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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 3 , P A G E S 2 0 9 - 2 3 4 

INVERSE UPDATED SYSTOLIC RLS ALGORITHM 
WITH REGULARIZED EXPONENTIAL FORGETTING1 

J A N S C H I E R 

A systolic algorithm for the Recursive Least Squares identification with covariance up­
date, using the block-accumulated regularization mechanism to increase numerical stability 
of the algorithm with respect to weakly informative data, is presented. The advantages 
over standard sequential implementation are that the sampling period of estimator is sig­
nificantly reduced even with the robustifying modification of algorithm and that it is made 
independent of order of the identified system. 

1. INTRODUCTION 

Adaptive identification finds its use in many applications of both signal process­
ing (channel equalisation, adaptive antenna array beamforming etc.) and adaptive 
control. 

This paper focuses on the problem of increasing stability of the Recursive Least 
Squares (RLS) identification algorithm with update of the inverse factor of data-
covariance-matrix (also referred to as the Inverse Updated RLS algorithm) for weak­
ly informative da ta samples. It combines the inverse updated systolic RLS algo­
r i thm with covariance update , designed in [6, 9] (parallel version of the LDFIL 
algorithm [11]) with the block-accumulated regularized exponential forgetting, pro­
posed in [3]. It should be mentioned that the inverse updated algorithm directly 
provides weighting coefficients of the regression model on its output . This property 
makes it at tractive for use in adaptive control. 

The reasoning for use of the parallel systolic version of the algorithm is that some 
applications have computat ional requirements (high sampling rate and/or large or­
der of model required for proper description) which cannot be satisfied by usual 
sequential implementation of the estimator. These requirements yet increase if the 
regularization is used, because it increases the computational complexity of algo­
r i thm in an order of magnitude. As will be explained in the text, systolic version of 
an algorithm reduces the sampling period partly by introducing parallel processing, 
partly by using da ta pipelining. 

1 The research was partly supported by the Grant Agency of the Czech Republic under Grants 
No. 102/95/1614 and 102/95/0926. 
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NOTATIONAL CONVENTIONS 
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dx = n, dA = n x n 
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p.d.f. 

c.p.d.f. 

PE 
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X 

/V(0,(7) 

p(a\b) 

p(y(k)\k-l;u(k)) 

E[a] 

ў(k\к-l;u(к)) 

scalars 

column vectors 

matrices 

unit matrix 

a, A transpose 

dimension of a vector or matrix 

discrete time, time index of a sampling period; the 
observation of a process starts at k = 1 

probability density function 

conditional p.d.f. 

processing element 

set of input-output data since the beginning of ob­
servation till the time k 

x before the data update 

x after the data update and before the time update 

x after the time update 

x after the data update and exponential forgetting, 
but before the addition of regularizing value 

normal (Gaussian) distribution with a zero mean val­

ue and a constant dispersion a 

c.p.d.f. of argument a, conditioned on b 

abbreviation for 

p(y(k)\y(l,k-l),u(l,k-l),u(k)) 

(conditioning including the data history) 

expected (mean) value of a random variable a 

abbreviation for the expected value 

E[y(kMl,k-l)tu(hk-l)M*)] 

2. IDENTIFICATION OF THE SYSTEM MODEL 

Linear regression model 

Let us suppose the system to be described by a linear regression model 

y(k) = 0'(k)<p(k) + e(k) (1) 
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where 

y(k) denotes the current system output, 

<p(k) is the data vector, 

0(k) is the vector of regression parameters, 80 = n, and 

e(k) is a scalar jV(0, c) white noise. 

Under these assumptions, the p.d.f. of the system output is described by a normal 
distribution. 

Gauss—Wishart distribution of the system parameters 

Let the apriori c.p.d.f. of the system parameters have the self-reproducing form of 
the Gauss-inverse-Wishart distribution 

v(k\k-l) + n-2 

p( (k),а(k)\k-l) = p(V,u)<т(ky 

1 
•exp 2аr(k) 

Je(k\k-1) 

J (k\k-1) = 
- (k) 

1 
V(k\k-1) 

- (k) 

1 

(2) 

(3) 

where 

p(0(k), a(k)\k — 1) is the p.d.f. of parameters 0(k) in the ib-step of identification, 
conditioned on the data d(0, k — 1). 

Je(k\k—1) is a cost function of parameters 0(k), conditioned on the datad(0, k — 1) 
[3]. For the GiW-distribution, it determines the shape of the distribution. 

V(fc|fc — 1) is a positive-definite symmetric extended information matrix. This 
matrix accumulates the information contained in the data measurements. For 
later use, it is useful to introduce the following sub-matrices 

V = V* 

ч>y 

'Ч>У , ÔV = (n + l ) x ( n + l ) , (4) 

where 

Vtp is an information matrix, dV^ = n x n, 

'ч>y is a vectoг, дvmy = n, and 

vy is scalar. 

u(k\k — 1) is a number of degrees of freedom of the GiW-distribution. It charac­
terizes the number of data effectively accumulated in the information matrix, 

u(k\k-l) > 0, 

p(V,v) is a normalization constant [10]. 
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Sufficient statistics of the GiW-distribution 

The parameters V and u fully determine sufficient statistics of the GiW-distribu-
tion [10]. 

