weaker than in Theorem 5.1, but the assertion is weaker too. 

6. GENERALIZED THEOREM OF CHERNOFF 

In this section we consider the testing model of Section 1, in particular a Bayes 
6-test \j/x and its mixed error e(i/tA), X e A. It is easy to see that, up to a multiplicative 
factor not depending on X, 8{ij/?) is the Bayes risk (in the sense of Wald [33]) in a Bayes 
testing model with the hypothesis HA and alternative Kx. 

In the following theorem we consider the negative function g{a) defined on (0, 1) 
by (4.2) under the assumption that the R-distance exists in the neighborhood (0, 1) 
of ^. We also assume that the subset argmin g{a) _ (0, 1) is nonempty (Examples 4.1 
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or 5.3 presents the situations where this assumption is or is not satisfied respectively). 
By Lemma 4.1, g(a) is continuous and convex. It follows from here that argmin g(a) 
is an interval. The closure of this interval we denote by [a_, a + ] where 0 <. a ^ 
<. a+ < 1. It also follows from here that the right- and left-hand derivatives g'+(a) 
and g'-(a) exist on (0, 1). 

Theorem 6.1. Let the R-distance exists in the neighborhood (0, l) of \ and let either 
a+ < 1 and g'+(a + ) = 0 or a_ > 0 and j?_(a_) = 0. Then for any a* G argmin g(a) 

l im(e(^) ) 1 / ^ ( 1 / 2 ) = exp{^(a,)}. (6.1) 
A 

Proof. Let us denote by £i(i/t;.) the value of e(\j/x) for b = 1 (cf. (1.4)). By Theorem 2 
in [31] 

2min {1, b} , , , . 2 max {1,6} , 

1 + 6 1 + 6 

Thus it suffices to prove (6.1) for 6 = 1 . Further, by Theorem 1 ibid., the mixed 
error oc(<p) + b /?(</>) of every Bayes 6-test of H: P against K: Q is bounded above 
for every a e (0, 1) by 61 ~a H(a) where H(«) is given by (2.1). Therefore 

e(\l/x) = 61 " a exp {(a - 1) R;(a)} , a e (0, 1) . (6.2) 

Let (X„ I n = 1, 2, ...) be a dominating sequence in A and let us write in the sequel 
\jjn, R„(a) instead of \f/Xn, RXn(a). The last inequality together with (4.1) (where a0 

is replaced by {) and (4.2) imply 

lim sup (e(iA„))1/R"(1/2) = exp {^(a)} , a e (0, 1) . 
n —> oo 

In particular, 

limsup(e(iA„))1/^1/2>^exp{e(a*)} 
n -» oo 

for a* e argmin ^(a). Thus in view of Lemma 1.1 it suffices to prove for 6 = 1 
that there exists a* e argmin g(a) such that 

lim inf (s(i/v))1/R"(,/2)
 = exp {£(a*)} . (6.3) 

« -> oo 

Let us consider 6 = 1 and let a+ < 1 and g'+(a+) = 0. In this case a+ e argmin g(a). 
We shall prove that (6.3) holds for a* = a+ (if a_ > 0 and o'_(a_) = 0 then one 
can prove analogically that (6.3) holds for a* = a_). Let us consider ae(a + , 1), 
t s (0, 1), T G (1, l/a), and XeA. The existence of R-distance implies that R;.(}) is 
finite, i.e. that PA, Qx are nonsingular. Therefore Hx(a) > 0 and there exists the 
measure P; a defined by (2.8) for (P, Q) = (P ; , Q;). Let <pa be a likelihood ratio 
test of HA a: PA a against K ;: Q; with the critical value lJHx(a) and let 

a f e ) = J <pa dPx>a , P(<Pa) = J (1 - p . ) dQA 

be its errors. In view of what has been said in Section 1, <pa is a Bayes l/HA(a)-test. 
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Hence, using the inequality which (6.2) is based on, we obtain 

<<Pa) + ( 1 / # A M ) fi(<P.) S ( 1 / ^ W ) 1 - ' H(t I P,,a, Q j (cf. (2.9)) 
= Hx(at)iHx(a) (cf. (2.10)) . 

