Kybernetika

Antonín Tuzar

Optimal discrete approximation of continuous linear operators applicable to control problems

Kybernetika, Vol. 21 (1985), No. 4, 287--297
Persistent URL: http://dml.cz/dmlcz/125455

Terms of use:

© Institute of Information Theory and Automation AS CR, 1985
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

OPTHMAL DISCRETE APPROXIMATION OF CONTINUOUS LINEAR OPERATORS APPLICABLE TO CONTROL PROBLEMS

ANTONIN TUZAR

This article is devoted to some problems of optimal discrete approximation of continuous linear operators. It presents continuation of our work [18] and brings a more general theorem of approximation (Theorem 2.1), some examples of the form of cardinal spline-functions (in Sec. 3) and an example of solution of a simple optimum control problem (Sec. 4), on which we try to compare the current and new optimal formulae for derivatives. Some necessary facts and notations are introduced in Section 1. Our results are based on a theory which was originally developed for purposes of numerical quadratures and cubatures and for the interpolation [11], [13], [14], [15]. Bibliographical notes see e.g. in [7], [10]. In the following we deal mostly with approximation of derivatives.

1. THEORETICAL BACKGROUND

Let H be a real Hilbert space with the scalar product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$. Let $\langle h, \cdot\rangle$ and $\left\langle\varphi_{1}, \cdot\right\rangle, \ldots,\left\langle\varphi_{u}, \cdot\right\rangle$ be some bounded linear functionals on H. We shall approximate h by the expression $\sum_{i=1}^{n} c_{i} \varphi_{i}$ with c_{i} real in such a way that the norm of error functional will be minimized:

$$
\begin{equation*}
\left\|h-\sum_{i=1}^{n} c_{i}^{0} \varphi_{i}\right\|=\min _{c}\left\|h-\sum_{i=1}^{n} c_{i} \varphi_{i}\right\|, \quad \text { where } \quad c \in \mathbb{R}^{n} . \tag{1.1}
\end{equation*}
$$

The coordinates of $\boldsymbol{c}^{0}=\left(c_{1}^{0}, \ldots, c_{n}^{0}\right)$ are called the optimal coefficients. The elements $\varphi_{i}, i=1, \ldots, n$ are supposed to be linearly independent. Then they form a natural basis of a linear n-dimensional subspace $S \subset H$. It is easy to prove the existence of the unique set of linearly independent elements $\sigma_{j} \in S, j=1, \ldots, n$, for which the following conditions hold

$$
\begin{equation*}
\left\langle\varphi_{i}, \sigma_{j}\right\rangle=\delta_{i j} ; \quad i, j=1, \ldots, n \tag{1.2}
\end{equation*}
$$

Here $\delta_{i j}$ is Kronecker's symbol. We call this set $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ the cardinal basis of S. Our following concept is based on

Theorem 1.1. The real numbers $c_{1}^{0}, \ldots, c_{n}^{0}$ are optimal coefficients in the approximation of bounded linear functional $\langle h, \cdot\rangle$ on H by means of $\left\langle\sum_{i=1}^{n} c_{i} \varphi_{i}, \cdot\right\rangle$, iff

$$
\begin{equation*}
c_{j}^{0}=\left\langle h, \sigma_{j}\right\rangle, \quad j=1, \ldots, n, \tag{1.3}
\end{equation*}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are given as the solution of system (1.2). For $h \in S$ (1.1) is equal to zero.
Proof. The nearest element in S to the given $h \in H$ is the orthogonal projection of h to S. Therefore $h-\sum_{i=1}^{n} c_{i}^{0} \varphi_{i}$ is orthogonal to all elements σ_{j} of the cardinal
basis basis

$$
\left\langle\sigma_{j}, h-\sum_{i=1}^{n} c_{i}^{0} \varphi_{i}\right\rangle=0, \quad j=1, \ldots, n,
$$

which, using the property (1.2), immediately leads to (1.3).