Parameter estimate is given by the relation 

0(k + l\k) = V~l(k + l\k) Vipy(k + l\k). (5) 

The sufficient statistics may be expressed also in an inverse form, which is used 
in the Least Squares (LS) methods [5, 10]: 

P ( * | * - l ) = V-l(k\k-l) (6) 

A ( * | * - l ) = vy(k\k-l)-v'^y(k\k-l)P(k\k-l)v¥>y(k\k-l) (7) 

Recursive adaptive identification 

Recursive identification consists of two steps: of the data update, when the par­
ameters of the sufficient statistics are updated using new information gathered from 
the system, and of the time update, when the time evolution of the system is modeled 
using some forgetting method. Both steps will be described now. 

R e m a r k on notation . The 'hat' symbol ( • ) denotes the estimates of parameters. 
Because only the estimates are used in the following text, the 'hat' symbol will not 
be used, to simplify the data and time update relations. 

Where appropriate to simplify the text, the following symbols will be used to 
refer to the particular phases of update: the tilde symbol (•) will be used to refer to 
the value of a variable before the data update, stacked bar and tilde symbol (•) to 
refer to the value after the data update, and the bar symbol (•) for the value after 
the forgetting step (will be formulated in the next section). 

Data Update 

Using the information matrix (4), data update is expressed by 

V(k\k) = V(k\k - 1) + 
<p(k) 

У(*) 

cp(к) 

m (9) 

Using the covariance matrix P (6), it is expressed by the formulae of the recursive 
least squares (RLS) identification 

C = <P'P<P, (io) 

K = (l+()-lP<p, (11) 

e = y-0<p, (12) 

0 = 0 + KE, (13) 

P = P - ( l + " < ) « * ' , (14) 
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where K denotes the Kalman gain vector, e the prediction error and £ is an auxiliary 
variable. 

Since the estimates are independent of the remainder after the RLS estimation 
A, we do not actually have to evaluate it. 

Time Update — Regularized Exponential Forgetting 

To approximate the time update of the cost function J©, regularized exponential 
forgetting can be used, described by the formula 

j = Aj + ( l - A ) J , (15) 

where 0 < A < 1 (which may be time variable), is the exponential forgetting factor, 
which is used to weight the cost function J© with an alternative value J 0 . 

The "alternative cost function" J 0 is a value to which the cost function converges 
in the case of non-informative input data. Introducing "alternative parameters" 
V* = ( P * ) - 1 and 0*, specified by user, the additional term J 0 may be expressed 
in the same way as the cost function J© (3) 

Je=[ - *] '(P*) - 1[ - 0*] + Л* = 
-

V* 
-

1 1 
(16) 

Since the estimate 0 is independent of evolution of A, also the alternative A* is a 
'don't care' term. 

Using the alternative parameters, the time update formulae for V = P " 1 and 0 
are given by 

= - 1 
P = [AP + ( 1 - A ) ( P * ) 

1 

* \ - i i - i 
j 

i 

J + ( - - l ) P ( P * ) - 1 A = 

0 = A0 + (I-A)0\ 

(17) 

(18) 

(19) 

where A is an auxiliary matrix introduced to simplify the update formula for 0, or 
by 

'ч>y 

= Av¥> + ( i -A )v; = ғ¥> + (i-A)v;J 

= Xvщ + (1 - A) v%y = Xv^y + (1 - A) v ; < 

= * w + ( i -A)v ;в*, 

= V *VУ 

(20) 

(21) 

(22) 

Remark. In the limit case of V* —* 0 (non-informative probability distribution), 
regularization forgetting degrades to 'standard' exponential forgetting. 

To illustrate the process, evolution of the cost function J© (3) during one step of 
the regularized identification is plotted in Figure 1. A two dimensional parameter 
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vector 0 = [Gi Q2] is considered, the vertical axis of the graph represents the cost 
function J©. The placement of 0* does not represent the situation when it follows 
the regularized estimate, it is rather chosen so that the evolution of 0 during data 
update and regularization is better shown. Also the value of P* is chosen so that 
the changes of P during update are shown. 

1: Data update 2: Exponential forgetting 3: Regularization 

Fig. 1. One period of regularized identification. 

The elliptical paraboloids represent the cost function in the successive step of the 
identification period. Their cross-section reflects the shape of the covariance matrix 
P (6, 14, 17), their placement is determined by the value of parameter estimate 0 
(5, 13, 19) in the respective steps of update. 

