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KYBERNETIKA — VOLUME 29 (1993), NUMBER 4, PAGES 305-324

INEXACT TRUST REGION METHOD FOR
LARGE SPARSE NONLINEAR LEAST SQUARES

LADISLAV LUKSAN

The main purpose of this paper is to show that linear least squares methods based
on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust
region path. This property is a basis for an inexact trust region method which uses the
LSQR algorithm for direction determination. This method is very efficient for large sparse
nonlinear least squares as it is supported by numerical experiments.

1. INTRODUCTION

Inexact trust region methods are frequently used for general large-scale uncon-
strained minimization where we find the local minimizer z* € R™ of the function
f : R* — R which has continuous second-order derivatives. A typical inexact trust
region method can be represented by the following algorithm.

Algorithm 1.1.
Data: 0<Bi <<l <71,0<p <p2<],0<e3<1,0< Apax-

Step 1:  Choose an initial point £ € R™ and an initial trust region bound 0 < A <
Amax. Compute the value f := f(z) of the objective function f : R* — R
at the point € R".

Step 2:  Compute the gradient g := g(z) of the objective function f: R* — R at
the point z € R"™. If||g]| < €, then stop, otherwise determine the matrix B
which is an approximation of the Hessian matrix of the objective function
f: R* — R at the point z € R™.

Step 3:  Determine the current precision 0 < w < 1 and compute the vector d € R*
so that

(& Hfdi<a
() ldll < A= [|Bd+gl} < wllgl
(©) Q) < —3llgll min(|idl], lloll/1B1)

where
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Q) = %dTBrl—I—dTg (1.1)

is a local quadratic approximation of the objective function f : R* — R.

Step 4:  Set z¥ := z+d. Compute the value f* := f(zt) of the objective function
f:R® — R at the point 2% € R™ and the ratio

i
7= 700

If p < py1 then compute the value A% using the quadratic interpolation
and set

(1.2)

A= Bylldl] i A* < Bildl),
A= Bolld]] i AY > Bo)dl],
A =A%t otherwise.

If py € p < pr then set At := A and A := min(A*, yo||d||}). If p2 < p
then set At := max(A, 71(|d||} and A := min(A*, v2||d||, Amax)-

Step 5:  1f p < 0 then go to Step 3, otherwise set z := z+, f := f+ and go to
Step 2.

Inexact trust region methods have strong convergence properties (see [6], [7],
[8]). Even if they also work well for indefinite matrices, we confine our attention to
positive semidefinite case which appears in nonlinear least squares. )

The most complicated part of Algorithm 1.1 is computation of the vector d € R™
satisfying the conditions (a), (b), (¢). There exist three basic possibilities for positive
semidefinite case. First, the vector d € R™ can be obtained as a solution of the
subproblem

d= argmin Q(d(Y))
fld(M)isa

which leads to the repeated solution of the equation (B+AI)d(A)+g = 0 for selected
values of A. This way gives well-convergent algorithms, especially in connection with
the Newton method, but for large number of variables, it is time consuming,.

The second possibility, so-called dog-leg strategy, consists in computation of two
vectors d) € R™ and dy € R™ such that g7 Bgd + [lg]|?¢ = 0 and Bdy +g = 0. The
resulting vector d € R™ is then obtained as d = Ad if ||di| > A, d = dy + A(dz — dy)
if [|di]] < A < ||d2||, and d = ||do|| if ||d2]| < A, where the scaling factor A > 0 is
chosen so that ||d|| = A. This way is more economical since the equation Bdy+g =0
can be solved inaccurately (||Bdz + g|| < wl|g|f) by some iterative method.

The third possibility is very natural. The equation Bd+ g = 0 is solved by some
iterative method which generates the vectors d; € R®, i € N, having the following
properties: '



Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 307

A) There exists an index k € N, such that

1B + gl < wllgl (13)
for a given 0 < w < 1.
(B) The sequence Q(d;), 1 < i <k, is decreasing, i.e.

Q(diy1) < Qi) (1.4)
for 1 <i<k.

(C) The sequence ||d;}], 1 < i <k, is increasing, i.e.

(it > lldkil] (1.5)
for 1 <i<k.
(D) It holds that
QU <~ gl I | (16)
for 0 <A <1, and
Q(di) < gl (L.7)

for 1 <i<k.

The resulting vector d € R" is then obtained as d = Ady if {|dif] > A, d = di +
Mdig1 — di) if [|dif] < A < ||diga]| for some 1 < i < k, and d = ||di|| if [|di}} < A,
where the scaling factor A > 0 is chosen so that ||d[] = A.

