
Kybernetika

Nikola Madjarov; Ludmila Mihaylova
Kalman filter sensitivity with respect to parametric noises uncertainty

Kybernetika, Vol. 32 (1996), No. 3, 307--322

Persistent URL: http://dml.cz/dmlcz/125513

Terms of use:
© Institute of Information Theory and Automation AS CR, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125513
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 32 ( 1996 ) , NUMBER 3, PAGES 3 0 7 - 3 2 2 

KALMAN FILTER SENSITIVITY W I T H R E S P E C T 
TO P A R A M E T R I C NOISES UNCERTAINTY 

N I K O L A M A D J A R O V AND LUDMILA MIHAYLOVA 

The influence of the noises uncertainty on the Kalman filter performance is characterized 
by sensitivity functions. Relationships for computing these functions are derived and used 
both for synthesizing a Kalman filter with reduced sensitivity (KFRS) and a self-tuning 
Kalman filter (SKF). The results are illustrated by examples. 

1. INTRODUCTION 

The influence of the noises uncertainty on the Kalman filter behaviour is widely 
discussed in li terature [7, 8, 12, 13, 14, 15, 17, 20, 22, 24, 25, 26, 31]. Considerable 
research has been performed, for example, on the estimation of errors bounds under 
modeling uncertainty [24, 31], the indirect sensitivity functions that characterize 
the effect of each parameter variation on the error variance [5, 6], the direct sensi
tivity functions defined by the state vector derivative with respect to the varying 
parameter [13, 14], etc. The sensitivity functions can be used both as a quantitative 
characteristics of the filter sensitivity and in a generalized performance index for 
synthesizing a robust filter. The degradation of the filter performance depending on 
the da ta uncertainty is, obviously, closely related to the investigation of the Riccati 
equation sensitivity to the da ta uncertainty [1, 4, 10]. 

Different ideas for synthesizing a robust Kalman filter are suggested in [2, 11, 
16, 21, 34]. Methods for synthesizing discrete Kalman filters, robust with respect 
to data outliers are proposed [2, 11]. The problem of continuous robust Kalman 
filter design is considered for linear systems with parameter uncertainty in both the 
state and measurement matrices [34]. The covariance of the filter estimation error 
is guaranteed to be within certain bounds for all admissible uncertainties. Strat ton 
and Stengel [30] develop a robust filter for predictive wind shear detection with 
application in aircrafts. 

Another group of methods for synthesizing robust Kalman filters is related to 
presetting the unknown variables within the domains of their possible values. The 
operations over the unknown values are reduced to operations over the respective 
domains [23]. 

An alternative to the approach for synthesizing robust filters is the approach for 
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synthesizing adaptive filters. The estimation of the state vector in the presence 
of an a priori uncertainty can be done by means of different adaptive algorithms 
[7, 20]. The numerical characteristics of the filter innovation process are studied and 
minimized in most of the algorithms and "whitening" of the innovations is made. The 
various adaptive filtering methods for unknown noise statistics are divided into four 
categories [19]: Baysian, maximum likelihood, correlation and covariance matching. 
Indirect methods for tuning are used in a number of papers [3, 7, 20]. 

In the present paper the influence of the inaccurate noise covariances on the Kal-
man filter performance is characterized by means of sensitivity functions. A Kalman 
filter with reduced sensitivity is synthesized through augmentation of the estimation 
error vector by the sensitivity functions. It is shown that the KFRS possesses robust 
properties in a wide range of variations of the noise covariances. A self-tuning Kal
man filter is described using sensitivity functions and the stochastic approximation 
method. The filter gain is tuned directly. The obtained results are illustrated by 
examples. 

2. PROBLEM STATEMENT 

The state vector Xjt € 3£n of a linear discrete-time system 

Xjfc+i = Fxk + Gvk (2.1) 

is estimated on the observation of the output yk 6 3ftr 

Vk = Cxk + wk, (2.2) 

where the system noise vk G 3£m and the measurement noise Wk E 3£r are mutually 
uncorrelated white noises, with covariances Vv and Vw, respectively. Sources of 
parameter variations in the models (2.1), (2.2) are the noise covariances. 

