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K Y B E R N E T I K A — VOLUME 33 (1997) , NUMBER 1, PAGES 6 1 - 7 4 

AUTOMATIC CAR STEERING CONTROL BRIDGES 
OVER T H E D R I V E R REACTION TIME 

JÜRGEN ACKERMANN AND TlLMAN BUNTE 

A car driver needs at least five hundred milliseconds before he can react to unexpected 
yaw motions. During this time the uncontrolled car may produce a dangerous yaw rate and 
sideslip angle. Automatic steering control for disturbance rejection is designed such that it 
bridges over the driver reaction time, but returns the full steering authority to the driver 
thereafter. The solution is robust with respect to uncertainties in the road-tire contact and 
in the mass and velocity of the vehicle. The yaw disturbance transfer function is compared 
with those of the ideally decoupled car and of the uncontrolled car. The frequency responses 
are evaluated in the form of disturbance attenuation ratios and frequency limits. 

1. INTRODUCTION 

Critical car driving situations arise, when a disturbance torque acts on the vehicle. 
Examples are ciosswind, flat tire, braking on a slippery road and gas release in a 
curve. It takes the driver at least five hundred milliseconds to react to the resulting 
yaw motion of his car. During this time the tire sideforce may already reach its 
physical limits. A delayed overreaction of the driver may also cause driver-induced 
oscillations. Such dangerous situations can be avoided by robust decoupling of car 
steering [1, 2]. On the other hand, the driver should not be cheated by the feed
back control system. In particular he should feel a similar response to his steering 
commands as in the uncontrolled car. This applies both to the immediate reaction 
after a step input at the steering wheel and to the required steering-wheel angle for 
steady-state cornering. These requirements call for a modification of the decoupling 
control law. 

In Section 2 of this paper the model for the car steering dynamics is introduced. In 
Section 3 the properties of the robust decoupling control law are analyzed. Section 4 
introduces the modified control law. Some simulation results are shown in Section 5 
to compare the conventional car with both controlled cars. In Section 6 another way 
of comparison is performed in the frequency domain. Yaw disturbance at tenuation 
ratios of the controlled cars with respect to the conventional car are determined. 
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2. CAR STEERING DYNAMICS 

Consider the vehicle of Figure 1. Vehicle data are usually given in the form of £r,£f, 
vehicle mass m, and moment of inertia J w.r.t. a vertical axis through the CG. 
These quantities are related with the quantities m\,mr,£\ of Figure 1 by 

m\ + mr 
2 , _ />2 

m 

J = m\£\ + mr£'r 

m\£\ = mr£r. 

(2) may be expressed using (3) as 

J = mr£r£\ + m\£r£\ 

and with (1) 
J = m£r£\. 

(1) 

(2) 

(3) 

(4) 

I m r 

* - # > 

гĽk 

Fig. 1. Vehicle with arbitrary mass distribution. 

The resulting length is 

h = 
J 

m£r 

There is a one-to-one relationship between the parameter sets (m,J,£r,£f) and 
(m,£\,£r,£f). We will use t\ in the derivation of the model. The mass m is con
sidered as a constant but uncertain parameter, m E [m~ ; m + ] . The corresponding 
moment of inertia follows from (4). Input to the system is the front-wheel steering 
angle 6f, output is the yaw rate r = t/i measured by a gyro. For small steering angle 
6f and small sideslip angle j3 the standard single-track model of car steering [3] is 

mv(ß + r) 
Jř 

- y 

M, + 
0 

мd 

(5) 

Only a disturbance torque Md is assumed and no disturbance lateral force, because 
the latter is easily compensated by the driver in the course of his normal steering. 
The velocity v is a further constant but uncertain parameter, v E [v~ ; v+]. 

The steering force Fy and torque Mz are generated by the lateral tire forces 
Ff(af) and Fr(ar) via 

M, 
1 

4 
Ff(as) 
Fr(ar) (6) 

The tire forces depend on the tire sideslip angles af and ar as illustrated in Figure 2 
for the front wheel. 
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Fig. 2. Variables of the tire model. 