Steihaug [8] has proved that all above conditions are satisfied for the conjugate
gradient method. Our main purpose is to prove that these conditions are also sat-
isfied for more complicated iterative methods appearing in least squares solutions.

Consider the nonlinear least squares problem which is a special minimization
problem where the objective function f := R™ — R has the form

1@) =3 Y £2) (18)

and the functions f; : R* — R, 1 < i < m, have continuous second-order derivatives.
Denote f = f(z), fi = fi(z), 1 <i < m and g = g(z), i = 0:(x), 1 < i <m, the
values and the gradients of the functions f : R* — R, f; 1 R* - R, 1 <i< m, at
the point z € R" respectively and set

91 () Sulz)
‘A= A(z) = , b=bz)=~- . (1.9)
yﬁ(ﬂ) fm(z)
Then ’

F= 28, g=-ATS, (L10)
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and if we denote 2% = & + d as a new vector of variables, we get after linearization

fa) = 5 30 ) & g lAd - o

Therefore the optimal direction vector d* € R™ can be obtained as a solution of the
lineatized problem

d* = argmin ||Ad — b| (1.11)
deR™

Since the function ||Ad—b|} is convex the vector d* € R™ is a solution of the problem
(1.11) if and only if

AT(Ad* =) =0 (1.12)

If we denote B = AT A and if we use (1.10), we get the equation Bd* + g = 0 which
is equivalent to (1.12). Therefore it suffices to substitute B = ATA in Algorithm
1.1 to adapt it for nonlinear least squares. Especially the quadratic function (1.1)
takes the form

Qd) = %d"‘ATAd —dTATY (1.13)

Using the substitution B = AT A we can transform the conjugate gradient method
to solve the normal equation (1.12). The resulting method is the CGLS algorithm
(see [5] as an example) which is represented by the following iterative process

do =0, ro=0b, (1.14a)
v =ATr,, 7= |luf? (1.14b)
pL="11 (1.14c)
and
Uy = ,4p,', 6,’ = Hu,”“) (1A14d)
di =di_1 + ﬁpi, ri= oy — Ly (1.14e)
&; 5,’
vipn = ATr, v = (ol (1.14f)
Yit1
Pit1 = Vig1 + " Pi (1.14g)
i

for i € N. As it was proved by Steihaug [8] for the CG method, the vectors d; € k",
i € N, obtained by (1.14) satisfy the conditions (A), (B}, (C), (D). The inequality
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(1.3) has the form 7x < w2y, since AT(Ady — b) = v and ||JAT(Ade — b)||? = 7% by
(1.14f).

The CGLS algorithm is not the best one for linear least squares. Methods based
on bidiagonalization [1], [4], namely the LSQR algorithm proposed in [5], were proved
to be numerically more stable. In the next section we shall study properties of such
methods with regard to conditions (A), (B), (C), (D) which have to be satisfied.

2. BIDIAGONALIZATION AND LINEAR LEAST SQUARES

Consider the problem which consists in finding a vector d* € R™ such that
d* = argmin ||Ad — b|. (2.1)
deR™

Since the function ||Ad— b} is convex, the vector d* € R" is a solution of the problem

(2.1) if and only if A’I‘(Ad» —b)=0. (2.2)

The problem (2.1) can be solved iteratively using a bidiagonalization procedure
proposed in [1] and [4]. In this case

Bruy =8, (2.3a)
vy = ATy, (2.3b)
and
Bisruip1 = Avi — oqu;, (2.3¢)
Q1 V41 = ATUH,] - ,Bi-HU.‘, (2.3({)

for i € N, where the right hand sides are assumed to be nonzero and the coefficients
on the left hand sides are chosen so that the corresponding vectors have unit norms.
If some right hand side becomes zero then we formally set both the coefficient and
the vector on the left hand side equal to zero and we stop the iterative process.
Namely if b == 0 or ATb = 0 we set 3 = 0, u; = 0 or a; = 0, v; = 0 respectively.

It can be easily proved by induction (see [1] and [4]) that for a; > 0, 8 > 0,
1< i <k, the vectors v; € R*, 1 <t < k, are nonzero and mutually orthogonal and
the vectors u; € R™, 1 < ¢ < k, have the same property.

