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K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 1 

MATHEMATICAL PROGRAMMING PROBLEMS 
INVOLVING CONTINUUM OF INEQUALITY CONSTRAINTS 

JAROSLAV DOLEZAL* 

The paper considers mathematical programming problems having a continuum of inequality 
type constraints and possibly other constraints. These additional constraints can be of quite 
general nature being described only implicitly by their respective conical approximations. Follow­
ing the general scheme given in [1], a set of necessary conditions if obtained. It is also shown that 
then necessary conditions for general static minmax problems with constraints can be derived 
in a straightforward way. 

1. INTRODUCTION 

At present time there exists a variety of papers dealing with all possible aspects 
of mathematical programming problems. Based on assumed structure of a set 
of constraints, various approaches and methods can be encountered in the literature. 
It is the opinion of the author that the most general methodology seems to be deve­
loped in [ l ] . However, this fact does not seem to be widely known and used in the 
past. One reason is that the English version of [ l ] appeared only recently, but, 
on the other hand, also somewhat complicated notation and effort of the author 
to make the presentation as general as possible (in finite dimensional setting) could 
discourage some potential readers and users. 

The aim of this note is to show a straightforward application of the existing results 
to obtain necessary conditions in a case of infinitely many inequality type constraints 
preserving general formulation of [ l ] . The derived conditions are more general 
than those given in [2 — 3]. In turn, the obtained conditions enable direct treatment 
of static minmax problems in a fairly general setting including also the recent results 
formulated for a case with explicit (equality and/or inequality type) constraints in 
[4-5]. 

* Partially prepared when the author was with Department of Electrical and Computer 
Engineering, Oregon State University, Corvallis, Oregon, U.S.A. 
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2. PROBLEM FORMULATION 

Consider the problem of minimizing a function/: R" -+ R1 on a given set 

(1) .3 = Q n {x e R" [ q(x, y) g 0, y e 7} , 

where Q c R" and 7 is a compact subset (index set) of a complete metric space. 
Here and henceforth it is assumed that all functions are continuously differentiable. 
To treat a general constraining set Q the following definition is repeated here for 
convenience, see [1]. 

Definition 1. Let xe Q and let K be a convex cone with vertex in x. The cone K 
is called a conical approximation to the set Q at x if there is an e > 0 and a continuous 
mapping ip :(K n Uc(x)) -> £>, such that \j/(x) = x + o(x — x), where U£(x) denotes 
an e-neighbourhood of x, and o(x) = 0 for x = 0 and lim ||o(x)j|/||x|| = 0. 

11*1-0 
The denotation "conical approximation" is preferred by the author to the names 

translated as "mantle" or "tent". It is not very difficult to see that K, being a conical 
approximation in the sense of Definition 1, is also a conical approximation (of the 
second kind) introduced and used throughout [6]. However, in this finite-dimensional 
setting the both concepts are practically almost equivalent, especially when dealing 
with more explicit form of Q, e.g. Q being convex or given by a system of equalities 
and inequalities. Further details can be found in the mentioned references [ l ] and 
[6]-

Moreover, if K c R" is a convex cone with vertex in x, the K' = {a e R" | 
| <x - x, a> ^ 0, xeK} is the dual (polar) cone to K. Finally, let Kv ...,KS be 
a family of convex cones in R" having a common vertex x. We say that this family 
possesses a separation property in R", if there exist vectors ateK'i, i = 1 , . . . , s, 
with at least one of them being nonzero, such that at + ... + as = 0. For con­
venience, let us also recall the basic result of [ l ] . 

Theorem 1. Let Qu ..., Qs be a family of sets in R" having a common point x, and 
Klt ...,KS the corresponding conical approximations at this point. Assume that 
at least one of the cones Ku ..., Ks is not a hyperplane (of any dimension). In order 
that the intersection Qr n ... n Qs is just the point x, it is necessary that the family 
of cones Ku ..., Ks possesses the separation property. 

Fairly involved reasoning and construction was needed in [ l ] to prove this theorem. 
However, if in Definition 1 the mapping i// is assumed to be continuously differentiable, 
the corresponding version of Theorem 1 for this case of "smooth" conical approxim­
ations is obtained in a considerably simpler way as demonstrated in [ l ] and [7]. 
Moreover, in all cases of practical interest this less general concept has shown 
quite satisfactory as follows from [7], where such type of a conical approximation 
is exclusively used. 
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3. NECESSARY OPTIMAL1TY CONDITIONS 

Let 

(3) Q0 = {xeR"\q(x,y)<., yeY}. 

Denote as Y(x) = {ye Y| q(x, y) = 0} the active index set at x. We say that the 
family of functions q(-, y) y e Y is nondegenetate at x, if there is a vector v e R' 
such that 

(4) {qx(x, y), v} < 0 for all y e Y(x) . 

Here the lower index denotes the respective partial derivative. If Y(x) happens 
to be empty, then there is clearly no active constraint at x, and R" is a conical appro­
ximation of Q0. Otherwise, in an analogical way as in [1] or [7] one has the follow­
ing result — see also [3] in this respect. 

Theorem 2. If the family of functions q(-, y) y e Y is nondegenerate at x, the set 

K(Z) = {x e R" | (qx(x, y), x - x) £ 0 for all y s Y(x)} 

is a conical approximation to the set Q0, given by (3), at the point x. 

It is a direct application of Theorems 1 and 2 to formulate necessary conditions 
for the considered problem. 