The arrows in the figure denote the successive phases of the identification step: 

1. data update: P -> P, 0 -* 0, 

2. exponential forgetting: P = jP, 0 = 0, 

3. regularization addition of the alternative parameters: 

P = {P~1 + {l-\){P*)-1)-\ 

A = [ / + ( ! _ A) P ( P ' ) - 1 ] - 1 , 

0 = A0 + {l-A)0*. 

Selection of regularizing parameters 

The alternative information matrix V* = ( P * ) - 1 is a symmetric positive definite 
matrix. Its role is to prevent the covariance matrix P from exponential growth (i.e. 
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V from losing rank) if the estimator is not sufficiently excited. It should be small 
enough to allow the algorithm to adapt to parameter changes and to come into effect 
only when the data does not have sufficient information. 

A suitable general-purpose choice for V; is \il, 0 < /i < 1, J is a unit matrix [12, 
13]. If matrix P is available from the preliminary analysis of the system, it may be 
used with advantage. 

0* is a value, to which the parameter estimates converge in the case of non-
informative data. It is possible either to require that 0 preserves the value identified 
from informative data — in that case 0* should follow the development of estimate, 
or to require that 0 takes the value obtained in preliminary system analysis. A 
suitable choice in the first case is to assign 0* the last regularized estimate 

0*(k) :=0(k-l). (23) 

Block-Accumulated Regularization 

Regularized exponential forgetting in the standard form, as described in (17-19) 
or (20-22), is not suitable for systolic implementation (the principles of which will 
be described later). Instead, the block-accumulated regularization is used, proposed 
in [3, 4], which preserves data pipelining in the systolic array. 

The idea of this method is the following: Let us keep the alternative parameters 
V; and 0* constant over N > n periods of identification (i.e. over processing of N 
data samples), where n = d0 

v; = v;(k) = v;(k + i) = ... = v;(k + N-i), 

0* = 0*(k) = 0*(k + l) = ... = 0*(k + N - 1). 

The regularized forgetting (20) may be seen also as consequent steps of exponential 
forgetting 

V = XV, (25) 

(where V denotes the value after the data update and exponential forgetting) and 
of addition of regularizing parameters 

Vv = Vp + (l-\)V;, (26) 

Vyy = v^y + (l-X)V;0*. (27) 

Hence, it is possible to perform only the exponential forgetting over the N steps, 
then to interrupt temporarily data processing and to perform all additions of the 
regularizing parameters at once in this interruption, weighted by an accumulated 
forgetting factor. As will be shown later, this addition takes n periods. In this way, 
the data pipelining is preserved. 

This mechanism is described by the following algorithm (because time relations 
over several periods of identification are shown, it is necessary to use time indexing 
again. To simplify the indexing, time k — 1 is 'subtracted' in all indices, e. g., instead 
of k, 1 is written) 
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1. Data update with standard exponential forgetting over N periods 

V:-=V(1|0) , XN :=l a) 

<p(І) 

У(г) 
b) 

c) 

d) 

(28) 

2. Accumulated regularization in the Nth period 

v* :=V* * 
V У ч> 

v(py(N + l\N):=v^y+XNv*jy 

0(N + 1|N) := V~\N + 1|N) vvy(N + 1|N) 

a) 

b) 

c) 

<-) 

(29) 

0 < AJV < 1 is an accumulated forgetting factor. 

Using the block-accumulated regularization, the last regularized estimate is N 
periods old. Hence, (23) is replaced by 

*(k) := (k-N). (30) 

To give better idea of the mechanism, a comparison of evolution of parameter 
estimates with both the standard and the block-accumulated regularization is given 
in the graph in Figure 2. For the block-regularized identification, it shows also the 
evolution of the cost function J© (16). 

The graph is drawn for regularization applied after a block of three data samples. 

The letters of the Latin alphabet denote the trajectory resulting from the standard 
regularization; the lower-case letters are used to refer to the position of parameter 
estimates after the data update (9), the upper-case letters are used to refer to that 
after the regularization (20-22). 

The Greek letters denote the tracking trajectory resulting from the block-regu­
larized identification; the arrows show the development of the covariance matrix P 
through one block of the block-regularized identification — number 1 denotes the 
data update (9), number 2 the exponential forgetting (1 + 2 = (28 e)), number 3 
denotes the addition of the alternative parameters (29b-c). 

Both trajectories start at the point a = a and end at the point D = e. 
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1: Data update 2: Exponential forgetting 3: Accumulated regularization 

Fig. 2. Comparison of standard and block-accumulated regularization. 

3. SQUARE-ROOT IMPLEMENTATION OF THE RLS ALGORITHM 

In practice, the square-root version of the estimator is used, because it guarantees 
symmetry and positive definiteness of the covariance/information matrix and can be 
implemented on a systolic array. 