The iterative process (2.3) can be written in the matrix form

Ui+1 (ﬂ;el) = b, (243.)
AV; = U1 B;, (2.4b)

ATU£+1 = V,B;r + a,-+111,-+le;-§_1, (2.40)
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for i € N, where V; = [v1,...,v] € R Vi = I, Uig1 = [u1,...,uiq1] €
RAx(+) | and

o, 0, , 0
B2, a2, , 0
0, P, , 0
B=| . (2.5)
0, 0, ..., «
0, 0, ..., Bipr

Ifa; >0, 8; > 0,1 <4<k, then the lower bidiagonal matrices B; € RIS
1 < i < k, have full column rank. If Bj4; > 0 then UE,,IU,-H = [. In the other
case Uip1 = [U;,0), B; = [LT,0]T, where L; € R**! is a nonsingular square lower
bidiagonal matrix, and (2.4) can be rewritten in the form

Ui(Brer) = b, (2.6a)
AVi = UsLs, (2.6b)
ATU,' = VlL;r =+ a{+1vi+16;-1;1, (2.60)

for i € N, where U; = [uy,...,u;] € R, UTU; = 1.
Together with the iterative process (2.3) we consider the sequence of vectors
d; € R*, 1 <1i <k, such that

d; = argmin [|Ad - b||. (2.7)
deR(Vi)

Lemma 2.1. Consider the iterative process (2.3) with a; >0, 5; > 0,1 <i < k.
Let d; € R*, 1 < i < k, be the sequence of vectors defined by (2.7). Then, for
1<i<tk,
d; = Viy; ‘ ) (2489)
where
¥ = argmin [|Biy — Brei])- (2.8b)
yER'
If Bi41 = 0 (it can be satisfied only for i = k) then ||Ad; — b|] = 0.
Proof. I d € R(V;) then necessarily d = V;y for some y € Rf. If fi+1 > 0 then

[l1Ad = bl = |4Viy = bl| = (U1 (Biy ~ Frea)ll = |Biy ~ prenll,
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by (2.4a) and (2.4b), since UL, Uiy1 = 1, so that (2.7) is equivalent to (2.8b). If
Bit1 = 0 then

(1Ad = bl = | AViy — b} = |U:(Liy — Bres)]| = O,

by (2.6a) and (2.6b), since the lower bidiagonal square matrix L; is nonsingular and,
therefore, there exists a solution y; € R* of the equation L;y = Bje;. =]

Corollary 2.1. Let the assumptions of Lemma 2.1 be satisfied. Then, for1 <i <k,

d; = Viyi (2.9a)
where
v = BB B) e (2.9b)

Proof. Since the function ||Biy — Bie1]| is convex, the vector y; € R is a
solution of the problem (2.8b) if and only if B (B;y ~ fie1) = 0. Because the lower
bidiagonal matrices B; € RE+DXE | < § < k, have full column rank, we can write
vi = fi(BT B;)" BT e, which together with Ble; = are; (see (2.5)) gives (2.9b). O

Theorem 2.1. Consider the iterative process (2.3) and sequence of vectors (2.7).
Then either d* = 0 is a solution of the problem (2.1) or there exists an index k < n
such that d* = dy € R(V}) is a solution of the problem (2.1) and, moreover, ¢; > 0,
Bi>0for 1 <i<k.

Proof. Ifeither b= 0or ATb = 0 then d* = 0 is a trivial solution of the problem
(2.1). In this case either 8, = 0 or a; = 0. Suppose now that a; > 0, §; > 0 for
1 <i<k<n Ifk=nthen R(V,) = R" since the vectors v;, 1 < i < n, are
nonzero and mutually orthogonal. Therefore

d, = argmin ||Ad - bl} = argmin ||Ad —b|| = ¢
dER(Va) deR™

is a solution of the problem (2.1). If k¥ < n and Br41 = 0 then ||Ady — bj| = 0 by

Lemma 2.1 so that d* = dj is a solution of the problem (2.1). If k¥ < n and ag4; =0

then ATUgy1 = Vi BT by (2.4c¢) so that

AT(Ady — b) = AT(AViys ~ b) = ATUrs1(Biye — Pren) = Vi B (Brye — Brer) = 0,

by (2.4a) and (2.4b), since B;{(Bkyk —pre1) = 0 by (2.8D), and d* = dy; is a solution
of the problem (2.1) by (2.2). o

Theorem 2.1 shows that d* = d; is a solution of the problem (2.1) whenever a1 = 0
or Biy1 = 0. The next lemma gives an important estimation in case ;41 > 0 and
Biy1 > 0.
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Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 <i < k,

AT (Ad; — b)) = i1 Bigr [oF . : (2.10)

Proof. Let aj41 > 0 and fi41 > 0. Then using (2.4a) and (2.4c) we get
AT(Ad; ~ b) AT(AViy; = b) = Aip (Biyi — frer) =
(ViBf + aipivipiein))(Biyi — Prer) =

T T
= iprvigrei (Biys — Brer) = g1 Biy1vigie] ¥

since B (Biyi — frer) = 0 by (2.8b), ey, B; = Biyref by (2.5), and e e = 0.