The sideslip angle at the front mass (3\ will be introduced as a state variable. The 
sideslip angles at the CG (/?) and at the axles (j3r, f3f) are related with (3\ by the 
kinematic relations for small angles 

ß = ßl 
Łx 

ßf = ß\ + 

ßr ßl 

tf -t\ 
V 

t\ + tr (7) 

The local velocity vector Vf forms the (chassis) slip angle j3f with the car body and 
the tire slip angle a/ with the tire direction, thus 

Otf = 6f - ßf = 6f - ß\ r. (8) 

In this paper we do not use rear wheel steering, i.e. 6r = 0. 

ar = 6r - pr = —pi -| r. (9) 

The tire force characteristics are linearized as 

Ff(af) ~ cfaf 
Fr(ar) = crar (10) 

where the cornering stiffnesses Cf and cr are uncertain parameters that vary with the 
road tire contact. We assume Cf = [iCfo, cr = /icro where c/o and c ro are nominal 
values for the dry road and \x ~ [fi~ ; 1] is an uncertain parameter (fj,~ > 0). The 
model (5), (6) with the above equations substituted becomes 

mv(ß\ -h-ŕ + r) 1 
mtrt\ř [tf 

1 Cf^f-Pi-lj~Lr) 

cr(-(3\ + l-^r) + 
0 

Md 
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and, solving for 0\ and r, 

ßl 
ř 

mtrv 

mtitr rrUi J 

cS(6f-ß\-l-^r) 

Cr(-ßl + Ң^Г) 
-

' 1 " 
0 

r + 
• ì • 

mtrv 
1 

-
' 1 " 

0 
r + 

L mtitr J 

Mл, 

This form shows t h a t j3\ does not depend directly on the forces at the rear tires. An 

indirect coupling occurs through the r-terms in the equation for {3\. These r-terms 

will be cancelled by the decoupling control law in order to make r unobservable from 

f3\ and from the lateral acceleration a\ of the front mass m i . The state equations 

of the system are 

"Â ' 
Ѓ = 

Cl c 2 

c 3 c 4 

" ßl' 
r + mtrv 

mlxtr 

st + mlrv 
1 

ml-i.tr J 

Md (11) 

ci 

C2 

Cf(Єf+ir) 

cз = 

c 4 

- 1 -

m£ гu 

Cf(£f+£r)(£f-£\) 

m£rv
2 

cf£f) 

m£\£r 

£\ (cfЄf - cr£r) - CfЄ) - cr£
2 

m£\£rv 

For the conventional car the front steering angle 6f is generated by the steering 

wheel angle 6L via the steering gear. 

h{s) 
6f(s) = 

гь 
(12) 

%L denotes the transmission ratio of the steering gear. 

Consider now the lateral acceleration a\ at the front mass m i , see Figure 1. It is 

related with the model quantities by 

Ff(af) + Fr(ar) 
o-i = CLCG + h r = + £\ř. (13) 

Thus the steering transfer function from 6L(s) to ai(s) (to be solved from (8), (9), (10), 
(11), (12) and (13)) reads 

Po +pis + p2s
2 6L(s) 

ai(s) = 
Чo + qis + q^s2 iL 

(14) 

po = CfCr(Єf +£r)v" 

= CfCr(£f+£r)(£i+£r)v 

= Cf(Єf +Єr)£imv2 

= CfCr(Єf +Єr)
2 + (crЄr - CfЄf)mv' 

ß2 

P\ 

V2 

?0 

q\ - (cTЄr(Єr+Є\) + Cf(І)+ЄrЄ\))mv 

q2 = Є\Єrm v2. 
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3. ROBUST D E C O U P L I N G C O N T R O L LAW 

Robust decoupling [1] is achieved by the feedback control law 

(15) ш = 1 KL(V)—r1—- — r(s) + — s r(s) 
%L v 

KL(V) is the steady-state yaw rate response to a unit step input for a nominal model 
(fj, — //o and m = mo). It can be computed by (11) with $i = f = Md = 0 and 
6f = l. 

KL(V) = ! --y (16) 

^+«( 1 +4c) 
2 _ cfocr0(£f +£r)

2ji0 
vcн = ( c r o 4 - Cf0£f)m0 ' 

A possible implementation is to measure the velocity <; and to use it for gain-

scheduling of KL(V). 

The properties of the decoupling control law are 

- The coupling from the yaw mode into the lateral acceleration a\ has been 
removed. Thereby the steering transfer function from <5E(s) to a\(s) is of first 
order (Md(s) = 0). 