2. APPROXIMATION OF DERIVATIVES ON SOBOLEV SPACE

We shall investigate the optimal coefficients of formulae, which approach the linear bounded operators on Sobolev spaces $H^{q}(a, b)$ with integer $q \geqq 2$. The elements of $H^{q}(a, b)$ are absolutely continuous functions on $[a, b]$ with quadratic integrable generalized (in sense of theory of distributions) derivatives of order q. The scalar product and the corresponding norm are introduced in the following manner (see, e.g. [3] or [15], Chapter XIV, § 4). Let be given q arbitrary points

$$
\begin{equation*}
-\infty<a<x_{1}<\ldots<x_{q}<b<+\infty . \tag{2.1}
\end{equation*}
$$

and put

$$
\begin{gather*}
\langle f, g\rangle_{H}=\int_{a}^{b} f^{(q)}(x) g^{(q)}(x) \mathrm{d} x+\sum_{i=1}^{q} f\left(x_{i}\right) g\left(x_{i}\right), \tag{2.2}\\
\|f\|_{H}^{2}=\langle f, f\rangle_{H} . \tag{2.3}
\end{gather*}
$$

This norm is equivalent to the usual norm

$$
\begin{equation*}
\|f\|^{2}=\sum_{i=0}^{q} \int_{a}^{b}\left[f^{(i)}(x)\right]^{2} \mathrm{~d} x \tag{2.4}
\end{equation*}
$$

The main advantage of the norm given by $(2.2)-(2.3)$ is connected with the fact that we obtain the elements of the linear subspace S in a very simple form. Namely we will show that the functionals of the form

$$
\left\langle\varphi_{p, y}, f\right\rangle_{H}=f^{(p)}(y), \quad a<y<b, \quad 0 \leqq p<q
$$

are generated by spline functions, i.e. $\varphi_{p, y}$ are piecewise polynomials. Introducing another norm, e.g. (2.4), this will not be true.
The following inequalities are well known as the Sobolev imbedding theorem:

$$
\begin{equation*}
\left\|f^{(p)}\right\|_{C_{(a, b)}} \leqq K\|f\|_{H}, \quad p=0,1, \ldots, q-1 \tag{2.5}
\end{equation*}
$$

where $q>1$ and K does not depend on $f \in H^{q}(a, b)$. Therefore the values of function and its derivatives of order less then q in given interior points of $] a, b$ [are linear bounded functionals on $H^{q}(a, b)$ and so there is reasonable to find the optimal approximations for them using Theorem 1.1. We will find the approximative formulae for evaluation of some derivative using the values of function and its derivatives of lower order in the points of a given net. Generally, let be given the points

$$
\begin{align*}
& a<x_{01}<\ldots<x_{0 n_{0}}<b \\
& a<x_{11}<\ldots<x_{1 n_{1}}<b \tag{2.6}\\
& \ldots \ldots \ldots \ldots \\
& a<x_{p 1}<\ldots<x_{p n_{g}}<b
\end{align*}
$$

where $0 \leqq p \leqq q-1, q>1$. Moreover, suppose that $n_{0} \geqq q$ and that the points (2.1) are some arbitrary, but fixed of $x_{01}, \ldots, x_{0 n_{0}}$. We introduce the bounded linear functionals on $H^{q}(a, b)$, for which

$$
\begin{gather*}
\left\langle\varphi_{k l}, f\right\rangle_{H}=f^{(k)}\left(x_{k l}\right), \quad \forall f \in H^{4}(a, b) \tag{27}\\
k=0, \ldots, p ; \quad l=1, \ldots, n_{k}
\end{gather*}
$$

Those functionals are linearly independent. Indeed, in $H^{q}(a, b)$ there evidently exist elements $\psi_{k l}$ such that $\psi_{k l}^{(k)}\left(x_{k l}\right)=1$ and $\psi_{s t}^{(s)}\left(x_{s t}\right)=0$ for all remainding ordered pairs $(s, t) \neq(k, l)$. Let us suppose

$$
\sum_{s, t} \lambda_{s t} \varphi_{s t}=0
$$

where not all $n_{0}+n_{1}+\ldots+n_{p}$ constants $\lambda_{s t}$ are equal to zero. Multiplying the left side scalarly in $H^{q}(a, b)$ by $\psi_{k l}$, we obtain

$$
\left\langle\psi_{k l}, \sum_{s, t} \lambda_{s t} \varphi_{s t}\right\rangle_{H}=\lambda_{k l}
$$

therefore all $\lambda_{k l}=0$ and this contradiction proves the linear independency of $\varphi_{k l}$. We denote by S the linear subspace spanned on all $\varphi_{k i}$ defined by (2.7). This subspace S is, as we have just prooved, n-dimensional, where

$$
\begin{equation*}
n=n_{0}+n_{1}+\ldots+n_{p} \tag{2.8}
\end{equation*}
$$

The set of all elements $\varphi_{k l}$ is the natural basis of S. The cardinal basis in S consists of elements $\sigma_{k l}$ with the following properties:

$$
\begin{equation*}
\left\langle\varphi_{k l}, \sigma_{s t}\right\rangle=\delta_{k s} \delta_{t!} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
k, s & =0,1, \ldots, p \\
l & =1, \ldots, n_{k} \\
t & =1, \ldots, n_{s}
\end{aligned}
$$

