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KYBERNETIKA — VOLUME 30 (1994), NUMBER 6, PAGES 701-713 

OUTPUT TRACKING FOR A FAMILY 
OF LINEAR PLANTS1 

L E O P O L D O J E T T O , S A U R O L O N G H I A N D A N N A M . P E R D O N 

For a given family of linear, continuous-time plants depending on a vector of parameters, 
the problem of designing a controller ensuring the exact tracking of a specified external 
reference is considered. Numerical aspects related to the implementation of the control law 
are addressed in order to improve the practical applicability of the proposed solution. 

1. INTRODUCTION 

In some classes of control problems the structure of the mathematical model of 
the plant to be controlled is known but some of its physical parameters may vary 
in a finite set. This happens, for instance, when different operating conditions of 
the same plant have to be taken into account or when sudden changes occur as a 
consequence of component failure [1], [3]. An appropriate controller design should 
guarantee the achievement of acceptable control requirements for the whole range 
of possible parameters. 

In this paper conditions ensuring an output tracking of a given external reference 
such that a zero steady state tracking error is attained in a finite time are inves­
tigated. This problem is called Robust Output Tracking Problem (briefly ROTP). 
From a theoretical point of view, a solution for the ROTP has been proposed in [4], 
under the assumption that each possible configuration of the plant be controllable 
and detectable. By extending the results stated in [11], [9], a feedback controller in 
the form of a linear periodic system was proposed in [4]. The controller is obtained 
by a set of linear, discrete-time time-invariant dead-beat controllers, one for each 
possible configuration of the plant. The control action consists in applying each 
time-invariant dead-beat controller for a sufficiently long time interval. 

The design of a dead-beat controller requires to compute a feedback gain F for 
the controllable pair (̂ 4, B) of each possible plant such that all the eigenvalues of 
the closed loop matrix (A + BF) are zero. Since the number of eigenvalues of A 
exceeds the number of columns of B, this problem is numerically ill-conditioned 
[12]. Actually, due to possible uncertainties in the coefficients of the matrices and to 

1 This work was supported by Ministero dell'Universita e della Ricerca Scientifica e Tecnologic 
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round-off errors, classical algorithms that compute the required feedback gain matrix 
F with accuracy of e (machine accuracy) can only guarantee closed loop eigenvalues 
with an accuracy of e1!", where v is the controllability index of the pair (A, B). This 
limits the practical applicability of the above control procedure only to those cases 
in which the dimension of the plant and the number of possible configurations are 
very small. 

To overcome these difficulties, the time-invariant dead-beat controller relative to 
each possible plant is replaced by a periodic time-varying dead-beat controller. The 
degree of freedom offered by the periodicity of the feedback gain allows to assign null 
closed-loop poles with e accuracy [13]. Two different strategies, are suggested for 
constructing such periodic controllers. Properties and performances of the resulting 
compensator are investigated in a real situation on a family of linearized models of 
an underwater vehicle [10]. 

2. PRELIMINARIES 

Let S(P) be the linear time-invariant continuous-time system described by 

x(t) = Ac(P)x(t) + Bc(P)u(t), (2.1) 

y(t) = Cc(l3)x(t) + Dc(P)u(t), (2.2) 

where /? is a vector of physical parameters taking value in a known, finite set 
9:={/?l,/?2,...,/?jv}, x(t) G ]R" is the state, u(t) G ]RP is the control input, 
y(t) G IR' is the output to be controlled (which is assumed to be measurable) 
and Ac(P), Bc(P), Cc(/?) and Dc(0) are real matrices whose entries depend on 
P. Assume that S(P) is controllable and detectable for all /? € 6 . Let r(t) be a 
reference signal generated as the free output response of the linear time-invariant 
continuous-time system SG described by 

i(t) = AG£(t), (2.3) 

r(t) = CGm, (2-4) 

where £(t) G IRm is the state. 
The ROTP consists in finding a linear discrete-time controller £ c such that, for 

