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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 4 

Generalized Linear Estimate of Functions 
of Random Matrix Arguments 

PAVEL KOVANIC 

The optimum linear estimation problem in a generalized formulation is considered for a func
tion of observational data matrix being a summ of random matrix signals and of a matrix of 
observation errors or noise. The criterium of optimality is the minimization of the penalty which 
is a linear combination of the squares of the norms of two kinds of errors: of the error matrix 
which would take place in estimation without noise and of the matrix of actual estimating errors. 
Results are applicable also in the case of deficient rank of covariance matrices and/or of signal 
model. Correlation of signals with the noise is allowed. A priori statistics of signals can be in
corporated to improve the estimates. It is shown that different known generalizations of least 
squares estimates are special cases of the minimum penalty estimate. 

INTRODUCTION 

Importance of the linear estimation problem lies not only in its direct applications 
for various practical purposes but also in the necessity to include state and parameter 
estimations procedures into "higher" techniques such as, e.g., identification and 
optimal control. Also the modern state estimation methods themselves and the 
related theory of optimum linear filters are based on the classical method of least 
squares [1]. Making use of the minimum mean-square error estimate (MSE) and 
of its generalization (GMSE) is most popular. But this approach is not an unique 
alternative and - under certain conditions — it may be not the best alternative. 

There are two kinds of errors arising in estimation: The first one is the error in 
treatment of data or signals not corrupted by noise and another statistical errors. 
The second one arises in the treatment of data or signals in the presence of noise. 
The MSE technique requires the minimization of the error of the second kind under 
condition that the error of the first kind is zero. Solution of this problem does not 
exist always but the GMSE-approach [2] can be used always according to which the 
error of the second kind is minimized under condition that the error of the first kind 



reaches its minimum. The error of the second kind is in both cases the variance and 
we may speak of conditional minimum variance estimate (CMVE). We shall however 
consider a more general case when data are random variables. In this formulation 
not only the actual but also the required result of estimation is a random quantity 
and instead of the variance of the estimate, its mean square error is to be taken into 
account as the error of the second kind. Instead of CMVE we thus deal the more 
general case, the conditional minimum square error estimate (CMSE). 

Confusion might take place relating to the actual sense of the error of the first 
kind. Zero value of this error is sufficient for the unbiasedness of the estimate but 
it is not necessary. Unbiased linear estimates not satisfying this requirement can 
be found minimizing the error of the second kind unconditionally. Such approach 
is based on an idea of Semyonov (1954). As mentioned in [3], it was an alternative 
and more general formulation of the filtering problem to that one given by Wiener 
and generalized by Zadeh and Ragazzini (1950). Therefore, the estimate minimizing 
the error of the second kind unconditionally, the unconditional minimum mean-
square error estimate (UMSE) may be called also the Semyonov estimate. In the 
case of the UMSE, the signal is considered to be not only unknown but a random vari
able having a known mean and a given variance. Hence the error of the second kind 
is not identical with the variance of the estimate in this case. The mean square value 
of the estimating error of the UMSE can be less than that of the CMSE whereas 
opposite is true for the error of the first kind. 

It has been shown in [4] that minimizing unconditionally a linear combination 
of mean square errors of both mentioned kinds (a quantity called the penalty) one 
obtains a generalized estimate, the minimum penalty estimate (MPE). The UMSE is 
obtained as an extremal special case of the MPE when taking zero weight of the error 
of the first kind, whereas the CMSE can be considered to be an opposite extremal 
case of unlimited weight of this error. Between these extremal cases one has a set of 
compromising estimates. 

It is the purpose of this paper to extend the minimum penalty estimate concept 
to the case when data or signals are random matrices. 

PRELIMINARIES 

The model is given by n x p random matrices 

(1) • Y= Ys + Ye, 

where Yx represents signals, the matrix Ye noises and another random errors, the Y 
being composed of the observed data. Mean values and covariances of all com
ponents are supposed to be known. 