The system of n equations (2.9), where n is given by (2.8), has exactly one solution
of the form

$$
\begin{equation*}
\sigma_{s t}=\sum_{u, v} \lambda_{s t u v} \varphi_{u v} \tag{2.10}
\end{equation*}
$$

where $\lambda_{\text {stuv }}$ are real constants. This fact follows from linear independency of the elements $\varphi_{u v}$, as the matrix of linear system (2.9) after substitution from (2.10) is the Gramm matrix $\left[\left\langle\varphi_{k}, \varphi_{s t}\right\rangle\right]_{k, l, s, t}$, which is necessarily regular. The elements $\varphi_{k i}$ with properties (2.9) and generally the elements of the linear subspace S can be found using the following

Theorem 2.1. Let the points (2.1) be given, let $y \in] a, b[$ and let p be an integer such that $0 \leqq p<q, q>1$. Then the unique element $\psi \in H^{q}(a, b)$, such that

$$
\begin{equation*}
\langle\psi, f\rangle_{H}=f^{(p)}(y), \quad \forall f \in H^{q}, \tag{2.11}
\end{equation*}
$$

is the solution of the following boundary value problem:

$$
\begin{gather*}
\left.\psi^{(2 q)}(x)=0, \quad x \in\right] a, b\left[-\bigcup_{i=1}^{u}\left\{x_{i}\right\}-\{y\},\right. \tag{2.12}\\
(-1)^{q-p}\left[\psi^{(2 q-p-1)}\left(y_{+}\right)-\psi^{(2 q-p-1)}\left(y_{-}\right)\right]=\left\{\begin{array}{l}
1-\psi(y), \text { if } p=0 \\
\text { and } y=x_{i} \text { for some } \\
i=1, \ldots, q, \\
1 \quad \text { otherwise }
\end{array}\right. \tag{2.13}
\end{gather*}
$$

$$
(-1)^{q+1}\left[\psi^{(2 q-1)}\left(x_{i+}\right)-\psi^{(2 q-1)}\left(x_{i-}\right)\right]=\psi\left(x_{i}\right), \quad i=1, \ldots, q, \quad x_{i} \neq y,
$$

$$
\psi^{(q)}(a)=\psi^{(q)}(b)=\psi^{(q+1)}(a)=\psi^{(q+1)}(b)=\ldots=\psi^{(2 q-1)}(a)=\psi^{(2 q-1)}(b)=0
$$

$$
\begin{equation*}
\psi(\cdot), \ldots, \psi^{(2 q-p-2)}(\cdot) \text { are continuous on }[a, b] . \tag{2.16}
\end{equation*}
$$

Denoting by $(z)_{+}=\max (0, z), z \in \mathbb{R}^{1}$ we can express the function $\psi(\cdot)$ in the form

$$
\begin{equation*}
\psi(x)=\eta_{q-1}(x)+\frac{(-1)^{q-p}}{(2 q-p-1)!}(x-y)_{+}^{2 q-p-1}+\sum_{i=1}^{q} \frac{(-1)^{q-1} \psi\left(x_{i}\right)}{(2 q-1)!}\left(x-x_{i}\right)_{+}^{2 q-1} \tag{2.17}
\end{equation*}
$$

where $\eta_{q-1}(\cdot)$ is a suitable polynomial of order less than q.
Proof. According to the Sobolev imbedding theorem (2.5) for an arbitrary $y \in$ $\in] a, b[$ and $0 \leqq p<q, q \geqq 2$ the linear functional (2.11) is bounded. The existence and uniqueness of ψ in (2.11) follows from the theorem by F. Riesz.

On the other hand it is easy to verify that the solution of boundary value problem (2.12) $\div(2.16)$ can be found in the form (2.17). Notice that the unknown q coefficients of the polynomial η_{q-1} and q values $\psi\left(x_{i}\right), i=1, \ldots, q$ are determined from the equations $\psi^{(q)}(b)=\psi^{(q+1)}(b)=\ldots=\psi^{(2 q-1)}(b)=0$ (q independent equations) and from the substitution of $x_{i}, i=1, \ldots, q$ into (2.17) (also q independent equations). Let $\psi(\cdot)$. be the function (2.17). Using integration by parts and denoting $a=x_{0}$,
$b=x_{q+1}$, we express the scalar product as follows:

$$
\begin{gather*}
\langle\psi, f\rangle_{H}=\int_{x_{0}}^{x_{q+1}} \psi^{(q)}(x) f^{(q)}(x) \mathrm{d} x+\sum_{i=1}^{q} \psi\left(x_{i}\right) f\left(x_{i}\right)= \tag{2.18}\\
\left.\psi^{(q)}(x) f^{(q-1)}(x)\right|_{x_{0}} ^{x_{q}+1}-\psi^{(q+1)}(x) f^{(q-2)}(x)| |_{0}^{x_{0}+1}+\ldots \\
\cdots+\left.(-1)^{q-p-1} \psi^{(2 q-p-1)}(x) f^{(p)}(x)\right|_{x_{0}} ^{-y}+(-1)^{q-p-1} \psi^{(2 q-p-1)}(x) . \\
\left.\cdot f^{(p)}(x)\right|_{y_{q}+1} ^{x_{q}+1}+\ldots+\left.\sum_{i=0}^{q}(-1)^{q-1} \psi^{(2 q-1)}(x) f(x)\right|_{x_{i}+1} ^{x_{i+1}+1}+ \\
+(-1)^{q} \int_{x_{0}}^{x_{q}+1} \psi^{(2 q)}(x) f(x) \mathrm{d} x+\sum_{i=1}^{q} \psi\left(x_{i}\right) f\left(x_{i}\right) .
\end{gather*}
$$

Using properties (2.12) $\div(2.16)$ the equality (2.11) can be verified.
Remark. From the previous theorem it follows that the elements of linear subspace S are spline-functions of order equal or less than $2 q-1$. Moreover, in the intervals $] a, \min \left(x_{1}, y\right)[$ and $] \max \left(x_{q}, y\right), b[$ they are equal to polynomials of order $r \leqq$ $\leqq q-1$. For $x \in] a, \min \left(x_{1}, y\right)[$ this assertion follows directly from (2.17) and for $x \in] \max \left(x_{q}, y\right), b[$ from the conditions (2.15) in b.

Example. Let be $a=0, b=1, p=1, q=2$ and $x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}, y=\frac{1}{2}$. In this case using expression (2.17) there is
(2.19) $\quad \psi(x)=a_{1} x+a_{0}-\frac{1}{2}\left(x-\frac{1}{2}\right)_{+}^{2}-\frac{1}{6}\left[1 /\left(\frac{1}{4}\right)\left(x-\frac{1}{4}\right)_{+}^{3}+\psi\left(\frac{3}{4}\right)\left(x-\frac{3}{4}\right)_{+}^{3}\right]$.

Denoting by $1(\cdot)$ the unit jump and by $\delta(\cdot)$ the Dirac delta distribution, we express

$$
\begin{aligned}
& \psi^{\prime \prime}(x)=-1\left(x-\frac{1}{2}\right)-\psi\left(\frac{1}{4}\right)\left(x-\frac{1}{4}\right)_{+}-\psi\left(\frac{3}{4}\right)\left(x-\frac{3}{4}\right)_{+}, \\
& \psi^{\prime \prime \prime}(x)=-\delta\left(x-\frac{1}{2}\right)-\psi\left(\frac{1}{4}\right) 1\left(x-\frac{1}{4}\right)-\psi\left(\frac{3}{4}\right) 1\left(x-\frac{3}{4}\right),
\end{aligned}
$$

and applying conditions (2.15) at $b=1$, we obtain the solution of equations $\psi^{\prime \prime}(1)=$ $=\psi^{\prime \prime \prime}(1)=0$ as $\psi\left(\frac{1}{4}\right)=-2, \psi\left(\frac{3}{4}\right)=2$. Now it is possible to determine the coefficients a_{0}, a_{1} using the substitution $x=\frac{1}{4}$ and $x=\frac{3}{4}$ into (2.19):

$$
\begin{aligned}
-2 & =\frac{1}{4} a_{1}+a_{0}, \\
2 & =\frac{3}{4} a_{1}+a_{0}+\frac{1}{2}\left(\frac{3}{4}-\frac{1}{2}\right)^{2}-\frac{1}{6}\left\{2\left(\frac{3}{4}-\frac{1}{4}\right)^{3}\right\} .
\end{aligned}
$$

Solving this system, we obtain

$$
\begin{equation*}
\psi(x)=\frac{383}{48} x-\frac{767}{192}-\frac{1}{2}\left(x-\frac{1}{2}\right)_{+}^{2}+\frac{1}{3}\left[\left(x-\frac{1}{4}\right)_{+}^{3}-\left(x-\frac{3}{4}\right)_{+}^{3}\right] . \tag{2.20}
\end{equation*}
$$

There is not difficult to verify that for $x \in] 0, \frac{1}{4}[$ and for $x \in] \frac{3}{4}, 1[$ the function (2.20) its equal to a polynomial of order $q-1=1$.