But VTV, = I and, therefore, V;Td; = V;TViy; = y; so that ely; = eJV;Td; =
vl d; which together with |Juig1]] = 1 gives (2.10). If @iy1 = 0 or Biy1 = 0 then
[|AT(Ad; — b)|] = 0 by Theorem 2.1. o

Now we shall study properties of the vectors d; € R™, 1 < i < k, defined by (2.7).
We shall use the notation (1.13).

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 <i <&,

Qi) = —%a%ﬂfe?c.-el _ (2.11)
and
lidil|” = aiBie] Cies (2.12)
where
Ci= (BB~ (2.13)

Proof. Using (1.13) and (2.8a) we can write

1
Q(ds) = 5 VR ATAViy: — T VAT

which together with (2.4a), (2.4b) and (2.9b) gives

1 1
Qd:) = iy?B,-TUiLUiHB»‘yi - yFBIUf b= Eny,TBm ~ Byl Bfer =
1 . 1 .,
= —infﬂfezrciBiTBiC,-el —alplelCier = ——iafﬂfe;rc,-el

since B;—I‘el = @ye; by (2.5). Similarly we get

ld:l1* = ¥FViTViys = oF s = 183 (Cier)TCre, = afBle] Cey

since V;TV; = I and the matrix (2.13) is symmetric. . o



Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 313

Lemma 2.4. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 <i <k,

Cipr = Ci+(¥,2'+1ﬁ,'2:;.17i'+lcieici;rciy —('i+1,3i+'-17i+lcieij| (2.14)
~ait1Bir1vire; Ci, Vit
where
¥ ! >0 (2.15)
1= )
’ 0‘?+1 + ﬂiz-pz - a?Hﬁ‘?“e;FC,-s
Proof. Using (2.5) we can write
a;, 0, ..., 0
[@, B, 0, ..., 0, 0 B2, az, ..., 0
0, az fs, ..., 0, O 0, B3 ..., 0
Blg: = | S o0 . =
L0, 0 0 .., @ Bin 0, 0, ..., &
0, 0, ..., Binr
[ al+62, b, 0, ., 0
afy, oai+P%, asfs, ..., 0
= 0, asfs, oi+pi ..., 0
| o, 0, 0, N
Therefore
BT B;, aiy1Biy16€i
BT B; - i Py i+10i4164 2.16
LT [ai+1ﬂi+1€?) afpy+ Blys (2.16)

Since the matrix B;{Ll Bi41 is nonsingular, it suffices to prove that B;FH Biy1Cipr =1
for matrices (2.14) and (2.16), which leads to straightforward computations. u]

Lemma 2.5. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 <i < k,

el CleieTCie; > 0 (2.17)

Proof. (By induction): Since both matrices C; and C7 are positive definite we
have eTCie; > 0 and ef C2e; > 0 so that el CZe;e] Cre; > 0. Suppose that (2.17)
holds for some ¢ < k. Then, using (2.14), we get

T T
e; Ciyieipt = —0ip1Biv1Yitr€; Cie;
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and
T T 2 2 T
ei Cipreipr = —ef (Ci4 a1 By riv1Cieie; Ci)(oigr fizrvip1 Coei) —
; 2
—€T(ﬂi+1ﬁi+1‘/4+;cz€i) =
T 7 g2 T 2
= —agp1Bigr Vi1 (€1 Cles + oy | B Yir €] Ciesel Cie +
+yigre] Ciei).
Therefore
T2 T _ .2 g2 2 (T2 T T 2
el Chaeirier Cipieipr = a1 B vipi(er Gee] Ciei 4+ vipa(e] Cies)® +

2 2 2]
+ody 1Bt (o] Cier)2el Cles).