The inaccurate values of the covariances that are the data available for the Kal
man filter synthesis will be denoted by Vv and Vw. Single-input, single-output 
(SISO) stationary systems are considered because the generalization for multi-input, 
multi-output (MIMO) and nonstationary systems constitutes no major difficulty. 
The normalization Vk = V^vv

k
 a n d Wk = y/V^Wk is used where v0. and w^ are 

single covariance white noises (Vvo = Vwo = 1). The discrete-time stochastic observ
er is a linear filter, having the form [9] 

xk+1 = Fxk + A'jfc+i (yjt+i - CF£k), (2.3) 

where xk is the estimate of the state xk. The estimation error ek = Xk — Xk ls 

described by the linear equation 

ek+1=Aek+B[v0
k,w

0k+1}
T, (2.4) 

where 

A = (I-Kk+iC)F, B= \(I-Kk+lC)Gs/vv%-Kk+ly/vZ], 
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I is the identity matrix, nk+1 = [vk,w°.+1} is a generalized white vector noise 
with single covariance. The variance De>k of the error ek is the Lyapunov equation 
solution 

De,k+i = (/ - Kk+iC) Qk (I - Kk+1C)T + Kk+1VwKT
+li (2.5) 

where 
Qk = FDe>kF

T + GVvG
T, 

Kk+1 is the Kalman filter gain. If the gain A'jk+i is determined from the condition 

dtrDeik+1 _ 
0, (2.6) 

dKk+1 

where tr denotes the trace of the matrix, the following relationship holds 

A'*+i = QkC
T (CQkC

T + V _ ) _ 1 . (2.7) 

When the initial noise covariances are inaccurate, i.e. Vv and Vw, the filter coef
ficient A'jk+i is determined from the "algorithmic" error variance Dek 

Deik+1 = (I- Kk+1C) Qk (I - Kk+1C)T + Kk+1VwKT
k+1, (2.8) 

where _ _ 
Qk = FDe>kF

T + GVvG
T, 

Kk+1 = QkC
T (CQkC

T + VW)~1. (2.9) 

The algorithmic variance differs from the actual variance Deik that is the solution 
to the equation 

De>k+1 = (/ - Kk+1C) Qk (I - Kk+1C)T + Kk+1VwKT
k+l, (2.10) 

Qk = FDe,kF
T + GVvG

T. 

The Kalman filter sensitivity with respect to variations in the covariances Vv and 
V_ is estimated by means of the direct sensitivity functions 

.Z = f | , (2.U) 

The following stochastic equations are obtained after the differentiation of (2.4) with 
respect to Vv and V_ 

4+i =Asv
k + ^ = [v°k,0)T, (2.13) 

B_ 
2V

/V_" 
The variances of sk and sk are solutions to the Lyapunov equations 

Dv,,k+i = U - Kk+1C) (FDlkF
T + ^p) (I - Kk+iCf , (2.15) 

D1Mi = (I- Kk+iC)FDlkF
T(I- Kk+iCf + ^ fc+1 • (2.16) 

k*+l=Ask» + -7==[Q,w0
k+1}

1 . (2.14) 
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Example 1. The influence of the inaccurate initial information upon the Kalman 
filter performance is illustrated by a simple example for the steady-state mode of the 
filter (Dk+\ = Dk = D and A'jt+i = K). The system is described by the equations 

Xk+i = xk + vk, Vv = 2, 

Vk = Xk + Wk, Vw = 4. 

It is obtained from (2.5) and (2.7) 

- 1 
De=0.Wv [yJl + AVwVv-

l-\\ = 2 , 

2 [\ + \l + WwVv-
1 = 0 . 5 . 