every initial state of S(@), SG and Ec , the output y(t) of S(/3) track the reference 
signal r(t) with a zero steady-state error attained in a finite time, independently of 
the actual value of /?. The stabilization problem for system (2.1), (2.2) has been 
considered in [11], [9], where a discrete-time linear periodic compensator has been 
proposed. Following the line of [11], a solution of the ROTP has been proposed in 
[4] based on the hybrid control scheme shown in Figure 1. With reference to Figure 
1, ZOH denotes the Zero Order Hold circuit. The hold interval is assumed to be 
equal to the sampling period Tc of the samplers. The ZOH and the samplers are 
synchronized at t=0. The sampled plant £(/?) is described by 

x(k + l) = A(/3)x(k) + B(/3)u(k), (2.5) 

y(k) = C(p)x(k) + D((3)u(k), (2.6) 
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where A{/3) := eA^T<, B{/3) :_ J0
Te e A ^X T ° - T )_ c ( / ? )d r , C{P) := CC{P) and 

D{P) := Dc{P)- The values of these matrices for a particular /?,-, £ = 1,2,... , N, 
are denoted by A{j3i), B{0t), C{Pi) and _(/?,•). The value of the sampling period 
is chosen in such a way that: 
(a) the sampled plant £(/?) is reachable and observable, 
(b) there is no loss of observability due to sampling in the error system given by the 
parallel connection of the plant S{P) and of the reference signal generator sG. 

Conditions ensuring the fulfilment of the above requirements are well-known [2]. 

r(t) r(k)_ 
1 ВД 

|І У(k) 
V(Ч -c 

u(k) , ZDH S(ß) __/ 
|І У(k) 

? * 
-c 

t 
ZDH S(ß) Tc 

'-'-

Fig. 1. Control system structure. 

The linear periodic discrete-time compensator „ c solving the ROTP is given by 

_(„ + 1) = P{k) w{k) + Q{k) e{k), 

u{k) = M{k)w{k) + R{к)e{k), 

(2.7) 

(2.8) 

where w{k) £ IRM is the state, e{k) := r{k) — y{k) is the tracking error, and 
P(')> Q(')> M(-) and R{-) are periodic matrices of period _ (or, more briefly, _-
periodic) constructed as specified in the following. The compensator S c is designed 
to insure that for all /? £ 0 , for any initial state x{0) of system S{P), £(0) of SG 
and w{0) of £_•, the reference error e{k) and the control input u{k) of the sampled 
plant E(/?) satisfy 

e(Jb) = 0, _ ( „ ) - 0 , Vk>ka, (2.9) 

where ka is a finite positive integer. 
Taking into account the assumption that there is no loss of observability in the 

error system, condition (2.9) guarantees an exact tracking for each time instant and 
not only in correspondence of the sampling instants [4]. 

For each /?,-, {i = 1 , . . . ,N) , the dead-beat controller _ c which guarantees the 
state dead-beat control of system _(/?), for /? = Pi, described by 

щ{к+l) = Piw{к) + Qie{к), 

u{к) = MiW{к) + Rie{к), 

(2.10) 

(2.11) 

may be obtained as the series connection of a dead-beat observer E c together with 
a dead-beat feedback E;. 

Using the above N linear time-invariant compensators S_, define the --periodic 
matrices of Ec in the following way: 

P{k):=Pi, Q{k):=Qi, M{k) := M,-, R{k) := R{ 

VJbel-.-i,-.), i=l,...,N, (2.12) 
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P(k + u):=P(k), Q(k+u):=Q(k), M(k +u) := M(k), 