But ef C2e;el Cie; > 0 by inductive assumption, yi41 > 0 from positive definiteness
of the matrix Ciy1, and ef C?e; > 0 from positive definiteness of the matrix C?.
This together with ;1 > 0 and fip1 > 0 gives e] C7 eiy1e] Cipreipr > 0. u}
Theorem 2.2. Consider the iterative process (2.3) and the sequence of vectors
(2.7). Let k be the index from Theorem 2.1. Then, for | <i< k,

Q(dit1) < Q(di) ©(2.18)
and . )
il > fldsl)- (2.19)
Proof. Using (2.14) we get
el Ciprer = e (Ci+ i Bl 7in Cieiel Ci)ey =

_ T 2 @2 (T N2 T
= e Cier+ 071 B vir (g Ciei)” > ey Ciey

since @i+1 > 0, Bi+1 > 0 by the assumption, ;31 > 0 from positive definiteness of
the matrix Ciy1, and (efCie;)? > 0 by Lemma 2.5. This together with (2.11) gives
Q(diy1) < Q(ds). Similarly using (2.14) we get

T 2 v 2
efChier = e (Ci+ ol B v Ciesel C)%er + (ipi fisimipre) Cier)? =
; T
= 1 Cley + 207, 821 viq1€] CPeie] Cie; +
4 a4 2 T T
o1 B v (el Cier)?el Clei + a2y B2 1 v21 (€T Ciei)? >
> e1Cle
since @it+1 > 0, Bi+1 > 0 by the assumption, 7,41 > 0 from positive definiteness
of the matrix Cit1, ef C?e; > 0 from positive definiteness of the matrix C?, and
(eTCiei)? > 0, €] Cle;eT Cie; > 0 by Lemma 2.5. This together with (2.12) gives
fldigall? > lldilf®. o
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Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then

QOd) < ~5 14Tl Il (2.20)
for 0 < A <1, and V
Tp(12
Q) <5 (221)

for 1 <i<k.
Proof. The equalities (2.11) and (2.12) imply

1 1 . 1
Q) = —5atBtel Cres = —godBiy/eT Cler = —Z Ao |jds

since from (2.3a) and (2.3b) ATb = a181v; follows, which together with [jv;|| = 1
gives ||ATH|| = ay8,. But the function (1.13) is convex and Q(0) = 0 so that (2.20)
holds for 0 < A < 1. Furthermore using (2.3¢) we can write

B2 = (Avy — arur)T(Avs — aqur) = vT AT Avy — of

since [Jui|| = 1 and v ATu; = ayljv1]|? = o1 (see (2.3b)). Therefore

of + B2 = vTAT Avy < AT A| [jwa]? = |AT AL

Now, if we use (2.11) and (2.15), we get
_ Ly — l oi67 Al HATI’||2
Q)= —g e G = "5 g < o AT

which together with (2.18) gives (2.21). o

We have proved that the vectors d; € R", 1 < i <k, defined by (2.7) satisly the
conditions (A), (B), (C), (D) stated in Section 1. This fact will be used in the next
section for construction of an inexact trust region algorithm. It remains to derive
simple recurrence relations for the vectors d; € R, 1 <i < k.

The most widely used iterative method for linear least squares is the LSQR algo-

rithm proposed in [5]. This algorithm uses orthogonal matrices Q;, 1 < ¢ < k, such
that

T.R; h; .
QiBi = [ 0 ] v Qi(Brer) = [ iy ] (2:22)
Nig1
where
p1, o2, 0, , 0 -! m
0, p2, o3 , 0 12

Re=|. 7T } =1 (2.23)
i
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At the same time @;, 1 < ¢ < k, are products of Givens plane rotations and R; €
Ri* 1< i<k, are regular square upper bidiagonal matrices. The iterative process
for computing elements of both the matrices R;, 1 < ¢ < k, and the vectors h;,
1 < i <k, has the form

=01, =8 (2.242)
and
p= R B, =D, s=lE (2.24b)
Pi Pi
Pipl = Gitigt,  Oip1 = Siign, (2.24¢)
0= 6Ty, T = —SiT; (2.24d)

for 1 < i < k (see [5] for detailed description).
The values p; > 0 and 73, 1 <4 <k, can be used in estimation (2.10).

Lemma 2.6. Let the assumptions of Lemma 2.1 be satisfied and let p; > 0 and
7, 1 < i <k, are the values generated by (2.24). Then, for 1 <i <k,

e
AT (Ad; - b)l| = Oti+1ﬁi+1|~p)—'f| (2.25)

Proof. Using (2.8) and (2.22) we can write

d; = Viy (2.26a)
where
Riyi = h; (2.26b)
Then
vid; = v] ViR *h; = el R Th; = le;Fh,- =
Pi pi -
which together with (2.10) gives (2.25). ul

Recurrence relations for the vectors di € R, 1 < i < k, can be derived from
(2.26). We do not give this derivation here because it is fully contained in {5]. The
resulting formulas have the form

d,=0, (2.272)

n=v, : . (2.27b)



Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 317

and
i
d;i =di_1 + —pi, (2.27¢)
Pi
o
Pit1 = Vig1 — ;H i, (2.27d)
i

for 1 < i< k. Note that, in contrast with the CGSL method (1.14), the coefficients
ni/pi, 1 <i <k, in (2.27c) are not all positive (they alternate signs).