Using Theorem 2.1 it is possible in every concrete case to evaluate the corresponding elements of the natural basis. As their linear combinations have obligatory equal
structure we can modify this method for computation of elements of cardinal basis. According to the previous remark we shall call this elements cardinal splines.

Let be $0 \leqq p<s<q$ and let $y \in] a, b[$. From Theorems 1.1 and 2.1 we can compute the optimal approximation of derivative $f^{(s)}(y)$ for arbitrary $\left.y \in\right] a, b[$, namely

$$
\begin{equation*}
f^{(s)}(y) \doteq \sum_{i=0}^{p} \sum_{j=1}^{n_{i}} \sigma_{i j}^{(s)}(y) f^{(i)}\left(x_{i j}\right) . \tag{2.21}
\end{equation*}
$$

Analogously the optimal quadrature formula for $f \in H^{q}(a, b)$ is of the form

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \doteq \sum_{i=0}^{p} \sum_{j=1}^{n_{i}}\left(\int_{a}^{b} \sigma_{i j}(x) d x\right) f^{(i)}\left(x_{i j}\right) \tag{2.22}
\end{equation*}
$$

3. CARDINAL SPLINES FOR EQUIDISTANT PARTITION

Since now we shall consider the simplest case $p=0$ and

$$
\begin{equation*}
\left\langle\varphi_{i}, f\right\rangle_{H}=f\left(x_{i}\right), \quad i=1, \ldots, n, \quad \forall f \in H^{q}(a, b) \tag{3.1}
\end{equation*}
$$

where $n \geqq q>1$ and

$$
\begin{equation*}
x_{i}=a+\frac{i}{n+1}(b-a), \quad i=0,1, \ldots, n+1 \tag{3.2}
\end{equation*}
$$

Especially, $x_{0}=a, x_{n+1}=b . S$ is the linear subspace of $H^{q}(a, b)$ spanned on $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$.

From Theorem 2.1 it follows
Proposition 3.1. The cardinal splines $\sigma_{i} \in S$, where S is the linear subspace in $H^{q}(a, b)$ consisting of elements $\varphi_{i}, i=1, \ldots, n$, with properties (3.1), are the functions of the form

$$
\sigma_{i}(x)= \begin{cases}\sum_{j=0}^{q-1} a_{i j} x^{j}+\sum_{j=1}^{n-1} \lambda_{i j}\left(x-x_{j}\right)_{+}^{2 q-1}, & x \in\left[x_{0}, x_{n}[\right. \tag{3.3}\\ \sum_{j=0}^{q-1} b_{i j} x^{j}, & x \in\left[x_{n}, x_{n+1}\right]\end{cases}
$$

with the properties

$$
\begin{equation*}
\sigma_{i}\left(x_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n \tag{3.4}
\end{equation*}
$$

There is $\sigma_{i} \in C^{(2 q-2)}(a, b)$ and the $2 q+n-1$ coefficients $a_{10}, \ldots, a_{i q}, \lambda_{i 1}, \ldots, \lambda_{i, n-1}$, $b_{i 0}, \ldots, b_{i q}$ are the (unique) solution of the linear system of independent n equations (3.4) and $2 q-1$ equations

$$
\begin{equation*}
\sigma_{i}^{(k)}\left(x_{n}-\right)=\sigma_{i}^{(k)}\left(x_{n}+\right), \quad k=0,1, \ldots, 2 q-2 \tag{3.5}
\end{equation*}
$$

Remark. The assertion about the independency of equations (3.4), (3.5) can be verified ([2]) also directly, if we analyse the matrix of the corresponding linear
system. We present here some numerical results, based on Proposition 3.1. In our examples we suppose the interval $[a, b]$ transformed to the special form $[0,(n+1) h]$ In the tables there are values of coefficients in the expression (3.3).