The required result of estimation under condition of zero noise should be a t x p 



matrix 

(2) Zx = ^ X {Y J 

and in the presence of noise a matrix 

(3) Z0 = ST0{YX, Ye} 

of the same dimensions, where 9~x and ,T0 are some given operators. The estimate 
will be of the general linear form 

(4) Zx = WY+ C, 

where W and C are some constant matrices having dimensions t x n and t x p, 
respectively. 

As a measure of a random matrix E we introduce a scalar quantity 

(5) | | E | | = [ t r { < E e E T > } ] I / 2 , 

the square root of the trace of the expected value of a quadratic form EQET for 
a given weighting matrix Q which is positive definite. It can be shown, that the ordi
nary conditions 

(6) !|E|| = 0 for E=0 and ||E|| > 0 for E + 0 , 

(7) IE! +E2\\ S \\Etl +\\E2\, 

and 

(8) HaEi = \a\ HE! 

for a real scalar a are fulfiled. 

The error of the first kind is defined as 

(9) \\EX\ ~ \\WYX + C - Zx\ , 

the error of the second kind being 

(io) [|E0|| = !|w(Yx + Ye) + C - z 0 | . 

The penalty 

(ii) p = ^ I N I 2 + px||Ex||
2 

can be defined using the weights p0 and px, 

(12) Po > 0 , 

(13) p0 + px > 0 . 



Formulation of the problem 

Given data of the form (l) and the matrices (2) and (3) characterizing a function 
of the data. Values of this function are to be estimated. Given first and second statisti
cal moments of all elements of the matrices (l), (2) and (3). Determine matrices W 
and C for which the linear estimate (4) minimizes unconditionally the penalty (11). 

Centralization of variables 

Substituting (9) and (10) into (11) one obtains after formal transformations the 
penalty 

(14) p = tr {Po(Z0QZT) + Px(ZxQZ\) + W(Po(YQYT) + 

+ PAYXQYT» WT - (Po(Z0QYT) + 

+ PAZXQYT» WT - W(Po(YQZT
0) + 

+ PAYxQZl» + 

+ (Po + Px) (C - Cb) Q(CT - Cl)} , 

where 

(15) Z0 = Z0 - (Po(Z0) + px(Zx»l(p0 + px) , 

(16) Zx = Zx - (Po<Z0> + p x<Z x»/(P o + Px), 

(17) Yx = Y - (p0< Y> + px( Yx»l(p0 + px), 

(18) Yx = Yx - (Po<Y> + Px<Yx»l(Po + Px), 

(19) Cb = (p0<Z0> + px<Zx> - W(Po(Y) + Px(Yx»)j(p0 + px). 

In (14), only the last term depends on the constant matrix C. This term is a positive 
semidefinite matrix, its trace is a non-negative number. Trie optimum choice of the 
constant term of the estimator (4) for an arbitrary Wis thus 

(20) C = Cb. 

It can be mentioned that using substitutions (17) and (19), one gets the estimating 
formula (4) in a simplified form 

(21) Z = Wt, 

where again 

(22) Z=Z- (p0<Z0> + Px<Zx»l(Po + Px). 

A case characterized by the relations 

(23) Z0 = Zx 



and 

(24) < Y e > = 0 

is met usually in practice. Identity (23) expresses the requirement to minimize the 
influence of the noise upon the results of estimation. The condition (24) does not 
represent a loss of generality. The eventual non-zero mean of the noise may be 
included into the data matrix Yx. In the case of validity of the conditions (23) and 
(24) the transformation leading to the estimator (21) is simply the centralization of 
variables. 

Geometrical aspects 

Let us denote 

(25) . M = Po<?Q?T> + Po(YxQYj> 

and 

(26) B = <YeY T > + <YeQYT> + <YxQYj> . 

Both members of the right-hand side of (25) are positive semidefinite, they are summs 
of covariance matrices. One can therefore obtain a decomposition 

(27) <YxQYj> =XXr 

which is not unique, one has certain freedom in choosing a n x q matrix X having 
the same rank m as the matrix <YxQFx

r>, whereby 

(28) m^n. 

The rank s of the positive semidefinite matrix B is also not necessarily full, 

(29) s S u . 