R(k + u):=R(k), (2.13) 

where kj := 2nj, j = 0,... ,N, and u := 2nN. In this way, in each interval [fc,-i, ki), 
the periodic compensator Ec coincides with the dead-beat controller £ l

c . Therefore, 
if the initial state £(0) of generator SG is zero, the state of the closed-loop system 
goes to zero, as well as y(k) and e(k), in a finite time interval less or equal to w, 
for all /? £ 0 and arbitrary initial states x(0) of S(/3) and w(0) of £ c . In fact, 
when P = Pi, in the time interval [0, fe,_i), the compensator E c does not produce 
any significative effect on the state of the closed-loop system, while, in the interval 
[fc,'_i,fc,) it coincides with £ c and, therefore it reduces to zero the state of the 
closed-loop system, as well as e(k) = r(k) — y(k) and u(k). After this time interval, 
the input e(k) and the state w(k) of the compensator E c are zero, then the control 
action produced by the compensator Ec is zero and the state of the closed-loop 
system is kept equal to zero. 

Observe that the above periodic compensator Ec is a solution of the ROTP for 
the special case of initial state £(0) = 0 of generator SG, i- e., reference signal r(t) = 0 
for all t > 0. The solvability conditions'of ROTP for the general case £(0) ^ 0 (i.e. 
r(t) ^ 0) are stated in the following theorem [5]. 

Theorem. The ROTP is solvable with the periodic compensator Ec described 
by (2.7), (2.8), (2.12), and (2.13) if and only if each possible configuration of 
the continuous-time plant S(fii), i = l,...,N, contains an internal model of the 
continuous-time external reference generator S c . 

If the condition of the above theorem is not satisfied, a continuous-time precom-
pensator could be connected to the plant £(/?), so that the series connection of 
the precompensator and the plant S(/3) contains a complete internal model of the 
reference signals for all /? € O (see, e. g., [7], [8]). 

3. NUMERICAL PROBLEMS - A ROBUST SOLUTION 

A key point in implementing the control law described above consists in the con­
struction of a gain matrix Fi which puts all the eigenvalues of the closed loop matrix 
A(Pi) + B(Pi)Fi as close as possible to zero, for each value /?,-. The crucial point 
for the effectiveness of the control scheme is that the controller E*c must bring the 
regulation error and the internal state of the system to zero in a finite time, when 
connected with S((3i), so that the successive application of the "wrong" controllers 
does not modify this situation or, at least, does not destabilize the system.' 

Given a controllable pair (A, B), with B of full column rank equal to m, it is well 
known that we can assign to the closed loop matrix II = A + BF only a Jordan 
form J satisfying the following conditions: 

(i) the larger dimension of the blocks in J cannot be smaller than v (the control­
lability index of the pair (A, B)), 

(ii) J cannot contain more then m blocks. 
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As a consequence, if the dimension of the state space exceeds the number of 
columns of B, the closed loop matrix H will have at least one block of dimension 
equal or greater than v in its Jordan form. In order to guarantee the dead-beat 
behavior, all the eigenvalues of H must be zero. In real applications, round-off errors, 
possible uncertainties in the coefficients of the matrices and the errors introduced by 
the used algorithms affect the performances of the control scheme. The sensitivity of 
the eigenvalues under parameter variations mainly depends on the Jordan structure 
of the matrix, and, in a non diagonalizable matrix, a perturbation of order c in the 
elements can propagate to a perturbation of order e1'" in an eigenvalue of multiplicity 
n. Moreover if more than one block is connected with the same eigenvalue, the 
presence of a block of larger dimension influences negatively the sensitivity of the 
eigenvalues of the other blocks [12]. 