Example 3.1.

$$
n=3, q=2
$$

i	$a_{i 0}$	$a_{i 1}$	$\lambda_{i 1}$	$\lambda_{i 2}$	$b_{i 0}$	$b_{i 1}$
1	$\frac{9}{4}$	$-\frac{5}{4 h}$	$\frac{1}{4 h^{3}}$	$-\frac{2}{4 h^{3}}$	$-\frac{3}{4}$	$\frac{1}{4 h}$
2	$-\frac{3}{-2}$	$\frac{3}{2 h}$	$-\frac{1}{2 h^{3}}$	$\frac{2}{2 h^{3}}$	$\frac{9}{2}$	$-\frac{3}{2 h}$
3	$\frac{1}{4}$	$-\frac{1}{4 h}$	$\frac{1}{4 h^{3}}$	$-\frac{2}{4 h^{3}}$	$\cdots-11$	$\frac{5}{4}$

Example 3.2.

$$
n=4, q=2
$$

\boldsymbol{i}	$a_{i 0}$	$a_{i 1}$	$\lambda_{i 1}$	$\lambda_{i 2}$	$\lambda_{i 3}$	$b_{i 0}$	$b_{i 1}$
1	$\frac{84}{15}$	$-\frac{19}{15 h}$	$\frac{4}{15 h^{3}}$	$-\frac{9}{15 h^{3}}$	$\frac{6}{15 h^{3}}$	$\frac{4}{15}$	$-\frac{1}{15 h}$
2	$\frac{8}{5}$	$\frac{8}{5 h}$	$-\frac{3}{5 h^{3}}$	$\frac{8}{5 h^{3}}$	-7	8	$\frac{2}{5 h^{3}}$
3	$\frac{2}{5}$	$-\frac{2}{5 h}$	$\frac{2}{5 h^{3}}$	$-\frac{7}{5 h^{3}}$	$\frac{8}{5 h^{3}}$	$\frac{32}{5}$	$\cdots \frac{8}{5 h}$
4	$-\frac{1}{15}$	$\frac{1}{15 h}$	$-\frac{1}{15 h^{3}}$	$\frac{6}{15 h^{3}}$	$-\frac{9}{15 h^{3}}$	$-\frac{61}{15}$	$\frac{19}{15 h}$

Example 3.3.

$$
n=5, q=2
$$

i	$a_{i 0}$	$a_{i 1}$	$\lambda_{i 1}$	$\lambda_{i 2}$	$\lambda_{i 3}$	$\lambda_{i 4}$	$b_{i 0}$	$b_{i 1}$
1	127	71	15	34	24	6	5	1
	$\overline{56}$	$\overline{56 h}$	$\overline{56} h^{3}$	$\overline{56} h^{3}$	$56 h^{3}$	$56 h^{3}$	56	$\overline{56 / 2}$
2	45	45	17	46	44	18	15	3
	28	$\overline{28 / 2}$	$28 h^{3}$	$\overline{28 h^{3}}$	$28 h^{3}$	$\overline{28 h^{3}}$	28	28 h
3	3		3	11	16	11	15	3
	$\overline{7}$	7 h	$\overline{7 h^{3}}$	$\overline{7 h^{3}}$	$\overline{7 h^{3}}$	$7 h^{3}$	7	$\overline{7 h}$
4		3	3	18	44	46	225	45
	$-\frac{28}{}$	$\overline{28 h}$	28 ${ }^{3}$	$\overline{28 h^{3}}$	$-\overline{28} h^{3}$	$28 /{ }^{3}$	28	28h
5	1	-1			24	34	355	71
	56	56h	$56 h^{3}$	$56 h^{3}$	$56 h^{3}$	$56 h^{3}$	56	$\overline{56 h}$

Example 3.4.									
i	$a_{i 0}$	$a_{i 1}$	$a_{i 2}$	$\lambda_{i 1}$	$\lambda_{i 2}$	$\lambda_{i 3}$	$b_{i 0}$	$b_{i 1}$	$b_{i 2}$
1	$\frac{448}{132}$	$-\frac{409}{132 h}$	$\frac{93}{132 h^{2}}$	$-\frac{2}{132 h^{5}}$	$\frac{6}{132 h^{5}}$	$-\frac{6}{132 h^{5}}$	$-\frac{332}{132}$	$\frac{191}{132 h}$	$-\frac{27}{132 h^{2}}$
2	$-\frac{187}{44}$	$\frac{255}{44 h}$	$-\frac{71}{44 h^{2}}$	$\frac{2}{44 h^{5}}$	$-\frac{6}{44 h^{5}}$	$\frac{6}{44 h^{5}}$	$\frac{596}{44}$	$-\frac{345}{44 h}$	$\frac{49}{44 h^{2}}$
3	$\frac{96}{44}$	$-\frac{145}{44 h}$	$\frac{49}{44 h^{2}}$	$-\frac{2}{44 h^{5}}$	$\frac{6}{44 h^{5}}$	$-\frac{6}{44 h^{5}}$	$-\frac{684}{44}$	$\frac{445}{44 h}$	$-\frac{71}{44 h^{2}}$
4	$-\frac{52}{132}$	$\frac{79}{132 h}$	$-\frac{27}{132 h^{2}}$	$\frac{2}{132 h^{5}}$	$-\frac{6}{132 h^{5}}$	$\frac{6}{132 h^{5}}$	$\frac{728}{132}$	$-\frac{521}{132 h}$	$\frac{93}{132 h^{2}}$

This concrete cardinal bases can be used as in (2.21), (2.22) for determining of optimal formutae for different linear operators.