3. INEXACT TRUST REGION METHOD FOR NONLINEAR LEAST SQUARES

Now we are in a position to describe complete inexact trust region method which is
a combination of Algorithm 1.1 together with the LSQR algorithm investigated in
Section 2.

Algorithm 3.1.

Data: 0<B<B<l<n<y,0<p<p<0<e <es<l,0<n <1,
0<wmax<1;0<Amax,klENyeIEN

Step 1:  Choose an initial point z € R". Compute the values f; := f;(z) of the
functions f; : R* — R, 1 < i < m, at the point & € R*. Determine the
vector b € R™ using (1.9). Compute the value f := f(z) of the objective
function f : R* — R by (1.10). Set A := 0 and 7 := (11)}/". Set k := 1.

Step 2:  Compute the gradients g; := gi(z) of the functions f; : R* - R, 1<i <
m, at the point z € R™. Determine the matrix A € R™*"® using (1.9).
Compute the gradient g := g(z) of the objective function f: R® — R by
(1.10). If either f < &; or {|gl| < &, then stop, otherwise set £:= 1.

Step 3:  If A = 0 then set A := min(||g]|3/||Agl|®, 45/(lgll, Amax). Set w :=
min(y/||g]], 7%, wmax). Compute the vector d € R™ by the following sub-
algorithm:

Step 3.1:  Set d := 0. Compute 8 := [|b]| and u := b/B. Compute « := ||g||/F
and v:=—g/||g||. Set p:=a,f:= B and p:=v. Set i := 1.

Step 3.2: Compute 8 := ||Av — cu||. If 8 = 0 then go to Step 3.3, otherwise

: set u := (Av — ou)/B. Compute o := |[|ATu ~ Bu|]. If a = 0 then go
to Step 3.3, otherwise set v := (ATu — gv)/a.

Step 3.3:  Compute p 1= VB> + 02, c = p/p, s = B/p and n = cj. If |[d+
(n/p)p|| > A then determine 0 < A < 1 so that ||d + A(n/p)pll = &,
set d := d+A(1/p)p and go to Step 4. Otherwise set d := d-+(n/p)p.

Step 3.4: If either i = n+ 3 or afB|n|/p < wllgl| then go to Step 4, otherwise
compute p := ca, 0 := s, 17 := —57 and set p := v — (c/p)p. Set
i:=1+1 and go to Step 3.2.
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Step 4:  Set zt := z + d. Compute the values fi := fi(z¥) of the functions
fi : R* - R, 1 <i < m, at the point z+ € R". Determine the vector
bt € R™ using (1.9). Compute the value f+ := F(zT) of the objective
function f : R* — R by (1.10). Compute the value Q(d) by (1.13)
and set p := (f* — £)/Q(d). When p < p; then compute a := (f* —
£)/d%q, B = 1/(2(1 — ) and set A := Syl if 8 < B1, A := gl|d||
if g1 < B8 < fo A = Bo|ld|| if B2 < B. When p1 < p < py then set
A := min(A, v2||d||). When py < p then compute A := max(A,y,||d||)
and set A := min(A, y2||d||, Amax)-

Step 5:  If p < 0 and £ > £ then stop (too many reductions). If p <0 and £ < ¢;
then set £ := £+ 1 and go to Step 3. If p > 0 and k > k; then stop (too
many iterations). If p > 0 and k < k; thenset z :=zt, b:=b*, f;= f¥
set k:= k+1 and go to Step 2.

The maximum number of iterations kq € N serves as an alternative termination
criterion in the case when the convergence is too slow. The maximum number of
reductions £, € N serves as a safeguard against possible infinite cycle which can
arise for large residual problems when present round-off errors do not allow us to
obtain a solution with the required gradient norm (j|gl| < €2).

We suppose, in the subsequent considerations, that all computatlons were per-
formed accurately and that ky = £; = co. Furthermore we denote

9(@) = fi()ei(=) (3.1)
and
G(z) = ai(@)ei (2) + ) fi(2)Gi(z) (3.2)

the gradient and the Hessian matrix of the objective function (1.8) respectively.

