
Kybernetika

Gur Dial
On measurable solutions of a functional equation and its application to information
theory

Kybernetika, Vol. 20 (1984), No. 1, 78--82

Persistent URL: http://dml.cz/dmlcz/125675

Terms of use:
© Institute of Information Theory and Automation AS CR, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125675
http://project.dml.cz


KYBERNETIKA- VOLUME 20 (1984), NUMBER 1 

ON MEASURABLE SOLUTIONS 
OF A FUNCTIONAL EQUATION AND ITS APPLICATION 
TO INFORMATION THEORY 

GUR DIAL 

In this paper, the measurable solutions of a functional equation with two unknown functions 
are obtained. As an application of the measurable solutions, characterization of three measures 
of information is given. 

1. INTRODUCTION 

Let A„ = {P = (pu ..., p„); pt ^ 0, i = 1, ..., n, £ pt = 1} for n = 1 be the set 
of n-complete probability distributions. , = 1 

Let R be the set of all real numbers and let J = [0,1]. 
Let us consider measurable functions h,g:I-*IR satisfying the functional equa

tion 

(1.1) £ £ h(xjj) = £ £ g(xt) h(yj) + £ £ g(yj) h(xt) 
i = l j = l i = l j ' = l i = l j = l 

where X = (xt,..., x„) e A„, Y = (ylt..., ym) e Am for n, m = 2, 3. 
The continuous solutions of (1.1) were given by Sharma and Taneja [3]. 
The objective of this paper is to find the measurable solutions of the functional 

equation (1.1) and given its application to information theory. 

2. MEASURABLE SOLUTIONS OF (1.1) 

In the following theorem, we will give the measurable solutions of system (1.1) 
of functional equations. 

Theorem 1. If h and g are Lebesgue measurable solutions of system (1.1) of func
tional equations for X e A„, Ye Am where n, m = 2, 3, then they are given for 
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x e [0, 1], by one of the following solutions: 

(2.2) h(X) = Ax* log x , g(x) = x" , a > 0 

(2.3) h(x) = l/5(xa - xp), g(x) = l/2(x* + xp) , a, j? > 0 

(2.4) h(x) = (xa[C) sin (fi log x) , g(x) = \* cos (p log x) , 

a > 0 , /? + 0 . 

Proof. Putting Y = ( j , u, 1 — .y — u) e i>3 and Y = (y + v, 1 — y — v) e zl2 

respectively in (1.1), we get 

(2.5) I ( * M + h(Xiv) + h(Xi(l - y - v))) = 

= 5>(*.) (%) + *(»J + K1 ~ y ~ »)) + IM*d (9{y) + a(v) + a(i-y- v)) 
i > 

and 

(2.6) Y(K*i(y +») + *(*•(- - y -»))) = 
i 

= L>(xJ (*(> + v) + h(l- y - v)) + £h(Xt) (g(y + v) + g(l - y - -)) 
> > 

Subtracting (2.6; from (2.5j, we have 

(2.7) JXxtf) + *(X|») - h(x;(j; + »))) = 
> 

= 5>(*.)(Ky) + Kv) - h(y + v)) + £/.(*.)(o(y) + dp) + g(i-y- «0) 
i i 

For X eA„,n = 2, 3, let 

(2.8) Ax(t) = Y>(*,.) - 1 ^ ) *(*) - Ih(x ;) a(0 
> i > 

Using (2.8), (2.7) becomes 

(2.9) Ax(y + v) = Ax(y) + Ax(v) 

It means that Ax(.) is additive on I. We can conclude from the result of Daroczy 
and Losonczi [2] that the measurable solution of (2.9) is 

(2.10) Ax(t) = tAx(l) 

Thus, in order to see the expression of Ax(t), we need to evaluate 

(2.11) Ax(l) = Y>(x.) - I X x J h(l) - V>(x.) fl(l) 

> > > 
Substituting Y = (1, 0) and Y = (1, 0, 0) respectively in (1.1) we get 

(2.12) Y>(x.) + n h(0) = 2>(x;) (h(l) + h(0)) + £/.(*,) (g(l) + g(0)) 
i i i 

and 

(2.13) Y>(x,) + 2n h(0) = Zg(Xi) (h(l) + 2h(0)) + £ % . ) (g(l) + 2g(0)) 
i i i 
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Subtracting (2.12) from (2.13;, we have 