In conclusion, the situation encountered in the considered control scheme is exact­
ly that which is worse: non diagonalizable matrix with multiple eigenvalues. The 
most reliable algorithms available [6] compute the required feedback gain matrix 
F within the machine accuracy e, but the accuracy guaranteed on the closed loop 
eigenvalues is only e1!". This accuracy on the closed-loop eigenvalues makes the 
tracking error e(k) and the control input u(k) become small, but not necessarily ze­
ro, in a finite time interval. This fact severely limits the applicability of the proposed 
control procedure. To overcome numerical limitations, so enhancing the practical 
applicability of the proposed control scheme, a time-varying periodic compensator 
El

c is introduced for achieving the regulation of the system £(/?,) in a finite time 
interval. For every i = I,..., N the compensator T,'c is designed as the connection of 
a dead-beat observer with a dead-beat periodic state feedback, the period being w,-. 
In order to specify the proposed periodic compensator Hc the following notations 
are introduced: 

Aа(ßi) := 

Bа(ßi) := 

Cа(ßi) := 

Dа(ß,) := 

A(ßiГ, 

[A(ßiГ-lB(ßi) A(ßiГ~2B(ßi) 

C(ßi) 
C(ßi)A(ßi) 

B(ßг)}: 

ÍC(ßi)A(ßiГ-K 
D(ßi) 

C(ßi)B(ßi) 
C(ßi)A(ßi)B(ßi) 

0 
D(ßi) 

C(ßi)B(ßi) 

VC(ßi)A(ßiГ^B(ßi) C(ßi)A(ßiГ-3B(ßi) 

0 
0 
0 

D(ßi)ï 

where the integer w; is the period of T?c, that it is assumed to be greater or equal 
to the minimum between the controllability index of the pair (A(j3i), B(/?,•)) and 
the observability index of the pair (C(Pi), A(fii)). For the construction of the dead-
beat periodic state feedback law, two possibilities can be considered: a "dynamic" 
feedback law and a periodic "non dynamic" feedback law [13]. The two possibilities 
have been investigated in different applications, and the "dynamic" feedback law has 
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provided better control performances. Therefore, in the following, only the "dynamic 
feedback law is described. 

For a given value Pi G 0, consider the following w;-periodic "dynamic" state 
feedback law applied to the time-invariant system E(/3,) described by (2.5) and (2.6) 

u(hui+j) = Fi(htJi+j)x(hwi), j = 0 , l , . . . , w , - l , \fh£Z+, (3.1) 

where F , ( ) G IRpxn is a periodic matrix of period a;,-, namely Ft(k + w,) = F,-(ife), 
for all k G Z, and Z+ denotes the set of non-negative integers. 

Denote by S'(/?,-) the ^.-periodic closed-loop system described by (2.5), (2.6) and 
(3.1). The state of S'(/?,-) satisfies the following equation 

x((h + l)u>,) = (Aa(fc) + Ba(Pi)Fa)x(hcoi), (3.2) 

W h e r C Ft
a = [Fi(0f Fi(l)T ••• Fi(u>i-l)Tf. (3.3) 

In other words, the state x(k) of the w.-periodic closed-loop system £'(/?,) in the 
time instant k = hw,- is described by the time-invariant system (3.2). For the chosen 
period w;, the matrix Ba(Pi) is full row rank, hence it is possible to find a matrix 
Fa e j^ipxn s u c h t h a t t h e m a t r i x A"(ft) + Ba(Pi)Ft

a in (3.2) is set equal to zero, 
avoiding the numerical problems described above. In this way, for any initial state 
x(0) the state x(k) of £'(/?,•) is zero for k = Ui. 

To construct the compensator Sc when the state x(k) of £(/?,) is not measurable, 
an observer is needed. For the "dynamic" w,-periodic dead-beat feedback (3.1), a 
dead-beat observer for x(k) is necessary only at time instants k = huii, with h G Z+. 
For instance, the following Y,0 can be introduced 

« ( A + ]>.•) = (Aa(Pi)-GaCa(Pi))t(hu>i) , „ . . 
+ Ga(ya(hwi)-D

a(Pi)ua(hwi)) + Ba(pi)ua(huH), ^A) 

W h e r S Cf:=[C?.-(0) Gi(l) ••• G . ( w i - l ) ] , 

ya(hui) := [y(hwi)T y(hu>i + l)T ••• y(hu>i +u> - i - iff , 

u
a(hw,) := [u(/iw,)T u(/»Wi + 1)T • • • u(hu>i + uf - if f . 