Theorem 3.1. Let the functions f; : R* — R, 1 < ¢ < m, have continuous
second-order derivatives and let there exist constants C; > 0, C2 > 0, C3 > 0 so
that |fi(z)] < Cy, {lgi(2)]] € Ca, ||Gi(z)|l £ C3, 1 < i < n, forall z € R™. Let
zr € R*, k € N, be the sequence generated by the Algorithm 3.1. Then

tim i [lg(ex)]| = 0 (33)

Proof. From (1.9) we have

I1A™(@)4 memmuw—ZMﬂW“@

i=1
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and (3.2) implies

G

A

< AT@AI + <

> fi(@)Gi(a)

i=1

mC3 + Y _1fi(@)| [Gi(@)ll < m(C3 + C1Cs)

i=1

IA

Therefore both matrices B(z) = AT(z)A(z) and G(z) are bounded from above so
that (3.3) holds (see [6], [7], [8])- o

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied with
lim z; = z* (3.4)

k-+co

Let the matrix A(z*) has full column rank and

> fM)Gi(ET) =0 (3.5)
i=1

Then the rate of convergence of the sequence z; € R", k € N is superlinear.

Proof. We have to prove that

Jim w, =0 (3.6)
and
i (6 ~ AT A _
1 Tl =’ e

since these conditions are sufficient for the superlinear rate of convergence if the
matrix G(z*) is positive definite (see [6], [7], [8]). But wy — 0since 0 < wg < |lg(ze)l]
in Step 3 of Algorithm 3.1 and g(zx) — 0 by (3.3) and (3.4). From (3.2) we get

m

> filar)Gilze)

i=1

(G (zx) — AT(z1) A(zs))di]| <
[ldxll -

and continuity assumptions imply

Jim 37 fi(2)Gar) = 3 fi(=")Gil=")
i=1 i=1

which together with (3.5) gives (3.7). The matrix G(z*) is positive definite since

G(e*) = Y ai(a)el (@7) + ) fia")Cila") = AT(*)A(z")
i=1 i=1

by (3.2) and (3.5) and since the matrix A(z*) has full column rank. a
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4. COMPUTATIONAL EXPERIMENTS

In this section we present results of a comparative study of three trust region methods
for nonlinear least squares: the exact trust region method with the double dog-leg
step (DDLS) subalgorithm proposed in [3], the inexact trust region method with
the CGLS subalgorithm described in Section 1 and the inexact trust region method
with the LSQR subalgorithm studied in Section 2. All these trust region methods
were realized by algorithms which differ from Algorithm 3.1 only in Steps 3.1-3.4
(Algorithm 3.1 uses the LSQR subalgorithm).

Algorithm 3.1 contains several parameters. We have used the values 8; = 0.05,
Bo =075, 71 =2,79 =105 p; = 0.1, po = 0.9, 67 = 10715, &5 = 108, 7, = 1073,
Wmax = 0.4, Amax = 10%, by = 500, §; = 20 in all numerical experiments.

All test results were obtained by means of the 9 problems given in the Appendix.
All these problems were considered with 100 variables. Therefore a sparse matrix
technology was used (for instance the DDLS subalgorithm contained a sparse Choles-
ki factorization procedure). Summary results for all problems are given in Table 1.
Rows of this table correspond to individual problems and columns correspond to
selected algorithms (DDLS, CGLS, LSQR). The results are presented in the form
IT-1F-IG (P) where IT is number of iterations IF is number of different points at
which the values f;(z), 1 <1 < m, were computed, IG is number of different points
at which the gradients gi(z), 1 < i < m, were computed and (P) is the logarithm of
the obtained gradient norm.

Numerical results contained in Table 1 show that the LSQR algorithm is most effi-
cient, measured by both numbers of iterations and numbers of functions evaluations,
in comparison with other tested algorithms.

Table 1.
n=100 DDLS CGLS LSQR
1| 218-221-219 (-11) | 135-150-136 (-8) | 117-121-118 (-11)
2| 166-180-167 (-8) | 152-188-153 (-11) | 111-131-112 (-7)
3 13-14-14 (-8) 17-18-18 (-8) 14-15-15 (-8)
4 29-60-30 (-7) | 199-230-200 (-7) 81-109-82 (-6)
5 5-6-6 (-14) 9-10-10 (-10) 6-7-7 (-8)
6 5-6-6 (-10) 10-11-11 (-10) 8-9-9 (-13)
7 25-61-26 (-4) 38-69-39 (-4) 38-72-39 (-4)
8 15-17-16 (-8) 15-16-16 (-8) 15-16-16 (-8)
9 69-108-70 (-6) 53-80-54 (-6) 50-71-51 (-6)
10 | 405-458-406 (-6) 26-61-27 (-7) 28-66-29 (-7)
E 950-1131-960 654-833-664 468-617-478
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APPENDIX

Our test problems consist in searching local minimum of the objective function
1 m
FE) =53 fi(z)

k=1

from the starting point Z. We suppose n is even. We use functions div (integer
division) and mod (remainder after integer division).