It follows from here 

« £ ^ • (6-4) 
HA(a) 

Further, we know from Section 1 that \J/X is a likelihood ratio test of H ; : Px against 
^x- Qx with the critical value b = 1. Therefore it follows from Lemma 2.3 that 
\px and (pa coincide Qx — a.s. so that 

Let us consider at last an optimum a(<pfl)-level test of Hx a: Px a against Kx: Qx. 
We denote this test by </>*. By definition in Section 1, 

^:) = Ki-rf)d(2^^). 
Hence it follows from the left-hand part of (5.1) and from (6.4) 

«*0 a rttf) § (Ar-^-^)1'*'"'' (cf. (2.9» 

Putting f = a + \a and taking into account that s(if/x) ;> y9(t/rA) we get from (6.5) 

= exp {(" - 1) "»(«) - M"> T) - Bi(a> T)} 
where 

Ax(a,r)=--^~\n(l-H^±), 

BA(a, t) = - i - [(AT - I) RA(at) - {a - 1) *,(«)] . 
T — 1 

The easily verified relation 

lim [ifT%) = exp &a +) ~ * ) } (cf- ( 4 J ) ' (2-4)) 

together with the obvious inequality g(a+) < g(a) implies that 

lim Ax(a, T) = 0 . 
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This and the following easily verified fact 

lim B*(a>T) = a e(ax) ~ $(a) 
A

 Rx(i) ax - a 

imply that in the above introduced notation 

liminf(e(iA.,))1/i{"(1/2) = exp {§(«) - a Q'+(a)} . 
71-» 00 

Here Q(O) is continuous by Lemma 4.1 and Q+(a) is continuous from the right by 
Lemma 4.1 and 2.4. Thus the right-hand side of last inequality tends for a j a+ 

to Q(a+) — a+ Q + (a+) = Q(a+). Therefore (6.3) holds for a% — a + . Q 

It is clear that if the function Q exists and has a unique point of minima a* at which 
it is differentiable then all assumptions of Theorem 6.1 hold. Using the results (2.2), 
(2.3), one can establish differentiability of Q on (0, 1) under wide assumptions about 
(Px,Qx),XeA. 

Example 6.1. Let us consider the diffusion processes of Example 4.1. By (4.5), 
argmin Q(O) = {j} and all assumptions of Theorem 6.1 hold. Therefore Bayes 
tests \J/A, X e [0, oo), satisfy the asymptotic relation 

l i m ( 8 ( « ) 1 / ^ 1 / 2 ) = e x p { - i } 
A-+ oo 

where R^i) lS given by (3.4) for a = \. 

Example 6.2. The random fields model of Example 3.2 is not satisfying the assump­
tions of Theorem 6.1. By what is said in Example 4.2, the R-distance required in the 
present section does not exist. The model of Example 5.3 has the desired R-distance 
but it is constant on (0, l), equal to 1. Therefore the function 

Q(O) = a — 1 , 0 < a < 1 , 

has argmin Q(O) empty and nothing can be said here about Bayes tests. 

Let us note that results similar to Theorem 6.1 can also be deduced from known 
general large deviation theorems (e.g. Ellis [5] or Theorem VII.6.1. in Ellis [6]). 
Similar approach was in fact used already in the fundamental paper of Chernoff [3]. 
The result of Chernoff valid for sequences of i.i.d. observations has been extended 
to Markov chains and processes by Koopmans [14], Nemetz [22], and Newman and 
Stuck [25]. 

R E F E R E N C E S 

[1] P. H. Algoet and T.M. Cover: A sandwich proof of the Shannon-McMillan-Breiman theorem. 
Ann. Probab. 16 (1988), 899-909. 

[2] A. Bhattacharyya: On some analogous to the amount of information and their uses in 
statistical estimation. Sankhya 8 (1946), 1—14. 

286 



[3] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis based on a sum 
of observations. Ann. Math. Statist. 23 (1952), 493—507. 
H. Chernoff: Large sample theory: Parametric case. Ann. Math. Statist. 27 (1956), 1 — 22. 
R. S. Ellis: Large deviations for a general class of random vectors. Ann. Probab. 12 (1984), 
1 - 1 2 . 
R. S. Ellis: Entropy, Large Deviations, and Statistical Mechanics. Springer-Verlag. Ber l in -
Heidelberg—New York 1985. 
1.1. Gikhman and A. V. Skorokhod: Stochastic Differential Equations (in Russian). Naukova 
Dumka, Kiev 1986. 
J. Hajek: A property of J-divergences or marginal probability distributions. Czechoslovak 
Math. J. 8 (1958), 4 6 0 - 4 6 3 . 