The inputs j/a(/tWi) and ua(hu>i) of the observer E Q are the staked form over a period 
w,- of the output y() and of the input u(-) of the system S(/3,), respectively. The 
estimated error e(k) := £(k) — x(k) satisfies the following equation 

e((h + l)w,-) = (Aa(Pi) - GaCa(pi))e(hui), V/i G Z+. (3.5) 

For the chosen period w,-, the matrix Ca(Pi) is full row rank, hence it is possible 
to find a matrix Ga G JRnxwiq such that the matrix Aa(p{) - GaCa(Pi) is set equal 
to zero. In this way, for any initial e(0) the estimated error c(k) is zero for k = w,-. 
Hence, the u>,-periodic compensator Hl

c proposed consists of the series connection 
of the "dynamic" w,-periodic dead-beat feedback described by (3.1) together with 
the time-invariant dead-beat observer T,0 given by (3.4), with ya(hun) replaced by 
ya(hui) - ra(hui), where 

ra(hui) := [r(huif r(hwt + if ••• r(/iw,- + w,- - iff , 

that is the stacked form over a period w,- of the reference signal. 
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4. NUMERICAL RESULTS 

The proposed control scheme has been tested on a family of linearized models of an 
underwater vehicle whose tasks are the transport of assembling modules for subma­
rine installations and the inspection of underwater structures [10]. In these tasks the 
vehicle is subjected to very different load configurations, which introduce consider­
able variations of its mass and inertia! parameters. The vehicle is equipped with four 
thrusters and connected with the surface vessel by a supporting cable controlling the 
depth, while the vehicle position r/ and 0 and orientation <p over planes parallel to 
the surface are controlled by the thrusters. 

The dynamic model of the considered underwater vehicle is non-linear and some 
physical parameters vary with the operating depth arid load configuration. Denoting 
with r)o(t), 00(t) and <po(t) the output trajectory corresponding to the control inputs 
T°(t), Tg(i) and M%(t), the motion equations of the considered underwater vehicle 
can be linearized around the working point (j]0(-), 90(-), 4>o(-), T°(), Tf(-), M$(•)). 
Assuming for the state x(-), the control input u() and the controlled output ?/(•) 
the following expressions 

x(i) :--. [?/(.) - vS), t)(t) ~ r}0(t), 9(t) - e0(i), h) - 00(t), <f>(t) - ?0(0. 

&(i)-<j>0(J}\ 

u(t) := [T„(t) - T°(t),Te(t) - Tf(t),M^(t) - M°(t)] 

y(i) :=.. [r,(t) - r)0(t), 6(t) - 60(t), </>(t) - 4>0(t)f 

the state space form of the linearized model can be expressed in the form (2.1), (2.2) 
with matrices AC(P), BC(P), Cc(f3) and Dc(/3) given by 

Ac(ß) = 

0 1 0 0 0 

<н(ß) 
0 

а2(ß) 0 03 (ß) аi(ß) 
0 0 1 0 

0 
0 

аe(ß) oi(ß) аъ(ß) а?(ß) 
0 0 0 0 

0 0 0 0 аэ(ß) 

0 0 0 

Ыß) = 
h(ß) 0 0 

0 0 ü 
0 Ь2(ß) 0 
0 0 0 
0 0 Ьз(ß) 

> 

Cc(ß) = 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 

Dc(ß) = 

0 
0 
0 
0 
1 

08 (ß) 

0 0 0 " 
0 0 0 
0 0 0 . 

In such a linearization it is considered an underwater current with intensity of 0.2 
m/sec along the t] direction and of 0.3 m/sec along the 0 direction. The entries <ii(fi), 
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Table 1. Numerical values of the coefficients at(fi), i = 1,..., 9, and &.(/?), i = 1, 2, 3 
of the linearized model related to three different load configurations C\, C2 and Cz 

and two different operating depths: 200 meters and 1000 meters. 