Square-root Decomposition of the RLS Algorithm 

Let us introduce the triangular square-root decomposition of the covariance matrix 
by the formula 

P = RR', (31) 

where R is an upper triangular matrix. 
Applying the decomposition in the formulae (10,11,14), we get: 

(32) 

(33) 

(34) 

C = (p'RR (p 

RR' = RR'-(1 + ()KK' 

K. = (l + ()-lRR'(p 

It is possible to update directly the square-root factor R. The formulae of 
RLS identification (10)-(14) then transform into two steps: 

1. matrix-vector multiplication 

(35) 
а 

є 
= 

Ř' 0 

' 1 У 

and 
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2. inverse update 

S2 S 2 / Î 

0 R GÍ2Q 

' 1 o 

a ~ / 
R 

£ 
~ i 

(36) 

Q = 

ФІ = 

ÍÌ 

G = 

фn ф2фl, 

cos фi sin фi 

I 

—S\П фi cos фi 

(l/VЛ)Inxn 

-є/y/І 1 

(37) 

(38) 

(39) 

(40) 

where Q is an orthogonal matrix given as a product of elementary rotations 
<Pn • • - # i with rotation matrix 4*j zeroing the fth element of vector a with 
respect to the first element of the same column in the composed matrix (the 
rotation matrix has sines and cosines of the rotation angle in intersections of 
the first and the ith row and column); ft is a weighting matrix and matrix G 
is used to update the parameters. 

Regularization as Input of Alternative Data 

It is important for the systolic implementation of regularization that the addition of 
alternative parameters may be considered an input of some alternative data, which 
is processed in the estimator in the same way as the data samples from the identified 
system. 

Using the partitioning (4), it is possible to introduce triangular square root de­
composition of matrix V* and to express V* as a sum of data dyads (• represents 
a scalar don't care term) 

(v* )' 
Ч>У 

Ч>У 

vl 

U* u* 

0 •* 

U* u* 

0 •* =£ 
i = l 

U* uî u: 
(41) 
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where 

i / ; ith row of the matrix 
U* u* 

0 •* 
(42) 

In a similar way, a square-root decomposition of V may be defined. 
Using the above decomposition, the addition of the regularizing matrix V* to the 

information matrix V (29) may be expressed in a recursive form 

u* :=U* * a) 

for i = 1 to n 

V := V +ҳ /AJV u* «î V^N 
. U i 

b) (43) 

end 

V(*+1|JЬ) := V 0 
where the first formula (43a) results from (41) and (5). 

The relation for addition of the regularizing "data" (43 b) has the same form as 
the formula of exponential update (28 b), with the only difference that instead of 
the information matrix, the input data is weighted by the forgetting factor. 

Result: 

1. Regularization may be implemented in the same way as data update - by enter­
ing recursively a vector of the "Active data" (42). Each such vector contains 
one row of a triangular factor of the regularizing information matrix (42). 

The element of u*, which is used in this vector, is given as product u* = U* 0*. 
Since &* is assigned the last regularized estimate, it is possible to prepare this 
product while computing the exponential updates (i.e. before processing the 
regularizing input). 

Then, efficient pipelining of computation of u* with processing of the input 
data is possible. 

2. Entering the same data, the evolution of both the information matrix (if using 
the information filter [3]) and of the covariance matrix (if using the algorithm 
with inverse updates [9, 9]) is exactly the same (up to inversion): 

V(1|0) = c-^iio) 

V ( N + 1 | N ) = C _ 1 ( N + 1 | N ) . 

After processing the same "regularizing data", it must hold: 

V ( N + 1 | N ) = C " 1 ( N + 1|N) 
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4. A SYSTOLIC IDENTIFICATION ALGORITHM 

In this section, the basic ideas of systolic array will be explained and the systolic 
implementation of the covariance update RLS algorithm [6, 9] will be described. 

Systolic array 

By a systolic array we understand a regular network of processing elements (PEs), 
connected to the outside world. The network has some regular shape (e.g. row, 
triangle, square or trapezoid). Unlike the processors in standard computer, the PEs 
in the systolic array do not use any global bus. Instead, the neighbouring PEs are 
connected by point-to-point links. 

Algorithm decomposition . All PEs in the array work synchronously. For im­
plementation in a systolic array, the algorithm must be decomposed to elementary 
operations (e. g. multiplication of individual elements in vector-matrix multiplica­
tion). Each this operation is performed in one PE, its result is sent to the input of 
the neighbouring processor and there used in the next period. 

Data pipelining. The data flow through the array in a pipelined fashion. They 
pass through the array in consecutive "waves", each of them being composed of one 
data vector. In each step, there are several "waves" passing through the array. 

A formal definition of the systolic array is given in [1]. 

A simple example of a systolic array. Let us describe now the systolic matrix-
vector multiplication, a = —R'ip (35) as a trivial example of a systolic array (actu­
ally, R is used, but it is unimportant for this purpose). 

The elements of a are scalar products of the rows of R with the vector (p. The 
ith element, a,-, is given by: 

i jfc-i 

a. = -_*_] R'ijfj = di_ - ] V R'{j ipj, n = d(p,i=l...n (44) 
;=i i= i 

t 

Oi_ = -Y^R'i^, (45) 
j-k 

where the underlined index k denotes number of elements R'ijfj, accumulated in a 
partial result. 