Theorem 3. Let x be a minimizing point of/subject to (1) with 

(5) Q = 0 Hi • 
i = l 

Denote as K(x) the conical approximation to the set Q0(&) and as Ku ...,KS the 
conical approximations to Q1. ..., Qs at x, and assume that the family of functions 
<K*> >')' y e Y, is nondegenerate at x. Then there exists a number ft <. 0, a. vector 
a0 e K'(x), and vectors at e K'h not all zero, such that 

Hfx(x) + a0 + ax + ... + as = 0 . 

The nondegeneracy assumption was discussed in [3] more in detail when dealing 
with a conical approximation of the type defined in [6]. For somewhat less general 
formulation of the studied problem it was shown that without this assumption the 
obtained necessary conditions can be always satisfied in a trivial way not depending 
on the optimality of x. Now it is possible to give variety of theorems dealing with 
some more concrete cases, e.g., subfamily of cones KU...,KS does not possess 
the separation property, some constraints are given explicitly as a system of equali­
ties, etc. The interested reader should consult [1] for these and other details. 

As also discussed in [3] in some other consequences, one can express vector 
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a0eK'(x) as 

(6) a0 = £ v; 1x(x, y) , 
i=l 

with V; §; 0, i = 1, ..., r, ^ e Y(x), i = 1, ..., r, and 1 | r ^ n, Then the necessary 
conditions receive a more familiar form, e.g. see [2]. 

4. STATIC MINMAX PROBLEMS 

The aim is to minimize the function 

(7) f(x) = sup <j>(x, y) 

subject to 

(8) xeQ. 

Here <f> is a continuously differentiate function, Y is again a compact subset of 
a complete metric space; and Q c R". 

Let us consider the problem of minimizing 

(9) F(z) = F(Zl,...,zn+1)~zn+1 

subject to 

(10) (Zl,...,znfeQ, 

and 

(11) <t>(zu...,zn,y)-z„ + 1k0 for all yeY. 

It is a simple exercise to show that the problems (7) - (8) and (9) - (11) are equi­
valent in the following sense: if z solves (9) —(.11), then x = (£1; ...,z„)T solves 
(7)-(8); if x solves (7)-(8), then z = (xT,z„ + 1)

T solves (9) —(11) with z„ + 1 = 
= sup^y <j>(x, y). This idea was originally suggested in [8] and explored recently 
when studying static minmax problems with constraints in [4] and [5]. In the studied 
case, on applying Theorem 3, one easily obtains a general result identical with that 
of [9]. All known theorems can be then alternatively formulated as partial cases. 

Namely, assume that Q is given by (5) and that Kh i = 1, ..., s, are the respective 
conical approximations at the optimal point x. Moreover, let the family of functions 
<K'> y) - f(x), y e Y, be nondegenerate. Then also the family of functions in R"+1 

described by (11) is nondegenerate at z = (xT,f(x))T as can be easily verified. There­
fore the cone 

(12) K(z) = {z e R»+1 | <ct>x(x, y), x-x>Sz„+1- f(x), y e Y(x)} , 

where 

(13) Y(x) = {yeY\<t>(x,y)=f(x)}, 
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is a convex approximation to the set 

(14) Q0 = {ze R" + 1 | (j>(x, y) - z„ + 1 ^ 0, y e 7} 

at the point z. In addition, 

(15) /? ; = X; x R1 , i = 1,.. . , s , 

are obviously convex approximations to the sets 

(16) Qt = Qtx Rl , i = 1, ..., s , 

at z. According to Theorem 3, there exists a number \i ^ 0, a vector a0 e K'(z), and 
vectors a,- e K\, i = 1, ..., s, not all zero, such that 

(17) [i Fz(z) + a0 + at + ... + as = 0 . 

From (12) it follows that a0 = (aj, a"0
+1)r, a0 e R", lies in the convex cone generated 

by vectors of the form (<f>l(x, y), - l ) r , y e Y(x), i.e. a0 lies in the cone generated 
by <f>x(x, y), y e Y(x). Otherwise speaking, a0 e K'(x), where 

(18) K(x) = {x e R" [ (4>x(x, y), x - x> g 0 , y e Y(x)} , 

and, in turn, K(x) is a conical approximation to the set 

(19) Q0 = {xeR"\4,(x,y)^f(x), y e Y} 

at the point x. This is in overall agreement with [9]. 

Relation (15) implies that at = (aj, 0)T, at eK[, i = 1, ..., s. Now (17) splits into 

(20) a0 + a. + .. • + as = 0 , 

(21) _ / i + fl»+i=0. 

If fi = 0, then also a0
+1 = 0, and because of the mentioned structure of K'(z) this 

is only possible when also a0 = 0, i.e. a0 = 0 in this case. Then necessarily at least 
one of fl;, i = 1, . . . , s, must be nonzero. These results are summarized in the follow­
ing theorem. 

Theorem 4. Let Q be given by (5) and let Ku ...,KS be the corresponding conical 
approximations at x, which point is a solution to the static minmax problem (7) —(8). 
Suppose that the family of functions <fi(-, y) — f(x), ye Y, is nondegenerate at x. 
Then there exists a vector a0 e K'(x), and vectors a, e K\, i = 1, . . . , s, not all zero, 
such that 

A0 + at + .. . + as = 0 . 

Again, a0 can be respectively expressed using an analogy with (6), however, owing 
to the preceding discussion now l g r ^ n + 1. Various alternatives, as mentioned 
earlier, are also in this case at a hand, see [7] and [9]. 
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5. CONCLUSIONS * 

It was shown that general approach to the solution of mathematical programming 

problems given in [ l ] can be applied in a straightforward way to deal with the case 

of infinitely many inequality type constraints. The obtained necessary optimality 

conditions include all previous results as special cases. In addition, it was demon­

strated that after a suitable transformation also general static minmax problems 

can be treated using the presented conditions. 

(Received May 22, 1981.) 
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