For an inaccurately known noise covariance Vw, from (2.8) and (2.9) it follows that 

- l 

Df 4 1 + 2 1 ^ - 1 , K = 2[ \+\\+2V 

The actual error variance De is determined from (2.10) and (2.9) (for Vv and Vw) 

De= (6Z 2-4A+2) [K{2-'K)}~1 , K = 2n + \JV+2~V\}j . 

1 
\ 

De 

\ 
\ 

"\ 
X 

LЪe 

D e = 2 / e 

y 

, , -""Jч 
""""""^r—-—,ИÉ , 

10 V =410 
w 

v,„ 

10 

Fig. 1. 

The variance D™ of the sensitivity function sw is computed from (2.16) 

L>" = [Ww\ \ + 2V Ф 
The graphics of the corresponding variances depending on Vw are shown in Figure 1. 
For Vw = Vw = 4 all the error variances coincide, i.e. De = De = De. Considerable 
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deviation of the algorithmic error variance from the actual De is observed for an 
inaccurate noise covariance Vw, as expected (an effect of the inner filter divergence). 
As Vw increases, the variance Dw of the sensitivity function sw decreases which 
conforms to the theory. 

3. SYNTHESIS OF A KALMAN FILTER WITH REDUCED SENSITIVITY 

A standard approach for synthesizing systems with reduced sensitivity is to include 
the sensitivity functions in the performance index. The generalized Kalman filter 
error is further used 

e* 
ocsl , (3.1) 

where a and 0 are weighting coefficients as it is assumed that all components of 
the vectors sv

k and sw are taken with some weights. The quantities referring to the 
synthesis of the KFRS will be denoted by an asterisk. Putting together (2.4), (2.13) 
and (2.14), yields that the generalized error (3.1) satisfies the equation 

-k+ i — -4 ek + B 'jfc+i> (3.2) 

fhere 

A* = 
(I-Kk+1C)F 0 0 

0 (I-Kk+1C)F 0 
0 o (/ - Kk+1C) F 

BĄ 

(I-Kk+1C)Gy/VІ~ 

a(I-Kk+1C) G 

0 

2y/VZ 

•Kk + 1y/Vw 

0 

-ß Kk+i 

2vťV^ 

In its structure (3.2) is analogous to (2.4). Therefore the following Lyapunov 
equation holds 

D*>k+1=A*D*€tkA*T + B*B*T (3.3) 

which is analogous to (2.5) after a respective substitution of the matrices A and B 
with the matrices A* and B*. It is shown in Appendix 1 that the KFRS has the 
form 

xk+1 = Fxk + K*k+1 (yk+i - CFxk), (3.4) 

K*k+1 = Q*kc
T
 (CQICT + v:yx, 

Ql = FD*eikF
T + GVv*GT, 

„,2 p 
V = V, + V 

v v 4VV' w 
Vw + 

414 

(3.5) 

(3.6) 

and the variance D*k is the solution to (2.5), i.e. 

D;ik+1 = (l-K*k+1C) (FD*e>kF
T + GVvG

T) (l-K*k+1C)T+ K*k+1VwK*k
T

1. (3.7) 
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The actual variance Dk of the error ek is computed from 

£>:,k+i=(l-Tk+1c) (FD:>kF
T + GVvG

T) (l-Tk+1cf +Tk+1VWTT
+1. (3.8) 

A compromise between the filter accuracy and robustness can be achieved by an 
appropriate choosing of the weights a and /? (see Appendix 1). 

Example 2 . The method for synthesizing a KFRS is illustrated for the system in 
Example 1. It is known that Vv = 2 and the accurate noise covariance Vw belongs 
to the interval [1,10]. The synthesis is performed for two values of Vw : Vw = 1.5 
(near to Knin) and 5 (close to the middle of the interval). 

Fig. 2. 

When Vw = 1.5 it is computed for: 
- a standard Kalman filter that 

= 2 (ì + ^/ì+~2vЛ 
- i 

De = 

K = 2\l + yJl + 2Vw ) =0.6667, 

^ T 2 
K (2 + Vw) - AK + 2 [K (2 - K)] 

- ì 

that 

Kalman filter with reduced sensitivity 1/3 = 2VW = 3, i.e. Vw = 2VW = 3) 

D: = 

T = 2n + \fl + 2Vl) = 0.5486 

T2 (2 + Vw) - AT + 2] [K* (2 - T)] , 
- 1 

D\ being computed from (3.8). 