For systolic implementation of this computation, a triangular array may be used. 
Each PE has an internal register to store HL, two inputs and two outputs, the first 
pair to pass a,-*, the second pair to pass ipj. Its function is described in Figure 3. 

Let an infinite sequence of vectors 

M l ) , v(2), . . . , ¥ < * ) , •••} 

(k is a discrete time index) be multiplied, one vector after the other. 
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Using systolic array, <p(k + 1) may be entered as soon as <p(k) has been processed 
in the diagonal PEs and passed to the first sub-diagonal. The intermediate results 
then propagate through the array in subsequent waves. 

The process is shown in Figure 4, which traces motion of vectors through the 
systolic array over several steps of the pipelined multiplication. The boxes in the 
figure represent individual processors of the array, each storing one element of matr ix 
R. 

<Pj 
I I/O assignment: 

] ai{ := 0 
D/ -«— aij + l 
nii Cell functionality: 

aü 

I Ofj = R'irfj + aiHi 

<Pj 

Fig. 3 . Function scheme of PE for multiplication. 

S c h e m a t i c chart o f t h e array, t i m e skew of i n p u t / o u t p u t v e c t o r s . In prac­
tice, usually only a simple schematic chart combined with the cell descriptions is used 
to describe the array. 

This chart shows the contour of the array, the directions of input and output and 
(eventually) t ime skew of the entering/exiting vectors (since the elements of input 
(output) vector often enter (emerge from) the array not all at once, but one after 
another, each element also entering (emerging from) a different PE) . 

A schematic chart of our array for multiplication is given in Figure 6. The reader 
should notice, how the t ime skew of the output vector a (cf. Figure 4) is represented. 

5. PARALLEL IMPLEMENTATION OF T H E ESTIMATOR 

Having explained the function principles of the systolic array, it is possible to describe 
the systolic implementation of the RLS algorithm with update of the covariance 
matr ix. As described above, this update consists of two steps, in the first of which 
is a vector-matrix multiplication performed and in the second the covariance and 
parameter estimates are updated. Here, both steps will be first described separately 
and then, their merging into one array will be treated. 

S y s t o l i c i m p l e m e n t a t i o n of t h e f i rs t s t e p of u p d a t e 

The transposed factor of the covariance matr ix R' (31) and the vector of parameters 
0 (13) are stored in an (n + 1 x n -f 1) dimension lower triangular systolic array. R' 
is stored in the upper part of the array, 0 in the bot tom row. The scheme of the 
array is in Figure 6 — cf. (35), function of the cells was described in Figure 3. 

Systo l i c i m p l e m e n t a t i o n of t h e s e c o n d s t e p of u p d a t e 

The scheme of the array implementing the second step of inverse update (36) is 
drawn in Figure 7. The auxiliary vector a enters the array from left; it is used 
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to compute the rotations in the left column. The rotations are computed from 
top down, beginning with c o s ^ i , s i n ^ i , using scalar equal to 1 when entered and 
propagating through the array from top downwards — cf. (36). They are propagated 
rightwards through the array. 

The zero vector from the top of composed matr ix on the right-hand side of (36), 
which is used to accumulate the Kalman gain K, is entered through the diagonal of 
the array and propagated in the vertical direction. 

-¥>i(2) 

-pi(-k 

чà-v^ 2) 

-<Ѓ2(1) 

X JL o 

k = i 

ttц(l 

- ¥ * ( - . 

k = 2 

« i 

-<^i(4) 

- V i ( 3 ) \ 

i(l)M2)rL|Xq\ i 
" \ - ^ 2 ( 4 ) 

- V i ( 5 ) 

-V i (4 ) - N 

«ii(2) a„(3) - L ^ o \ 
řJ~^\-^(5) 

\ \ - V i ( 3 ) 1 ^ ( 4 ) 

« 2 i ( l ) a 2 i ( 2 ) _ L | a 2 2 ( 3 

-V»i(2) - v 2 ( 3 j 

fc = 4 

a n = a i , c-21 = a 2 

Fig. 4. Tracing of matrix-vector multiplication. 
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F ig . 5. Schematic chart of an array for multiplication 
of a triangular matrix with data vector. 

F ig . 6. Implementation of the first step of data update. 

F ig . 7. Systolic implementation of the RLS update. 

For completeness, PEs used in upper part of the array are described in Figure 8. 
Description of PEs in the bo t tom row is not given, but may easily be derived. Here, 
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'tilde' and 'bar' symbols are not used here in the sense of the variable before data 
update and after regularization; 'tilde' symbol is rather used to refer to the value of 
variable on the input of PE and 'bar' symbol to refer to the value on the output of 
PE. 

Left Column Triangular Pari 

11 

I/O assignment: 

N: top element: 1 

other elements: v £ 

S: VI 
W: a, 

E: cos <f>i, sin (j>, 

Cell fun 

COS(f>i 

sin <f>i 

tionality: 

= Vš/y/s + a? 