«.(.) = ; J^»> Mf). (i7) 

The influexice of the uncertain parameters m,v and /i has been drastically 
reduced by decoupling. Theoretically the steering dynamics can be made 
arbitrarily fast by additional high-gain feedback of a\, measured by an ac-
celerometer, to 8L- There are practical gain limitations, however, due to the 
measurement noise of the accelerometers and unmodelled higher-frequency dy
namics that increase the phase of (17) beyond 180°. The task of the driver is 
only to keep the point mass mi on top of his planned path by commanding 
a\. He does not have to care about the stable yaw motion [1]. 

- For a step input of the yaw disturbance Md (e.g. from crosswind, //-split 
braking) the conventional car has a nonzero steady state value of the yaw rate, 
whereas for the decoupled car the yaw rate quickly returns to zero [2] as will 
be shown in section 6. Important safety advantages have been demonstrated 
in crosswind und /i-split braking with a test car [4]. 

On the other hand, the decoupling control law (15) also has some disadvantages that 
motivate the modifications in the next section. 

- By the integration in the control law there is no immediate reaction of c^ 
after a step command at SL- The driver feels that the car is not reacting as 
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promptly as the conventional car. Therefore a direct throughput from 6L to 
6f will be provided, i.e. 6, = 6L/IL + 6C, where 6L/IL is the steering angle 
as in the conventional car, and 6C is an additional steering angle produced by 
the controller (15). This change does not affect the feedback path from r to 6f 
and consequently the decoupling and the disturbance attenuation properties 
of the control law (15) are preserved. 

- For safety reasons 6C should be limited. Then the integrator must be unloaded 
in order to prevent its saturation. 

- The yaw damping is decreased at high velocity. In [2] a good yaw damping was 
achieved by rear-wheel steering, which is not available under the assumptions 
of this paper. Another remedy is a velocity scheduled feedback of the lateral 
rear axle acceleration ar to 6C [5]. Then for low and medium velocities the 
robust decoupling is exact, but at high velocity a tradeoff between decoupling 
and yaw damping is made. A third idea is introduced in this paper. The 
main idea is to provide the decoupling action only for the first 0.5 seconds 
after a step input and thereafter to return smoothly to the properties of the 
conventional car, i.e. 6C should follow the integral action only initially and 
then return to zero. Regarding a disturbance step ALj this concept helps the 
driver during the first half second by providing an additional steering angle 
much faster than the driver can react. Thereafter it returns the full authority 
gradually back to the driver. Reasonable yaw damping can be achieved by 
tuning the parameters of the filter which is employed to implement the fading 
decoupling action. 

- The feedback from r provides an additional term to 6f. In steady-state cor
nering there is no need for this term, the controlled car should behave like the 
conventional car in this situation, i.e. the driver should apply the same 6r,. 
The above modification takes care of this requirement. 

4. THE MODIFIED CONTROL LAW 

The modified control law is 

6,(s) = --^- + 6c(s) (18) 
lL 

&c(s) = 2 — J Xi(s) 
Sz + IUUJQS +U)Q 

/ \ rr / V 6L(S) , v If — l\ . v 
xx(s) = KL(v)------ -r(s) + -- -sr(s). 

lL V 

Now there is a direct throughput of the input by the steering wheel 6L to the front 
wheel steering angle 6f. The pure integrator in (15) has been replaced by a dynamical 
filter ("fading integrator") . The initial behaviour (s —> oo) of this filter to any input 
is the same as the response of an integrator. But the steady-state output of the 
filter (s —> 0) is zero. In the meantime the filter is unloaded so tha t after some time 
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the responsibility is softly returned to the driver. In steady-state cornering the car 

controlled by (18) (car with fading integrator) behaves like the conventional car. 

Hence by the modified control law both the immediate and the long term reaction 

to any driver input is the same for the controlled car as for the uncontrolled car. 

But the transient behaviour is different as well as the disturbance rejection property 

of both systems. 

5. SIMULATION RESULTS 

In the following simulation study we use the data of a BMW 735i passenger car. 
They are 

Һ = Ij = 1.514 m 

tr = 1.323 m 

m = 1916 kg 

c/o = 49400 N/rad 

CrO = 103800 N/rad 

Concerning the fading integrator, the values of filter bandwidth UIQ and filter damping 
coefficient D can be set in the controller design for a specific car. 