Cд (200m) C
2
 (200m) C

3
 (200m) Ci (ЮOOm) C

2
 (ЮOOm) C

3
 (ЮOOm) 

aj -4.2749e-02 -3.2912e-02 -3.6484є-02 -1.2828e-02 -9.7079e-03 -8.1263e-03 

02 -8.3429e-02 -9.9248e-02 -l.ЮЗle-01 -8.3429e-02 -9.9248e-02 -l.ЮЗle-Ol 

"3 -2.9445e-02 -3.5028e-02 -3.8932c-02 -2.9445e-02 -3.5028e-02 -3.8932e-02 

a
4 

0 0 0 0 0 0 

"•ь -1.0796e-01 -2.376ІЄ-01 -1.0944e-01 -1.0796e-01 -2.376ІЄ-01 -1.0944e-01 

Oб -2.9445e-02 -6.4804e-02 -2.9848e-02 -2.9445e-02 -6.4804e-02 -2.9848e-02 

07 0 0 0 0 0 0 

08 0 0 0 0 0 0 
o

9 
9.4368e-04 9.4622e-04 3.2407e-04 9.4368e-04 9.4622є-04 3.2407e-04 

61 1.1372e-05 7.8926e-05 2.1052e-05 1.1372e-05 7.8926e-05 2.1052e-05 

ŕ>2 1.1372e-05 7.8926e-05 2.Ю52Є-05 1.1372e-05 7.8926e-05 2.1052e-05 

63 7.4074e-06 5.3538e-05 4.4247e-06 7.4074e-06 5.3538e-05 4.4247e-06 

i — 1,.. ., 9, and &;(/?), i = 1, 2, 3 related to six different configurations are reported 
in Table 1. Three different load configurations have been considered and, for each 
load configuration, two different operating depths have been examined. The vector 
parameters /3 may assume six different values, O = {/?i,/?2, • • •. Pe}- All the tests 
are performed with constant reference signals. Therefore, the reference generator 
SG described by (2.3) and (2.4) is characterized by AQ = 0 and CQ = h-

This control problem could be also solved by continuously monitoring depth and 
load at each time instant, defining six different time-invariant controllers (not neces­
sarily dead-beat), each for each possible configuration of the plant, and then coordi­
nating the switching among these six controllers. Application of the periodic control 
schemes here proposed has a twofold motivation. First, this offers the possibility of 
testing the performance of the proposed solutions on an actual problem, secondly, the 
periodic controller allows to define a completely automatic control structure without 
any need of knowing the actual operating conditions and introducing a supervisor 
coordinating the switching among the time-invariant controllers. 

The linearized model of the underwater vehicle does not contain an internal model 
of the continuous-time external reference generator for all /? 6 0 . Hence, for the 
applicability of the proposed control scheme, a continuous-time precompensator Sc 
has been introduced, so that the series connection of the precompensator and the 
linearized model contains a complete internal model of reference signals for all /? G 0 . 

It is assumed a sampling period of 0.5 sec. Two different realizations of the 
compensator E c are analyzed: 

(i) time-invariant dead-beat controller E c , i = 1,...,N, described by (2.10) and 

(2-11); 

(ii) w.-periodic dead-beat controller E c , i — 1,...,N, realized by the o>,-periodic 
dynamic feedback (3.1) together with the time-invariant dead-beat observer given 
by (3.4). 

Numerical experiments were carried out by assuming the configuration C3 and the 
value r(t) = [10 —20 1] for the reference signal. Simulation results are reported 
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in F igures 2, 3, 4 and 5. T h e resul ts re la ted to E c of the form (i) are shown in Figures 

2 and 3, those relat ive to E c of the form (ii) are repor ted in Figures 4 and 5. T h e 

sequences of integers repor ted in the ment ioned figures, denote the t ime intervals 

in which t h e controllers E ' c , i = 1 , . . . , 6, are opera t ing . T h e compensa tor set t l ing 

the t racking error to zero is E c . Note t ha t , the componen t 2/3(0 of the o u t p u t is 

regula ted to t he desired value in the t ime interval 6. In fact, the linearized mode l 

related to this o u t p u t variable is independent of the dep th . Hence, for th is p a r t of 

the l inear model , configuration 3 coincides with configuration 6. 