= ať/Vš + a? 
y/š : = y/š cos <j> + a, sin (f> 

11 
Rij 

T 
I/O assignment: 

N: diagonal elements: 0 
other elements: v$k3 

S: y/Ekj 

W: cos<p,, sin <p, 
E: cos (fit, sin <p, 

Cell functionality: 

Cj, := cos </>i, S<f, := sin <j>, 
yskj := Cj, yskj + S^ Rij 
RtJ := (l/^/X^-St \ZI~kj + CV R,j 

Fig. 8. Description of the processors in the left column of the update array. 

Implementation of both steps in one array 

Our aim to perform both steps of data update — the multiplication (35) and the 
inverse update (36) — simultaneously in one composed array, as in Figure 9. Howev­
er, merging simply both the above described arrays together, the following problem 
would arise: since the partially computed products a,-*, and the rotations <f>i pass 
through the array in opposite directions, for the multiplication the elements of R 
would be used, that have not yet been updated in the previous recursion. 

Update array 

Multiplication 
array 

F i g . 9. Merging both steps of u p d a t e in one array. 
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The solution of this problem was described in [6, 7, 9] and is the following: the 

respective elements of the d a t a vector ip are multiplied by the old, non-updated 

elements of the factor of covariance matr ix R, but before the product is passed to 

the next P E , it is rotated with an added correction. This correction is performed in 

each cell, resulting in correct final product. For proper time-space synchronization 

of the values propagating through the array, delay is added into the horizontal links. 

Applying the '2-slowing lemma', used in the systolic algorithm design [8], the delay 

may be introduced by running only half of PEs in each step (Figure 10). 

D H 
ИD DH 
DHD HDH 
HDHD DHDH 
DHDHD HDHDH 

Active cells at time 

2k 2k + 1 

D inactive PE -3 a ctive PE 

Fig. 10. Switching of active and inactive cells in RLS array. 

T h e resulting array is sketched in Figure 11, ct is an auxiliary vector. Its first 

element is number 1 entering the computations of rotations, zeros on the subsequent 

positions are the corrections, rotated as the vector passes through the array. The 

zero vector 0 is used for computat ion of s?K. 

F ig . 1 1 . Scheme of pipelined array for the RLS estimator. 

T h e function of PEs in the array is described by the following equations ( a denotes 

a after the matrix-vector multiplication, but before the update itself): 
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Upper part (R'): 

First column cells: 

а i • — C ч - Řii<pi 

Sф — sin фi := l 

cos фi := Ł 

ч/ҳ/õcl + а] 

Cф = 

sin фi := l 

cos фi := Ł Һ/yàj + а] 

ßl ã i 1 0 Cф Sф ßl ã i 

Rц 0 o i/Vл —Sф Cф Rц щ 

Internal cells: 

Һ 

ã i := õ i jгьţ j (pj 

1 0 Cф Sф ßi &i 

KІJ ñi o ì/Vл —Sф Cф KІJ ãi 

The cells in the bo t tom row are updated in a similar way. 

6. SYSTOLIC IMPLEMENTATION OF T H E BLOCK REGULARIZATION 

This section contains the most important part of this paper — the implementation 
of the block-regularization in the systolic inverse-updated RLS algorithm will be 
described here. 

Summarizing the above given description of the block-regularized forgetting, we 
find tha t the following mechanisms must be implemented: 

• Multiplication of n rows of matr ix U* (41,42) by 0* (43 a) 

• Switching between the data samples from the identified system and the regu­
larizing "data" 

• Computat ion of the accumulated forgetting factor AJV (28 c, d) 

• Switching on and off of the exponential forgetting (when processing the regu­
larizing data, the exponential forgetting is not used — cf. (28b) and (29b, c)). 

• Storing of 0* during multiplication with U* (n vectors U* are multiplied with 
0* consecutively), writing of new 0* to the storage. 

It will be supposed for simplicity that the forgetting factor A is constant. Then, XN 
and the product y/X^U* may be computed in advance. 
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Remark on notation 

In the following text, Ux* will be used to refer the product, 

Ux* = y/X^U*. 

Similar notat ion will be used also for y/Xpju* 

,/X^u* = yfX^U*0*. .л* 

(46) 

(47) 

The rows of Ux* will be referred to as Ux* and the elements of ux* as ux*. 

S e l e c t i o n a n d s tor ing o f 0* 

For implementation reasons (simplicity of mechanism to control writing 0* to the 

storage), an assignment 

0*(k) :=0(k-n) (48) 

will be used for 0*, instead of (30), if N > n — if the data block is longer than 

is the dimension of 0 (this may be the case if using the regularized estimator for 

adaptive control [12]). 

Hence, if N > n, only exponential forgetting is applied on the last regularized 

est imate 0 during the N — n steps before it is stored in the 0* storage. In result, 

N may be longer than n only to t h a t degree that 0 does not lose stability at the 

beginning of the d a t a block for the given quality of input data. 