4. EXAMPLE OF NUMERICAL SOLUTION OF OPTIMUM CONTROL PROBLEM

Let us minimize the integral cost function

$$
\mathscr{F}(u)=\frac{1}{2} \int_{0}^{T}\left(x^{2}(t)+u^{2}(t)\right) \mathrm{d} t
$$

where $T>0$ is given and

$$
\begin{gathered}
\dot{x}(t)=-a x^{\prime}(t)+u(t), \quad a>0 \\
x^{\prime}(0)=x_{0}
\end{gathered}
$$

Using the Pontrjagin principle, the Hamilton function is

$$
\mathscr{H}(\psi, x, u)=\frac{1}{2} \psi_{0}\left(x^{2}+u^{2}\right)+\psi_{1}(-a x+u),
$$

where we can put $\psi_{0}=-1$.
The optimal control is therefore

$$
u^{*}(t)=\psi_{1}(t)
$$

The function $\psi_{1}(t)$ is the solution of the following boundary value problem:

$$
\begin{array}{ll}
\left.\dot{x}(t)=-a x_{1}^{(} t\right)+u(t), & \left.x_{1}^{\prime} 0\right)=x_{0} \\
\psi_{1}(t)=x(t)+a \psi_{1}(t), & \psi_{1}(T)=0
\end{array}
$$

which solved can be analytically and there is

$$
\psi_{1}(t)=x_{0} \frac{\mathrm{e}^{\lambda t}-\mathrm{e}^{\lambda(2 T-t)}}{\lambda-a+(\lambda+a) \mathrm{e}^{2 \lambda T}}, \quad \lambda=\sqrt{ }\left(a^{2}+1\right)
$$

This boundary value problem was discretized by means of the following formulae:
(1) Optimal formula for $f \in H^{2}$, using the values of $f(\cdot)$ in 3 points with $h=x_{i+1}-$

$$
-x_{i}, i=0,1, \ldots, n+1
$$

$$
f^{\prime}\left(x_{j}\right) \doteq \frac{1}{4 h}\left[-5 f\left(x_{j}\right)+6 f\left(x_{j+1}\right)-f\left(x_{j+2}\right)\right], \quad j=1, \ldots, n-1
$$

$$
f^{\prime}\left(x_{j}\right) \doteq \frac{1}{2 h}\left[f\left(x_{j+1}\right)-f\left(x_{j-1}\right)\right], \quad j=1, \ldots, n
$$

$$
f^{\prime}\left(x_{j}\right) \doteq \frac{1}{4 h}\left[f\left(x_{j-2}\right)-6 f\left(x_{j-1}\right)+5 f\left(x_{j}\right)\right], \quad j=2, \ldots, n
$$

This formula was derived using the cardinal splines from Example 3.1. It is precise for polynomials of order 1.
(2) Classical three-points formula derived using the Lagrange interpolation, precise for polynomials of order 2

$$
\begin{aligned}
& f^{\prime}\left(x_{j}\right) \doteq \frac{1}{2 h}\left[-3 f\left(x_{j}\right)+4 f\left(x_{j+1}\right)-f\left(x_{j+2}\right)\right], \quad j=1, \ldots, n-1 \\
& f^{\prime}\left(x_{j}\right) \doteq \frac{1}{2 h}\left[f\left(x_{j+1}\right)-f\left(x_{j-1}\right)\right], \quad j=1, \ldots, n \\
& f^{\prime}\left(x_{j}\right) \doteq \frac{1}{2 h}\left[f\left(x_{j-2}\right)-4 f\left(x_{j-1}\right)+3 f\left(x_{j}\right)\right], \quad j=2, \ldots, n
\end{aligned}
$$

(3) The common Euler method.

The results of computation (due by Z. Beran in [2]) for $T=1, a=1, x_{0}=1$ with the step $h=0,2$ on $[0,1]$ are given in the following table, where $\mathrm{e}(\cdot)$ is the error in comparison with the analytic solution. For $u_{i}^{*}=\psi_{1 i}$ we used the first, for x_{i} the third formula in (1) and (2). As the conditions for x_{i} are given at the initial point and those for u_{i}^{*} at the final point of the interval, this choice seems to be the simplest one, although evidently not the only possible way of application of discretization formulas.
(Received April 13, 1984.)