100 200 
v /(km/h) 

Fig. 3. D(v). 

We choose a filter bandwidth UJQ = l / s e c to provide the above described properties 
(the decoupling action is supposed to fade out after ca. 0.5 seconds). The damping 
of the filter is tuned by the value of D. It turned out, that a scheduling of this 
parameter by velocity is useful to achieve a reasonable damping at all velocities. In 
simulations a table-lookup as shown in Figure 3 was found as a good function D(v). 

Three versions of the car are compared in the following simulation plots of the 
yaw rate r and additional steering angle Sc. 

1. The conventional car. Equation (11) is employed to compute the yaw rate 
response to yaw disturbance torque step inputs or steering wheel step inputs 
respectively. The "control law" is just Sj(s) = SL(S)/IL- The additional 
steering angle is zero. Dash-dotted line style is used for the time response 
plots and circles denote the eigenvalue position in the s-plane. 
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2. The decoupled car with direct throughput. To obtain comparable results with 
the two other versions of the car, the direct throughput is combined with the 
robust decoupling control law (15). Thus the steering angle equation reads 

Л t.\ 6 L ( S ) J-
 X 

°J(S) = — + " 
%L S 

r, ( \Һ(S) 
KL(V)—. r гь 

£ f — í\ 
(s) + -1 -s r(s) (19) 

Dashed line style for the responses and star markers for the eigenvalues are 
employed. 

3. The car with fading integrator. The steering angle equation is (18). Plots use 
solid line style for the responses and x-marks for the eigenvalues. 

Steering Wheel Step Input 
7 i 

6 r • / — 

7 i 

6 r • / — ,ľt?ЪS_a_c*и = =_ 

V\r 
| 3 -• • 

2 9 

Yaw Disturbanc Torque Step Input Eigenvalues 

['/ ' 

ш:::::::::::;:::::: 

.....;... ľ.чü'': 
Í : ш - ^ . l 

Steering Wheel Step Input Yaw Disturbance Torque Step Input 

Re 

conventional car O 

fading integrator X 

decoupled car X 

v = 22km/h. mu = 1 

D = 0 

Fig. 4. Response to steering wheel step and yaw disturbance torque step for v 
km/h. 

22 

In the first simulation of Figure 4 a steering wheel step input is applied to the three 
cars at a low speed of v — 22 km/h. There is not much difference between the three 
versions. Both the decoupled car and the car with fading integrator perform a little 
overshoot in the yaw rate. With the simulation in Figure 4 for a disturbance torque 
step input the concept of fading out the decoupling action is well recognizeable. 
Within the first 0.5 seconds both the decoupled car and the car with fading integrator 
provide the same disturbance rejection activity. However after 0.5 seconds for the 
car with fading integrator the steering authority is softly returned to the driver and 
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the additional steering angle 8C goes to zero. For the driver it is early enough to 

react after one second to the yaw disturbance. The right upper plot of Figure 4 

shows the eigenvalues for v = 22 km/h. They are well damped for all three versions. 

Figure 5 shows the responses at a high speed of v = 180 km/h. The yaw damping 

for all versions is worse than at lower speeds. The worst damping occurs for the 

decoupled car. The oscillations of the car with fading integrator after a steering 

wheel step input decrease as quickly as those of the conventional car although the 

damping of the corresponding eigenvalues is less but their natural frequency is higher. 

The yaw disturbance responses show again how the initial decoupling action is fading 

out. 

Figure 6 shows the result of deviations of the real car from the nominal model 

(used for the feedforward gain KL(V) in (16)) by reduction of the road adhesion 

factor to (j. = 0.5 at a medium velocity of v = 72 km/h. The steady-state responses 

of the car with fading integrator are the same as for the conventional car, whereas 

the decoupled car has a nonzero steady-state value of the additional steering angle. 

Steering Wheel Step Input 
14 

12 

«• 10 
Ъ> 
Ф 

S- 8 

I 6 
5 

v 4 

2 

0 

íí1 

1 Һ 
w 

o 1 2 3 4 
Time/s 

Yaw Disturbance Torque Step Input Eigenvalues 

Ъi 

tr 

o> 6 

э_ 
S 4 
я 
Г 

1 2 

>-

0 

-2 

-4 

л 
1 \ 

í\\ 
'У 

1 ' 
J 

1 \ \ 
/ N 

! 