J. Hajek: On a property of normal distributions of an arbitrary stochastic process. Czecho­
slovak Math. J. 8 (1958), 6 1 0 - 6 1 8 . 
A. Janssen: Asymptotic properties of Neyman-Pearson test for infinite Kullback-Leibler 
information. Ann. Statist. 14 (1986), 1068-1079. 
M. Janzura: Divergences of Gauss-Markov random fields with application to statistical 
inference. Kybernetika 24 (1988), 6, 401 — 412. 
S. Kakutani: On equivalence of infinite product measures. Ann. of Math. 49 (1948), 214 — 226. 
E. I. Kolomietz: Asymptotic behaviour of type II errors of Neyman-Pearson test (in Russian). 
Teor. Veroyatnost. i Primenen. 33 (1986), 503 — 522. 
S. H. Koopmans: Asymptotic rate of discrimination for Markov processes. Ann. Math. 
Statist. 31 (1960), 9 8 2 - 9 9 4 . 
O. Kraft and D. Plachky: Bounds for the power of likelihood ratio test and their asymptotic 
properties. Ann. Math. Statist. 41 (1970), 1646—1654. 
S. Kullback, J. C Keegel, and J. H. Kullback: Topics in Statistical Information Theory. 
Springer-Verlag, Berlin —Heidelberg —New York 1987. 
H. Kiinsch: Thermodynamics and statistical analysis of Gaussian random fields. Z. Wahrsch. 
verw. Geb. 58 (1981) 4 0 7 - 4 2 1 . 
E. L. Lehman: Testing Statistical Hypotheses. J. Wiley, New York 1959. 

F. Lie:e: Hellinger integrals of diffusion processes. Statistics 17 (1986), 63 — 78. 
F. Liese and I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. 
J. Memin and A. N. Shiryayev: Distances de Hellinger-Kakutani des lois correspondant 
a acroissements independants. Z. Wahrsch. verw. Geb. 70 (1985), 67—89. 
T. Nemetz: On the ^-divergence rate for Markov-dependent hypotheses. Problems Control 
Inform. Theory 5(1974), 147-155 . 
C M. Newman: The inner product of path space measures corresponding to random 
processes with independent increments. Bull. Amer. Math. Soc. 78 (1982), 268 — 272. 
C M. Newman: The orthogonality of independent increment processes. In: Topics in 
Probability Theory (D. W. Strook, S. R. S. Varadhan, eds.), Convent Inst, of Math. Sciences, 
New York 1973, pp. 9 3 - 1 1 1 . 
C M. Newman and B. W. Stuck: Chernoff bounds for discriminating between two Markov 
processes. Stochastics 2 (1979), 139—153. 
J. Oosterhooff and W. R. van Zwett: A note on contiguity and Hellinger distance. In: 
Contributions to Statistics (J. Hajek Memorial Volume, J. Jureckova, ed.), Reidel, Dor­
drecht 1979. 
A. Perez: Notions generalises d'incertitude, d'entropie et d'information du point de vue 
de la theorie de martingales. In: Trans. 1st Prague Conf. on Inform. Theory, Statist. Dec. 
Functions, Random Processes. Publ. House Czechosl. Acad. Sci., Prague 1957, pp. 183 —206. 
A. Perez: Generalization of ChernofTs result on the asymptote discernibility of two random 
processes. Colloq. Math. Soc. Janos Bolyai 9 (1974), 619 — 632. 

287 



[29] M. S. Pinsker: Information and Information Stability of Random Variables and Processes. 
Holden-Day, San Francisco 1964. 

[30] A. Rényi: On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Probab. 
Theory Math. Statist., Vol. 1, Berkeley Univ. Press, Berkeley 1961, pp. 447—561. 

[31] I. Vajda: Limit theorems for total variation of cartesian product measures. Studia Sci. 
Math. Hungar. 6(1971), 3 1 7 - 3 3 3 . 

[32] I. Vajda: Theory of Statistical Inference and Information. Kluwer, Dordrecht—Boston 
1989. 

[33] A. Wald: Statistical Decision Functions. J. Wiley, New York 1961. 

Ing. Igor Vajda, CSc, Ústav teorie informace a automatizace CSA V {Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 
182 08 Praha 8. Czechoslovakia. 

288 


		webmaster@dml.cz
	2012-06-05T21:17:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