MÜ6 2 ^ 4p_Ju б p - J ^ 2 ^ , 4 Л , 6 з J U - 2 Л , 

60 

samples 

гw Uu o-JL. 2Q-JLO 4Q--5-Э б p - J Ц 2Q_-___ 4Q-_5-O 6 Q - J U 2Q----0 

60 

samples 

Fig. 2. Simulation results with E c of the form (i): yx, y2, yz are the outputs of the 

linearized model. 
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"2 200 

100 

0 

50 100 150 

samples 

-100 

1 - I ••••{ -

íllì iiџгmuu 
50 100 150 

samples 

samples 

F i g . 3. Simulation results with E c of the form (i): m , «2, u3 are the outputs of 

compensator E c • 

20 40 60 80 

samples 

ìoo Ь 

-100 
a u u U W ' 

20 40 60 

samples 

0 10 20 30 40 50 60 70 80 

samples 

Fig . 5. Simulation results with E c of the form (ii): m , «2, «3 are the outputs of 

compensator E c • 
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Уi 15 

10 

20 30 40 
samples 

Fig. 4. Simulation results with Sc of the form (il): y\, jfe, V3 are the outputs of the 
linearized model. 

Diagrams evidence that both the proposed controller realizations provided satis­
factory results in terms of steady-state precision. A little numerical difference, which 
is not completely visible in the used scale, exists in favour of realization (ii). Dia­
grams also show an evident difference of control performance in terms of transient 
behaviour. Realization (i) provided unacceptable transient error and control effort 
samples. Their order of magnitude resulted to be 107 and 108, respectively. Vice 
versa, a perfectly acceptable transient behaviour has been produced by realization 
(ii). This can be explained in terms of a greater robustness of realization (ii) with 
respect to random perturbation of plant parameters. Figure 6 shows closed-loop 
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eigenvalue positions for random perturbations of parameters on matrices Ac{P) and 
Bc{fi) for P = /?3. Realization (ii) provides closed-loop eigenvalues with a smaller 
dispersion around the origin; note also that for random perturbations of 20% it pre­
serves asymptotic stability, while this property is lost with realization (i). Analogous 
results have been obtained for the other configurations of the plant. This robustness 
property makes the controllers T,c, i = 1 , . . . ,6, t ~£ 3, obtained by realization (ii), 
less "destabilizing" then those of realization (i). As a consequence realization (ii) is 
able to produce control actions yielding a better transient behaviour. 

(*) (b) 

± 1 

ä 3. 

>> 1 oííL 
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Fig. 6. Distribution of closed-loop eigenvalues corresponding of fifty random parameter 
perturbations on matrices Ac{fi) and Bc{P) for j3 = ft3: (a) realization (i) with 

perturbation of 10 %; (b) realization (i) with perturbation of 20 %; (c) realization (ii) 
with perturbation of 10 %; (d) realization (ii) with perturbation of 20 %. 

5. CONCLUDING REMARKS 

Some numerical issues related to the Robust Output Tracking Problem for a finite 
set of linear plants have been investigated. The proposed solution is based on a pe-
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riodic controller given by the periodic switching among the dead-bea t compensa tors 
t h a t can be designed for all the possible configurations of t he p lan t . To improve the 
numer ica l robus tness of the proposed solut ion, the dead-bea t compensa to rs are real­
ized wi th a pr iodic dynamic feedback law. Th i s solution is able to place to zero t he 
closed-loop eigenvalues wi thin the mach ine accuracy. S imula t ions resul ts confirmed 
the feasibility of the approach . 

(Received December 2, 1993.) 
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