When Vw = 5 (B = 2VW = 10, i.e. V*w = 2VW = lo) the expressions for De, 

Dl are the same as in the case above, the new filter gains K = 0.4633, A' = 0.3583 
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being replaced in them. For the standard Kalman filter when the initial information 
is accurate 

- l i - i K = 2 (1 + y/l + 2Vw) ,De= [K2 (2 + Vw) - AK + 2] [K (2 - K)]' 
The plots of the variances De, D*, De depending on Vw are shown in Figure 2 

and Figure 3. It is seen for this example that the KFRS possesses better performance 
when Vw is chosen near to Vmin (Figure 2). 

'" ' ! ! Í 1 I ! T • - Г — 

_'__ ! ! L L l-AìLjgźi 

\.Aђ^ў^\..-i-\-\-\ 

Í^TTІ"TT"І ' 
- . / . . - . . +. _ . . ¥ i Ą i i 

ґ ; ; ' ! 
• . . . i , І i 

Fig. 3. 

The generalization of the KFRS synthesis for MIMO systems is performed in the 
same way. In this case si and s™ are matrices. The generalized error e£ comprises 
the sensitivity functions of every element in the matrices Vv and Vw. If the matrices 
are diagonal (for mutually uncorrelated system noises, resp. mutually uncorrelated 
measurement noises) 

ejt 

4 = ams 
ß 

(3.9) 

_ w 
where .J« = J j^ l , i = 1,2,. . . .m, sw

k> = J & t , j = 1,2,.. 

Appendix 1 that V* =Vv + ^ V , " 1 , V;* = V . + ^V^"1 , where 

, r. It is shown in 

a = 

oci 

0 

0 

ß = 
0 

0 

/3r 

and the Kalman filter equations (3.4)-(3.8) hold. The weighting matrices a and (3 
can be computed according to the same conditions as in the scalar case. When any 
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noise covariance element is accurately known, then the respective element of a or 0 
has to be set to zero. 

Example 3, The KFRS is designed for the MIMO system from inertial navigation 
described in [3] for which 

F = 

0.75 -1.74 
0.09 0.91 

0 0 
0 0 
0 0 

-0 .3 
-0.0015 
0.95 

0 
0 

0 
0 
0 

0.55 
0 

-0.15 
-0.008 

0 
0 

0.905 

G = 

0 0 0 
0 0 0 

24.64 0 0 
0 0.835 0 
0 0 1.83 

C = 
1 0 0 0 1 
0 1 0 1 0 , vv = 

1 0 0 " 
0 1 0 ,vw = 
0 0 1 

v W l l 0 
0 1 

where VWll is supposed to be in the interval [0.2,10]. It is assumed that VWll =0 .4 
and 

" 2VWU 0 
0 0 ß 

The dependence of tr De, trD*e, tr De on VWll is plotted in Figure 4. The same 
properties as in Example 2 are observed. 
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—ýľž"\ : 
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ЧL 
w" ;4í" - ~\ 
' itrDe: 
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/Ў 
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V 

Fig. 4. 

The case is also considered when it is supposed that VV33 G [0.2,3] and Vw is 
accurate, i.e. 

" 1 0 0 
Vv = 0 1 0 

0 0 Vv, 
vw = 

1 0 
0 1 
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It is assumed that VV33 = 0.3. A KFRS is synthesized for different matrices a: 

a) a = 
0 0 0 
0 0 0 
0 0 0.5 

b) a = 
0 0 0 
0 0 0 
0 0 1.5 

a = 

0 0 0 
0 0 0 
0 0 3 

The plots for these a are shown in Figures 5,6,7 respectively. The KFRS in the 
case b) Figure 6 is more accurate than the filter in the case a) Figure 5 but for 
shorter interval. 