For multiplication by the rows of matr ix U*, 0* is stored where it has been 

computed — in the b o t t o m row of the array. 

Load ing o f Ux* i n t o t h e array a n d i t s m u l t i p l i c a t i o n by 0* 

The m a t r i x U* is entered into the array through the bot tom row of the array, skewed 

in t ime. In the b o t t o m row, it is also multiplied by 0* (Figure 12). 

E L I ^ J; 
[ Î . . . Ü] 

Fig. 12. Loading of the regularizing information matrix into the array and 

its multiplication with regularizing parameter estimates. 
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From the bo t tom row, the elements of Ux* are shifted up through the array to 
the diagonal and there processed as the alternative data . 

For proper pipelining of Ux* with the da ta samples (so that Ux* arrives to the 
diagonal jus t after the last sample in the da ta block has been processed), £!*,_ (the 
upper left element of the matrix) must clearly be entered to the bot tom row of the 
array n steps before the end of the da ta block. 

Because of switching of active PEs in the array (Figure 10), the rows of Ux* must 
be entered only every second tact period of the array. 

C o n t r o l S i g n a l 

To synchronize all mechanisms in the array, a control signal is used. This signal, 
aligned with Ux*, is propagated through the array, first upwards (Figure 13) - it 
is used in the bo t tom row to switch on and off writing of the 0 estimates to the 
storage of 0* and, when it reaches the diagonal of the array, to switch the array 
entries between the da ta samples and the regularizing vectors. In the upper left P E 
it is "bounced" and propagated through the array to switch on and off the forgetting. 
Complete pa th of the control signal through the array is sketched in Figure 14. 

Finally, Figure 15 shows time alignment of the control matr ix and regularizing 
da ta with the da t a samples rom the identified system. 

In the cell descriptions (Figures 1 6 - 1 9 ) , the control signal is referred to as Ctrl i 
when shifted upwards and as Ctr l 2 when propagated downwards. 

0* storage 

Control 

matrix 

ГT^ 

Input 1 

x i ' Input 2 
i 

Control 

signal 

(Ctrl.) 

II 

if Ctrl = Ident. then 

x := Input 1 

else 

x := Input 2 

end 

Fig . 13. Switching of the of regularizing parameters storage and of the data entries. 
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Control signal resent 
back to the array 
to switch the forgetting 

Control signal 
propagated 
upwards 

Fig . 14. Propagation of control signal through the array. 

Interruption of data flow during 
processing of regularizing data 

Blocks of data samples 

Regularizing data 

Control matrix: 

Data processing 

Regularization 

Fig . 15. Alignment of control matrix with the data samples. 
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Лt. N2 N3 N4 Лľ5 JV6 

l l l l t t 
< - £ i 

— > ß 2 

Ru - * * E 3 I/O assignment: 
' N\ top element: <p\ 

other elements: X\ lllltt 
N\ top element: <p\ 

other elements: X\ 
5 i S 2 S3 5̂ 4 S 5 S 6 N2 top element: ã i = 1 

other elements: ã i 

Cell functionality: Nз top element: ß\ = 0 

Top cell: other elements: ß\ 
Ctrl2 := Ctrli N4 top element: not used 
if CtrЦ = 1 then other elements: CtrЬ 

x\ :=<p\ S4: Ctrl 2 

else S5: Ctrli 

X\ := Ut\* S6: 
TT\* 
uil 

end E\: top element: 0 
All cells: other elements: щ 

aux := ãj + Rux\ E2: top element: not used 

Cф := cos фi := ã i / ( ã 2 + aux2)ã other elements: фi 

Sф := sinф := aux/(ã2 + aux2) Eз: top element: not used 

ß\ := Cфß\ + Sф Ru other elements: CtrЬ 

ã\ := Cф ã\ + Sф aux 
R\І := — Sф ß\ + Cф Ru 
if Ctrl 2 = 1 then 

Řu := (l/A)B l t 

end 

Fig . 16. Processing cell in the left column of the upper part of array. 
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Лt i Лt3 Лtз Лt4 Лt5 

ШJJ 
Wx <— <—E 

w2 —»> 

W3 — > 
RJІ 

—*• E-

—*- E. 