The column-space of the matrices X and B will be denoted Sfx and Sf„ respectively. 
A natural assumption is 

(30) sfx s se, 

representing no loss of generality. If some signals would be outside of the "error 
space" then such signals can be determined exactly and it is not necessary to include 
them into the model being considered. Denoting S/n the n-dimensional space, we 
conclude from (29) 

(31) sr, s srn. 

The case of no data vectors existing within a part of the space S?„ is thus taken into 
account, too. 



To handle the rectangular matrices as weil as possibly singular quadratic matrices 
we shall use the most general version of a generalized inverse matrice [5]: The one-
condition generalized inverse Agl of an arbitrary matrix A is a matrix satisfying the 
condition 

(32) AAglA = A . 

The inverse Agl is not unique, in determining this matrix there remains a certain 
choice making it possible to add further conditions when the" matrix A-1 does not 
exist. 

It follows from (30) that the columns-space of the matrix M (25) is in a general 
case not identical with y „ . Each data matrix may be represented as 

(33) , Y = MA . 

The equation 

(34) (/ - MMsi) 7 = 0 

resulting from (32) and (33) can be interpreted as "there exist no data outside the 
subspace S^e of the n-dimensional space $?„". (The symbol / denotes the unity matrix.) 

Taking into account (30) we may apply the equation (34) also to the signal matrix Yx. 
The column-space of the matrix X is identical with the row-spaces of both matrices 

<Z0Q?I> and <Zxeyx
T>. One has therefore 

(35) <zxgyx
T> = <zxQyx

T> (XT)gl XT 

as well as 

(36) (z„2?T)=<z0efT)(irr. 

A GENERAL CASE OF THE BEST LINEAR ESTIMATOR 

The expression (14) for the penalty can be rewritten substituting C = Cb and 
using (32): 

(37) p = tr {po<Z0QZTo> + PAZxQZr
x) - (p0<Z0Q?Ty + 

+ px<zxeyx
T»Ms!(Po<y<2zT> + p x < Y Q z T » + 

+ \WM - (p0<ZoQTT> + 

+ PAZ,Q?I»] Mgi[MTifT - (p0<mi> + 

+ P,i%Qzly)\} • 

The penalty is thus minimized for 

(38) wbM = p 0 <z 0 ey T > + px<Zx<2Yx
T> . 



Multiplying (38) by Mg l we obtain WbMMel. The component Wb(I - MMgl) may 309 
be chosen freely, as this part of the estimator will not add anything to the result 
of estimation because of (34). A simple choice is 

(39) Wb(l - MMel) = 0 . 

We have therefore 

(40) Wb = WbMMel = (p0<Zo6?T> + Px<2xQYT» Mel . 

This result can be presented in a more explicit form. It is convenient to start with 
the case of a matrix X0 having full rank m. The result will be generalized afterwards. 
We have seen already that a matrix X satisfying (27) is contained in the column-space 
of the symmetrical matrix B (26). Therefore, a matrix lemma [5] may be applied to 
determine a generalized inversion of the summ of two matrices: 

(41) Mg l = (l/p0) Bel[l - X0(Pol(p0 +Px)l + XlB^Xo)'1 XlB*1] . 

Using (1), (35), (36), (40) and (41) we come to the result 

(42) Wh = 1/(1 + r)((z0Q?Ty + 

+ r(ZxQYT})(XT
0)

el (1/(1 +r)l + X^X,)'1 XT
0B

el + 

+ <Z0QYTy Bel[I - X0(l/(1 + r)I + Xr
0B*lX0)-

1 X]sB
el] , 

where 

(43) r = px/p0 

is the relative weight of the penalty components. 

The matrix (1/(1 + r)l + X 0 B 8 l X 0 ) _ 1 exists always because of full rank of the 
matrix X0, positive semidefiniteness of the nonzero matrix B and because of non-
negativeness of the parameter 1 + r. Nonsingularity of the matrix XTBelX0 will be 
shown below. 