Fig. 5. 

Fig. 6. 
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Fig. 7. 

4. A SELF-TUNING KALMAN FILTER 

The Kalman filter gain Kk cannot be analytically computed for unknown noise 
covariances. It is possible to organize a procedure for direct filter gain self-tuning 
by the stochastic approximation method [32] 

Kk = Kk-i-7k^J[vk{Kk-i)], k=l,2, (4.1) 

where j k is a step, 

vk = yk -CFxk-i (4.2) 

is the innovation process of the filter, J [uk (A'fc_i)] = \vTVk is the performance 
index that has to be minimized, 

w M ^ 0 ] = ^ g 
- the stochastic gradient. It is assumed that 7^ satisfies the conditions ensuring 
convergence of the recursive algorithm (4.1) [32], e.g. 7^ = I/k. It is also assumed 
that the system (2.1)-(2.2) is completely controllable and completely observable. 

For MIMO systems the algorithm for self-tuning has the following form 

xk = Fxk-i + Kkuk, (4.3) 

V I Ы = -\ [{l*{vlCF))Ni>k-i + Ti>k-i (/* {FтCтvk))] , (4.4) 

Kk = Kk-i-lk^J[vk{Kk-i)] (4.5) 
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where 7fc = f- and 

Nŕ.fc-i = 
дK 

= E™r

r(I*Vk-i) 

Ћ i , f c - l — 

fc-1 

дKк-i 
= (l*"ï-i)KГr 

(4.6) 

(4.7) 

are direct sensitivity functions, (A * H)-Kronecker product of the matrices A and B, 
E™r

r

 a n d ^^"-permutat ion matrices [33]. It is supposed that the initial conditions 
£o, N£,o, T*,o are preset. The relationships (4.6) and (4.7) for computing Nx,k-i 
and Tf,fc-i are obtained after differentiation of the filter equation (2.3) with respect 
to the gain Kk-i-

The stochastic approximation convergence is slow and can be considerably im
proved by well selected initial conditions. 

For SISO first order systems the equations (4.4)-(4.7) have the following form 

Nx,k-i — Tx,k-i = Vk-i, 

VJ(uk) = -CFNx,k-ivk = -CFvk-iVk-

Example 4 . The algorithm for self-tuning (4.3)-(4.7) is verified for the system 
(2.1)-(2.2) with F = 0.4, G = 1, C = 1, Vv = l,Vw = 0.1. The accurate value 
of the covariance Vw = 1 is unknown in advance. The work of the algorithm is 
evaluated by comparing the optimal values K = 0.52, De = 0.52 with the values of 
K and De at each step of the self-tuning. 

The initial conditions are assumed to be XQ = Nx,o = T§to = 0. The plots K(k) 
and De(k) are shown in Figures 8 and 9. The initial filter gain A'o is computed on 
the basis of the inaccurate noise covariance Vw. It is possible to find an initial gain 
through some of the existing algorithms [29] and thus to improve the convergence 
of the proposed algorithm. 

1000 

Fig. 8. 
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5. CONCLUSIONS 

The influence of the inaccurate noise covariances on the Kalman filter performance 
is characterized by the direct sensitivity functions. They can be used directly, as 
stochastic processes, or indirectly by their variances. A Kalman filter with reduced 
sensitivity to parametric noises uncertainty is synthesized through augmentation of 
the estimation error vector by the sensitivity functions taken with some weights. It is 
shown that the KFRS possesses robust properties in a wide range of variation of the 
noise covariances. A self-tuning Kalman filter algorithm is presented using sensitivity 
functions and based on the stochastic approximation. The results obtained are 
illustrated by examples. 

Fig. 9. 