2 3 4 
Time/s 

6 

5 

4 

Ş з 

2 

1 

0 

-4 

-X—Ж—Ц-

-2 0 
Re 

Steering Wheel Step Input Yaw Disturbance Torque Step Input 

2 3 
Time/s 

conventional car O 

fading integrator X 

decoupled car X 

v=180km/h, mue = 1 

D= 1.5 

Fig. 5. Response to steering wheel step and yaw disturbance torque step for v = 180 

km/h. 
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12 

10 

1 8 
S 

Q 

2 6 
0! 

CГ 

5 . 

я 4 

2 

0 

Steering Wheel Step Input Yaw DisturbanceTorque Step Input Eigenvalues 

| л , . ~ — 
J 

^ — — — J 

1 
; 

5 
Time/s 

Steering Wheel Step Input Yaw Disturbance Torque Step Input 

Re 

conventional car O • -

fading integrator X — 

decoupled car X — 

v = 72km/h, mue = 0.5 

D = 0.5 

Fig. 6. Response to steering wheel step and yaw disturbance torque step for fi = 0.5 at 
v = 72 km/h. 

6. DISTURBANCE ATTENUATION PROPERTIES OF THE ROBUST 
DECOUPLING LAW AND THE MODIFIED CONTROL LAW 

In this section, the disturbance attenuation of the closed control loop is analyzed in 
the frequency domain. The steering wheel angle is <5E(s) = 0. 

For the conventional car solve (11) for (3\{s) and r{s) and let 6f(s) = 0. 

Ш 

r{s) _ 

1 

W) 
B{s) 
R(s) 

md(s) (20) 

B(s) = £xmvs-mv2+Cf(£\-£f) + cr(£i+£r) 

R(s) = mv2s + (cf + cr)v 

D(s) = £r£im2v2s2+mv(cf(£2+£1£r) + cr(£
2+£ì£r))s 

+cfcr(£f +£r)
2 + mv2(cr£r - cf£}) 
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The robustly decoupled car is described by (11) and the feedback control law (15), 
which is identical to (19) for 6L = 0. Substitute (15) into (11) and solve for !3i(s) 
and r(s). 

1 Pldec(s) _ 

rdec(s) J Ddec(s) 
Bdec(s) 

Rdec(s) 
md(s) (21) 

Bdec(s) = i\mvs2 + (cr(ii + ir) — mv2) s — CfV 

Rdec(s) = s (mv2s+ (cf + cr)v) = sR(s) 

Ddec(s) — (irmvs + Cf(if + ir)) (iimvs + cr(ii + ir) s + crv) . 

For the modified control law with fading integrator substitute (18) into (11) and 
solve for 0i(s) and r(s). 

Plmod(s) 

rmod(s) 

1 Bmod(s) 

Rmod(s) 
md(s). (22) 

Dmod(s) 

The terms Bmod, Rmod and Dmod are too long to be printed here. 

Steady-state effect of yaw disturbances 

Fo. a disturbance unit step input, md(s) = 1/s, the conventional car has the steady-
state response 

B(0) _ mv2+cf(£f-£i)-cr(£r+£i) 
ß íst D(0) (cjtf - cr£r)mv2 - cscr(£f + £r)

2 

_ _ _ _ _ -(cf+cr)v  
r>t ~ D(0) ~ (cf£f - cr£r)mv2 - CfCr(£f + £r)

2 

The robustly decoupled car has the steady-state response 

Bdec(0) - 1 

(23) 

ß lst.dec 

Гst,dec — 

Ddec(0) cr(£f+£r) 

Rdec(0) 

Ddec(0) 0 (24) 

The yaw rate goes to zero, i.e. the car has a constant yaw angle as a steady-state 
response to a step yaw disturbance. 

The car with fading integrator has the steady-state response 

ß lst,mod 

Г st,mod 

Bmod(0) 

Dmod(0) 

Rmod(0) 

= ß Ist 

Гst 
Dmod(0) 

which is the same as the response of the conventional car. 

(25) 
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Disturbance at tenuation ratios, Frequency limits 

For comparison we relate the disturbance frequency responses of the decoupled car 
(resp. car with fading integrator) with the disturbance frequency response of the 
conventional car, i.e. we calculate the disturbance attenuation ratio (or sensitivity 
function). 