Now it is possible to proceed to the case of the n x q matrix X with no assumptions 
on its rank. Such matrix may always be represented as 

(44) X = X0F 

using a full-rank matrix X0 and an m x q matrix F satisfying the semiorthonormal 
condition 

(45) EET=/mxm. 

It can be verified by the substitution into (32) that 

(46) X*1 = FTXel 



310 and 

(47) FT(1/(1 +r)l + XlB^Xo)'1 F = [1/(1 + r)XslX + XTBglX]sl , 

where the substitution 

(48) FTF = XslX 

is admissible because of the full rank of the matrix X0. 
One has therefore the best linear estimator in the form 

(49) Wb = (1 + r)'1 «Z0eyx
T> + r(ZKQYl»(XTyi ((1 + r)"1 XBlX + 

+ XTBslX)sl XTBgl + <Z06Ye
T> Bsl[l - X((l + r)'1 XglX + 

+ XTBslX)sl XTBel] 

applicable without any restrictions of generality. 

ERRORS 

Error of the first kind 

To simplify writing of formulae one may make use of the possibility to introduce 
additional conditions defining the generalized inverse more specifically. We need 
here the decomposition of symmetrical positive-semidefinite matrices 

(50) B = SeD
2

eS] 

and 

(51) <Y*QYj> = SxD
2
xS

r
x, 

where the elements of diagonal matrices D2 and £>2 are positive latent roots of the 
matrices. Matrices Se and Sx having dimensions n x s and n x m are column-
orthonormal, 

(52) STSe = Lxs, 

(53) STSx=/mXm. 

Clearly 

(54) X0 = SXDX 

and by (44) also 

(55) X = SXDXF 

are allowed. 



The Moore-Penrose generalized inverse [5] will be used below for matrices B and 3 l 1 

X, defined as 

(56) Bs = SeD;2ST 

and 

(57) Xs = FTD;1ST
X 

whereby 

(58) D;1sl=(x0y = X | T . 

These inverses are unique. They satisfy (32) as well as three additional conditions [5]. 

Denoting 

(59) V0=<Z0QYT>^T, 

(60) Vx = <ZxQYx
T>XgT, 

(61) V =<Z0Q?J}SeD;1 , 

(62) G = D;1STX , 

(63) H = [(1 + r)-1 XgX + XTBgXj, 

(64) P = (1 + r ) " 1 (V0 + rVx) - VeG 

one obtains from (49) 

(65) Wb = (PHGT + Ve) D ; 1 ^ 

which substituted into (9) written as 

(66) ' | | E x | | = | | l V b Y x - Z x [ | 

gives the error of the first kind in the form 

(67) ||EX|| =[ t r{<Z x QZ T >-V x V x
T + 

+ [PHGTG - (V - VeG)] [PHGTG - (Vx - VeG)]T}]1/2 . 

Error of the second kind and the penalty 

This error is defined by (10) and (15) —(19) as 

(68) lEoll = | | W b Y - 2 0 l | . 



Using the notation introduced above one yields 

(69) [jEo[|2 = tr {(Z0QZT
0) - V0V

T - VeVe
T + 

+ (^o - KG) (I + G^)-1 (V0 - VeG)T + 

+ [PH - (V0 - VeG) (/ + ^ G V 1 ] GT(I + GGT) G[PH -

-iy0-VcG){l + GTG)-'Y}-

Substitution of (67) and (69) into ( l l ) gives the penalty resulting from the use of 
the best estimator (42): 

Extremal values of the errors 

(70) p = p0 tr {<Z0QZ5> + r(ZxQZT
x) -

- l(V0 + rVx) G
T + Ve] [/ - GHGT~\ [(V0 + rVx) G

T + VC]T} . 

It follows from (67) that the minimum of the error [|Ex|j is reached for 

(71) [PH]i GTG = V X - V e G . 

In this equation, the term [ETj]i depends on the parameter r. To solve this equation 
for the value ru minimizing the error |[EX||, we use the relations given above and take 
into account that 

(72) SeS
TSx = Sx 

as follows from (31). Therefore 

(73) sT
xsc(slsey =ImXm, 

the matrix STSe is a full-rank matrix as well as the matrix 

(74) Go = De
_ 1STSxDx . 