Problem 1. Chained Rosenbrock function.

m = 2(n-1), i=div(k +1,2)
fe(z) = 10(z?—ziy1), k—odd
fr(z) = @—1, k —even

£ o= -12, £—odd

Ty = 1.0, £ — even

Problem 2. Chained Wood function.
m=3n-2), i=2div(k+5,6)-1

fi(2) = 10(2F = zi1), mod(k,6) = 1
fi(e) = zi — 1, mod(k, 6) = 2
fe(z) = V0 (22, — zi43), mod(k,6) =3
fe(@) = 2ig2 — 1, mod(k, 6) = 4
fr(2) = V10 (zig1 + zigs — 2), mod(k,6) =5
fe(2) = (2it1 — 2i43)/ VI, mod(k,6) = 0

Zo = -3, f—odd, £<4

Fo = -2, f—odd, £>4

Zy = -1, €—even, £2>4

Ty = Q, £—even, £<4

Problem 3. Chained Powell singular function.

m=2n-2), i=2div(k+34)—1

fk(:c) =z;+ 1025+1, mod(k,4) =1
fe(@)= VB (zig2 — zig3),  mod(k,4) =2
fr(z) = (mip1 — 22i42)?, mod(k,4) =3

fi(z) = VIO (z; ~ 2i43)%, mod(k,4) = 0
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T, = 3, mod(£,4) =1
z, = -1, mod(£,4)=2
Iy = 0, mod(£,4) =3
T, = 1, mod(£,4)=0

Problem 4. Chained Cragg and Levy function.
m=5(n-2)/2, i=2div(k+4,5)—1

Felz) = (exp(zi) — ig1)?, mod(k,5) = 1

fe(2) = 10(zi41 — zig2)?, mod(k,5) = 2
in?(vipa=zits

fule) = SRR, mod(k,5) =

fe(z) =}, mod(k, 5) = 4

fk(z) =Zi43— 1, mod(k 5) =0

Ze =1, (=1
Fp=2, £>1

Problem 5. Generalized Broyden tridiagonal function.

m=mn, 20=0, Zpy1=0
fi(®) =3 —2zp) er + 1 — 2p-1 — Th1
Ze=-1, £>1

Problem 6. Generalized Broyden banded function.

m=mn, ki =max(l,k—5), ks =min(n,k+1)
k2
fe(z) = @+5ed)er +1+ Y zi(1+25)
j=k
Fe=—1, £>1

Problem 7. Extended Freudenstein and Roth function.

m = 2(n-1), i=div(k+1,2)
fi(z) 2 + 2ip1((5 — zig1)Tiz1 —2)— 13, k—odd
fi() = zi+zip{(1+ zq1)zipr — 14) - 29, k—even
0.5, £<n
Z, = =2, £=n

il

Ty

L. LUKSAN
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Problem 8. Wright and Holt zero residual problem (n is multiple of 4).

m="5n, i=mod(k,n/2)+1, j=i+n/2

a=1, k<m/2
a=2, k>m/2
b =5 —div(k,m/4)
¢ = mod(k,5)+ 1
fe(@) = (&} —2))°
#y = sin’(£)
Problem 9. Toint quadratic merging problem.

m=3n-2), i=2div(k+56)~1

fe@) = 2+ 3zipa(zipr = D alis — L mod(k, 6) = 1
Fi(2) = (@i + 3i41)? + (ig2 ~ 1)? — 2iga = 3, mod(k, 6) = 2
Fe(2) = ziwipr — zigaziya, mod(k,6) = 3
fe(®) = 222000 + 21 Tigs — 3, mod(k,6) = 4
Fe(@) = (@i + Zig1 + ziga + ziga)? + (@i — 17, mod(k, 6) = 5
fe(z) = sizigizigazipa + (Tra — 1D = 1, mod(k,6) = 0
T = 5, A >1
Problem 10.
m=2n-1, i=div(k+1,2)
fe(z) = 4 — exp(x:) — exp(@i+1), mod(k,2) =1, i=1

fr(x) = 8 — exp(3zi_1) — exp(3z;)

+ 4 — exp(z;) — exp(zi41), rr;od(k, =1, 1<i<n
fe(z) = 8 — exp(3z;_;) —exp(3z;), mod(k,2)=1, i=n
Ji(z) = 6 — exp(2s;) — exp(22iy1), mod(k,2) =0

g = 02, £21
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