U l í t 
Si SQ S3 St S5 

Cell functionality: 
Diagonal cells: 

if Ctrli = 1 then Xj := (pj 
else Xj := Uh* end 

All cells: 
dp := cos <f>i 
S$ := sin <f>i 
aux := hi + RjiXj 
0j '•= C<j, flj + S(j, Rji 
ctj := C,!, &j + S<j, aux 
Rji '•= —S^fij + C<p Rji 
ai := —S<f> oci + Ct, aux 
if Ctrl2 = 1 then 

Rji '•= ( l /A)R j . 
a, := (1/A)a. 

end 

I/O assignment: 
Ni: diagonal elements: <pj 

other elements: Xj 
N2: diagonal elements: 6cj = 0 

other elements: ay 
N3: diagonal elements: /?y = 0 

other elements: (3j 
N4: diagonal elements: not used 

other elements: Ctrli 
N5: diagonal elements: not used 

other elements: Uh* 
Xi 

Otj 

ßi 
Ctrli 
DA* 
V*} 

Si 
5*2 

S3 
5 4 

Wn ai 

W2: fc 
W3: Ctrl2 

E\: diagonal elements: 0 
other elements: 5j 

E2: diagonal elements: not used 
other elements: fa 

E3: Ctrl2 

Fig. 17. Processing cell in an internal column of the upper part of array. 
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First cell 

Л t i Л t 2 Лtэ Лľ4 JV5 ЛГ6 

Internai cells 

Nx N2 N3 N4 N5 

m t t 
* - J Б . * — J S i 

— > Б з —>• £<2 
J ©! ; . 

— > Б э — • JЗЗ 

ł t t 1 t ł 
Si Sз Sз 5i 5г 5з 

1/0 assignment: 1/0 assiдnment: 
ЛГ-: xi Ni: XІ 

N2: a\ N2: c 

N3: ßi Nз: # 
N4: Ctrl2 N4: CtrH 
N5: Ctrli N5: Ц* 
Nб: Ufc Sv Єj 
S\: Є\ S2: Щ* 
S2: tjД* S3: Ctrli 
5 3 : Ctrli Wx: є 
E\: є\ W2: ш 

E2:ш Wз:Et;ІOaГ . 
Eз: UA* * Ei: £ 

Oe/7 fчnctionality: E* c e l l s - • • • »-- : w 

a u x ^ ê x + xX! cell n : not used 
ы : = - м x / a i « * £І = 1 UД* *(*) 

І := шß\ + ^ Celł fчnctionality: 
if CtrЦ = 1 then вj : = j + шßj 

î := І £":=£ + jXJ + wвj 
else ifCtrli = 1 then 

Eз : = fjД* * * := Єj 

^ else 
E3:=W3 + ř7/>* * 

end 

F ig . 18. Processing cells in the bottom row of array. 
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W, 

W2 

JVi 

1 
JVi 

1 1/0 assignment: 
Ni: У 
W2: U?* * 

1/0 assignment: 
Ni: У 
W2: U?* * 

1 Si: Ctrli 
CeII functionality: 

ł 
5! 

if CtrЦ = 1 then Wx ł 
5! 

else Wi := - U ^ * 
end 

:= -У 

Fig. 19. Last processing cell in the bottom row of the array. 

B u f f e r i n g of i n p u t d a t a 

Regularization interrupts processing of the input data for n periods every N periods 

( that is, during N + n periods only N d a t a samples are processed). Because of that , 

it is necessary to sample the identified system at a slower rate than the systolic 

est imator runs and to buffer the data samples. The ratio of the system sampling 

rate to the input rate of the estimator is equal to N/N + n, i.e. ranges from 1/2 

(worst case, for N = n) to 1 (limit case for exponential forgetting, i.e. N —• oo). 

D e s c r i p t i o n of P E s i n t h e a r r a y w i t h t h e b l o c k - r e g u l a r i z e d f o r g e t t i n g 

In this section, the resulting PEs implementing the block-regularized forgetting will 

be described. 

Let us recall that , for better understandability, the control signal, when shifted 

upwards through the array, is referred to as Ctrl i and when 'bounced' and prop­

agated down- and rightwards through the array, as Ctrl2, though it is the same 

signal. 

The description of the cells is given in Figure 16-19 . 

7. CONCLUSIONS 

T h e paper describes implementation of the block-regularized exponential forgetting 

in the systolic algorithm for the Recursive Least Squares (RLS) identification with 

update of the covariance matr ix (so called inverse-updated RLS algorithm). It is, to 

our knowledge, first a t t e m p t to increase robustness of the systolic implementation 

of the covariance filter to the non-informative data . 

T h e paper introduces the reader into the principle of the regularization and of 

the block-accumulated regularization. 

It treats the problems connected with systolic implementation of the block-regu­

larized forgetting in the inverse-updated RLS estimator and finally gives a cell-level 

description of the resulting algorithm. 

T h e regularized forgetting prevents the covariance matr ix from unlimited growth 

in the conditions of poor excitation. The regularizing matr ix may be an arbitrary 
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symmetric positive definite matrix, the choice depends on the user's needs. As 
an example, the use of the matr ix obtained from the preliminary analysis of the 
estimated system may be given. The advantage of the method is that it is capable 
to preserve the value of parameter estimates, identified from informative data , in 
the conditions of poor excitation. 

Using only the connections between the neighbouring processors, the proposed 
implementation of the block-regularized forgetting preserves compactness of the sys­
tolic est imator with exponential forgetting. The throughput of the resulting algo­
r i thm is reduced only to one half, compared with that of algorithm with exponential 
forgetting. 

(Received December 12, 1993.) 
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