/ . v Bdec(ju) D(ju) 
Pp,dec{jU) - — 

Ddec(ju)B(ju) 

f. x _ Rdec(ju) D(ju) SD(JU) 
pr,dec(ju) - — - ( . - = — j-r-r. (2b) 

Ddec(ju)R(ju) Ddec(ju) 

The influence of the yaw disturbances on /3X or r is reduced for all frequencies for 
which \pp(ju)\ < 1 or \pr(ju)\ < 1 where 

\pr(ju)\ = y/pr(ju)pr(-ju). (27) 

With (26) it turns out that \pridec(ju)\ < 1 if and only if 

au4 + bu2 + c < 0 (28) 

a = 2tftrtim
3v4 + [2crt

2(tx - tf) - Cftf(tf(tf+tx) + 2trtx)\ (tx - ts)m
2v2 

b = (cft) - 2crtrtf)m
2v4 + 2cr(tf +tr)

2(cf(tx - tf) + crtr)mv2 

+cfc
2(tf + tr)

2(tf - tx)(tf + 2tr + tx) 

C=CfC2(tf +tr)
2V2. 

The frequency limit ui is obtained from the quadratic equation au4 + bu2 + c = 0. 

-b + Vb2~4ac , „ . . 
Ul,dec=\ ^ • (29) 

y la 

The yaw disturbances are at tenuated for frequencies u < ui and amplified for u > U£. 
In Figure 7, (27) (at various velocities) and (29) are shown for specific values of the 
vehicle parameters (data of a BMW 735i passenger car). Yaw disturbances are 
attenuated for u < ui & 2TT 0.8 Hz. 

Similarly for the car with fading integrator 

,. v Bmod(ju) D(ju) 
Pp,mod{]U) = — 

Dmod(ju) B(ju) 

( • ,\ Rrnod(ju) D(JU) 
Pr,mod(jUj) = — , . : , . r . (30) 

Dmod(ju) R(ju) 

The equation corresponding to (28) has the form 

w2(a*u;4 + &*u;2 + c*) < 0. (31) 
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The terms a*,b* and c* are too long to be printed here. The absolute value of 
the disturbance attenuation ratio and the frequency limit of the car with fading 
integrator are plotted in Figure 8 for the same vehicle data and with the filter 
bandwidth 

íüQ = 1/sec. (32) 

The filter damping coefficient D is scaled with the velocity according to Figure 3 
(star markers indicate the considered velocities). 

0 0.2 0.4 0.6 0.8. 1 1.2 1.4 1.6 
om9gal/(2*Pi) [Hz] 

F i g . 7 . |#0r,dcc(w)| and ut,dec(v). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
omegal/(2'Pi) [Hz] 

F І g . 8. \pr,mod(ш)\ and Ш£,mod(v). 

The main difference between the disturbance attenuation ratios of the decoupled 
car and the car with fading integrator is to be recognized for low frequencies. For 
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u —• 0, |/0r,dec| tends to zero which is due to rsttdec = 0 (24). However \pr,mod\ tends 
to one for to —> 0. This shows that the steady-state behaviour with respect to yaw 
disturbances is the same for the car with fading integrator and the conventional car. 
The frequency limits of both disturbance attenuation ratios do not differ essentially. 
But at high speed, the car with fading integrator exhibits less amplification of yaw 
disturbances beyond the frequency limit. 

7. CONCLUSIONS 

The car with fading integrator can be considered as a compromise between the 
conventional car (which is sensitive to low frequency yaw disturbances) and the de
coupled car (which exhibits poor yaw damping at higher velocities). In terms of 
the filter transfer function of the fading integrator the conventional car corresponds 
to UIQ —• oo and the decoupled car corresponds to LOQ = 0. With a bandwidth of 
u>Q = 1/sec and velocity-scaled damping coefficient of the filter a reasonable compro
mise has been found for acceptable yaw damping and good disturbance at tenuation 
properties at all operating conditions. 

Within the minimum driver reaction time of 0.5 seconds, the car with fading 
integrator behaves like the decoupled car and then it returns smoothly to the steady-
state behaviour of the conventional car. 

(Received February 14, 1996.) 
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