REFERENCES

[1] Н. С. Бахванов: Численные методы, Наука, Москва 1973.
[2] Z. Beran: Optimalizace diskrétniho popisu spojitých systémů v teorii regulace. Candidate of Sciences Thesis, ÚTIA ČSAV, Praha 1980.
[3] M. Golomb: Optimal approximating manifolds in L_{2}-spaces. J. Math. Anal. Appl. 12 (1965), 505-512.
[4] M. Golomb, and H. Weinberger: Optimal approximation and exros bounds. In: On Numerical Approximation (R. E. Langer, ed.), Univ. of Wisconsin Press, Madison 1959, pp. 117-190.
[5] A. S. B. Holland and B. N. Sahnery: The General Problem of Approximation and Spline Functions. Krieger Publishing Co., Huntington, N. Y. 1979.

Optimal formula					Lagrange's formula				Euler's method			
t_{i}	x_{i}	$\mathrm{e}\left(x_{i}\right)$	u_{i}	e(u_{i})	x_{i}	e(x_{i})	u_{i}	e(u_{i})	x_{i}	e(x_{i})	u_{i}	$\mathrm{e}\left(u_{i}\right)$
0	1	0	-0.406	-0.020	1	0	-0.359	0.027	1	0	-0.334	0.052
$0 \cdot 2$	0.766	$6 \cdot 9 \cdot 10^{-3}$	-0.293	-0.016	$0 \cdot 707$	-0.052	-0.246	0.031	0.733	-0.026	-0.234	0.043
$0 \cdot 4$	0.592	0.0124	-0.202	-0.012	$0 \cdot 509$	-0.071	-0.163	0.027	0.539	-0.040	-0.158	0.032
$0 \cdot 6$	0.463	0.016	-0.127	$-7 \cdot 8 \cdot 10^{-3}$	0.367	-0.080	-0.099	0.019	$0 \cdot 400$	-0.040	-0.097	$0 \cdot 022$
$0 \cdot 8$	$0 \cdot 368$	0.018	-0.061	$-3 \cdot 6 \cdot 10^{-3}$	0.267	-0.084	-0.048	$8 \cdot 9 \cdot 10^{-3}$	$0 \cdot 301$	-0.049	-0.046	0.011
1	$0 \cdot 302$	0.019	-	-	0.206	-0.076	-	-	0.231	-0.050	-	-

[6] T. A. Kilgore: A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm. J. Approx. Theory 24 (1978), 273-288.
[7] P. J. Laurent: Approximation et optimisation. Hermann, Paris 1972.
[8] T. Lyche and L. L. Schumaker: Local spline approximation methods. J. Approx. Theory 15 (1975), 294-325.
[9] G. Meinardus: Approximation der Funktionen, Theorie und numerische Methoden. SpringerVerlag, Berlin-Göttingen - Heidelberg-New York 1964.
[10] M. J. D. Powell: Approximation Theory and Methods. Cambridge University Press, Cambridge 1981.
[11] A. Sard: Best approximate integration formulae; best approximation formulae. Amer. J. Math. 71 (1949), 80-91.
[12] A. Sard: Optimal approximation. J. Funct. Anal. l, 2 (1967), 222-244.
[13] I. J. Schoenberg: Spline interpolation and best quadrature formulae. Bull. Amer. Math. Soc. 70 (1964), 143-148.
[14] С. Л. Соболев, И. Бабушка: Оптимизация численных методов. Aplikace matematiky 10 (1965), 2, 96-129.
[15] С. Л. Соболев: Введение в теориюкубатурных формул. Наука, Москва 1974.
[16] J. Stoer and R. Bulirsch: Introduction to Numerical Analysis. Springer-Verlag, Berlin-Heidelberg-New York 1980.
[17] A. Tuzar: Optimal Approximation of Linear Functionals in Hilbert Space with Applications to Numerical Methods. Research Report No. 988, ÚTIA ČSAV, 1979.
[18] A. Tuzar and Z. Beran: Optimization of the discrete description for continuous systems. Problems Control Inform. Theory 10 (1981), 2, 83-94.
[19] J. F. Traub and H. Wozniakowski: A General Theory of Optimal Algorithms. Academic Press, New York 1980.
[20] R. Varga: Functional Analysis and Approximation Theory in Numerical Analysis. Society for Industrial and Applied Mathematics, Philadelphia, Pensylvania 1971.

RNDr. Antonin Tuzar, CSC., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou věž 4, 18208 Praha 8. Czechoslovakia.