(2.14) n h(0) = T>(x ;) h(0) + Y>(x;) g(0) 
i i 

Using (2.14), (2.12) becomes 

(2.15) lh{x,) = Yg(xi)h(l) +1^x^(1) 

sothatA^(l) = 0. Now by (2.10) 

(2.16) y>(xff) = Ia (x f ) h(t) + Y>(x/J g(t) 

for X = (xu ..., x„) £ A„, n = 2,3 and t e [0, 1]. 
Let X = (x,u,l - x — u). Then (2.16) becomes 

(2.17) h(xt) + h(ut\ + h((l -x-u)t) = (g(x) + g(u) + g(\ - x - u)) h(t) + 

+ (h(x) + h(u) + h(l - x - u)) g(t) 

Again, if X = (x + u, 1 — x — u) in (2.16), we have 

(2.18) h(x + u)t + h((\ - x - u) t) = (g(x + u) + g(l - x - u)) h(t) + 

+ (h(x + u) + h(l - x - u)) g(t) 

Subtracting (2.18) from (2.17), we get 

(2.19) h(x/) + h(ut) - h((x + u) t) = (g(x) + g(u) - g(x + u)) h(t) + 

+ (h(x) + h(u) - h(x + u)) g(t) 

For / e [0, 1], let us define 

(2.20) Bt(w) = h(wt) - g(w) h(t) - h(w) g(t), w e [0, 1] 

Then, (2.19) can be written as 

(2.12) Bt(x + u) = Bt(x) + Bt(u) for x, u, x + u e [0, 1] 

Using again the result of Daroczy and Losonoczi [2], we have 

(2.22) Bt(w) = w 5,(1), w e [0,1] 

(2.23) Bt(l) = h(t)-g(l)h(t)-h(l)g(t), te[0,l] 

Putting X = (1, 0) and X = (1, 0, 0) respectively in (2.16), we get 

(2.24) h(t) + h(0) = (g(i) + g(0))h(t) + (h(t) + h(0))g(t) 

and 

(2.25) h(t) + 2h(0) = (g(l) + 2g(0)) h(t) + (h(l) + 2h(0)) g(t) 

Subtracting (2.24) from (2.25), we obtain 

(2.26) h(0) = g(0)h(t) + h(0)g(t) 



Using (2.26), (2.24) becomes 

(2.27) h(t) = g(l)h(t) + h(l)g(t) 

Hence we have 

(2.28) B,(l) = 0 

Then (2.20) becomes 

(2.29) h(wt) = g(w) h(t) + h(w) g(t) , w, t e [0, 1] 

But the most general complex solutions of (2.29) are given by (see [ l ]) 

(2.30) h(w) = 0 , g(w) arbitrary ; 

(2.31) h(w) = e0(w) a(w), g(w) = e0(w) ; 
and 
(2.32) h(w) = (ifc) (e,(w) - e2(w)) , g(w) = i(e,(w) + e2(w)) 

where k + 0 is an arbitrary real or purely imaginary constant and a(w) ,e,(w), 
(t = 0, 1, 2) are arbitrary functions satisfying 

(2.33) a(wt) = a(w) + a(t), 
and 

(2.34) e,(wt) = e,(w) e,(t), I = 0, 1, 2 

respectively. 
From (2.30), (2.31), (2.32), (2.33) and (2.34) it is easy to see that the real measurable 

solutions h and g are given by (2.2), (2.3) and (2.4). This proves the theorem. • 

3. APPLICATION TO INFORMATION THEORY 

Let h be a real measurable function such that 

(3.1) H(P) = Zh(Pi) 
i 

where P e A„. Also suppose that h satisfies the normalizing condition h(i) = 1. 
In the next theorem we give characterization of three measures of information 

satisfying (l-l), (3.1) and the normalizing condition. 

Theorem 2. The entropies of a probability distribution P e A„ corresponding 
to real measurable solution (2.2), (2.3) and (2.4) of the functional equation (1.1) 
under the normalization condition h(\) = 1 are given by 

(3.2) Ht(P)= - 2 ^ 1 X P , - l o g p i , « > 0 , 

(3.3) #<?'«(?) = (21-* - 2 1 - " ) - 1 £(pj - p?) , a + p, a > 0 , B > 0 
< 

(3.4) Hi"'f\P) = ( -2 a - 1 / s in 0) ^p« sin {ft log p() , B + 0 , a > 0 . 

The p roof is rather straighforward. • 
^—-•-, (Received November 2, 1982.) 
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