APPENDIX 1 

The variance matrix D* k of the generalized error (3.1) has the form 

D e.Jt 

De.k aDv
es<k pDZ<k 

«PD™k 

s ,k 

'e,f 

* <*2D:ìk 

* * p2Dl
s 

(A.l) 

where Dv
s k, Dfa k, DVVJ

k are the cross-variances of ek and sk, ek and S™, sk and sk. 
The asterisks replace the respective elements of the symmetric matrix. It is denoted 

Dî+i = D-,*+i W/ЛVн +ЃЦ?Mi. (A-2) 
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Taking into account (3.3), (2.5), (2.15), (2.16), (A.l) and after transformations, the 
following is obtained 

fc-DeVl = Ér < 

F0De>kF
T cxFQDlskF

T ßF0DZ>kF
T 

* a2F0DlkF
T aßF0D^kF

T 

* * ß2FoDlkF
T _ 

+ 

G0VVG0 + Kk+iVwKk+1 GofC70 Kfc+if Ait+i 

* * A*+i4TTAT+i . 

(A.З) 

where FQ = (I — Kk+iC) F and C7o = (I — Kk+iC)G. On the other hand, from 
(A.2), (2.5), (2.15), (2.16) and after transformations, the following is derived 

trD*k+1 = tr * TPT , r< I T/ , a " ^ rfT , v. ( T/ , P \ j^T FQD%Fé + G0 ( Vv + — J Gi + Kk+i \VW + ^ к + l 
(A.4) 

Comparing (A.2), (A.3) and (A.4) yields that 

trDlk+1 = trDl+1. 

Hence, if the KFRS coefficient Kk+1 is determined from the condition 

dtrD" e,k + l 

дK 
0, (A.5) 

jfc+i 

the relation (2.7) remains valid, if the covariances 

v: = Vv + wv>
 K = Vw + wv:

 (A-6) 

are used instead of the covariances Vv and Vw. 
For the MIMO case (3.9), it is established in the same way that the covariances 

V* and V* are formed in the following manner 

Г а* 
4V,. 

0 

; + 
0 0 _ 

+ ...+ 

= vv + \ 
'oc\ 0 

0 " m . 

0 

4V„ 

0 

= VV + TV-\(A.7) 

where 
tt! . 0 
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The diagonal matrix property 

VVl ••• 0 - I - 1 

0 ••• VVn 

is taken into account. Analogously 

ß2 

V* = V„ + —V~l 
y

w — УW I . У

W l 
(A.8) 

where 

ß = 
0 ßr 

The inverse matrices Vv~
x and V^"1 participate in (A.7) and (A.8) which means 

that only inputs and outputs with noises participate in the generalized error (3.9). 
The choosing of the weighting coefficients (matrices) a and /3 is a matter of a 

compromise between the KFRS accuracy and robustness. From (2.4), (2.13) and 
(2.14) it is seen that the quantities ek, sk and sk, elements of the generalized error 
(3.1), are solutions to the same type equations, differing from each other by the 

input variables. If the error ek and the common sensitivity sk = 
>k J 

have to be 

of equal worth in the error (3.1), the weights a and (3 have to be chosen according 
to the condition 

B 
w k + 1 

= в-2VV 
0 + в 

_ß__ 
2VW w 

0 
o 
* + i J 

that is satisfied if 
a = 2V;, ß = 2Vw (A.9) 

However, the simultaneous accomplishment of conditions (A.9) results in a propor
tional augmentation (doubling) of the covariances Vv and Vw, because 

K = Vv + ^r = 2Vv, 

v: = vw + JĹ 
4VW 

= 2VW 

This does not improve the KFRS accuracy. Really, the Riccati equation solution 
A,,* for Vv = K and Vw = V^and the solution D*ek when Vv* = 2STV and V^ = 2VZ 
are related to the condition 

Dek = 2Detk, 

whereas from (2.7) and (3.5) it follows that 

- 1 - 1 K*+i = QtCт (CQtCт + V:) = 2QICT (2CQkC
т + 2VW) = Kk+i, 
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i.e. the K F R S gain and the s tandard filter gain coincide. T h a t is why the condition 

(A.9) has to be used only as a point of reference for the weights choosing. The same 

considerations are valid for MIMO systems. 
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