The matrix GJG0 is thus non-singular and the minimality condition is 

(75) (1 + r)'1 [V0 - VX{I + (GjGo)-1) + VeGo(GJGo)-1] = 0 . 

Excluding the case of zero matrix value of the bracketed term we may conclude 
that the single minimum of the error takes place when 

(76) . r = r1 -» oo . 

The minimum value of the error |EX|[ is thus reached for 

(77) ||Ex|[2
in = tr {<ZXQZT> - <ZXQ?T) XgTX\YXQZT>} 

being non-zero in a general case. 



As to the error of the second kind | |E0 | , its minimum value 

(78) ||E0|lmin = [tr {<Z06Zo> - <Z0gYT> X*TX\YXQ2T
0} -

-<Z0QYe
T>5«<YeeZT> + 

+ (<20QYx
T>^gT - <Z02Ye

T> BgX)(l + XTB*X)-1 (X\YXQ2T
0> -

- XTB\%QZT
0})}Y'2 

is obtained from the definition 

(79) IIEol = | | P F b f - Z o l | 

written as 

(80) IIEcl = [tr {<Z0gZj> - V0VoT - VeVe
T + 

+ (K0 - VeG) (I + GTG)~1 (V0 - VeG)T + 

+ (PH - (V0 - VeG) (/ + GTG)-1) GT(I + GGT) G(PH -

-(V0-Vfi)(l + GTGY1)T}YI\ 

the minimum being reached for 

(81) [PH]2G = (V0 - VeG) (/ + GTG)-1 G . 

Solution of this equation for the value r2 of the parameter r gives the condition 
of minimality of the error |jE0[| in the following form: 

(82) r2[Vx - (V0 - VeG) (FFT + GTG)g GTG] = 0 . 

If the bracketed matrix term is not zero then the unique solution is 

(83) r2 = 0 . 

Hence, it may be summarized that the estimating errors of both kinds reach their 
minimum values at two opposite ends of the range of the parameter r. 

SPECIAL CASES: UNCONDITIONAL AND CONDITIONAL 
MINIMUM SQUARE ERROR ESTIMATES 

It is apparent that the latter of both extremal cases considered above (the case 
r = 0) represents a generalization of a discrete version of the Semyonov estimate 
(UMSE-unconditional minimum mean-square error estimate). The error |]E0|| is 
identical with the penalty in this case and it is minimized unconditionally via minimiza
tion of the penalty. 

It has to be shown that the former of the extremal cases (the case r -> oo) is the 
case of generalized conditional minimum square error estimate (CMSE). Let us 
consider the problem of this estimate independently: 



314 Denoting 

(84) WSeDc = V 

one can write the error |EX|| in the form 

(85) ||EX|| = [tr {<ZXQZT> - VXVX
T + (VG0 - Vx) (VG0 - VX)T}]*'2 

minimized unconditionally by 

(86) VG0 = Vx . 

This equation has always a solution as Vx is in the row-space of G0 (see definitions 
(60) and (74). 

We prefer here to use the full-rank matrix G0 (74) because of simpler calculations 
and to generalize the formulae for a more general G (62) afterwards. Also the matrices 
Vx and Ve are taken here for a full-rank X. 

General solution of the equation (86) for the unknown matrix V is [5] 

(87) V = VXG0 + L[I - G0G0] , 

where 

(88) Gt^iGlGoY'Gl 

and the matrix Lis an arbitrary matrix of proper dimensions. Each Vsatisfying (86) 
must be thus of the form (87) and only the matrix Lmay be subject to any additional 
conditions. Using estimator (87) one obtains the error of the second kind 

(89) ||L0|| = [tr {<Z0gzS> - V0V
T - Vye

T + 

+ (V.Gg - K) (V*Gl - Ve)
T + (Vx - V0) (Vx - V0)

T + 

+ (L - Ve) (/ - GG*) (L - Ve)
T}]1/2 

minimized by 

(90) L = Ve . 

But this substitution makes (87) identical with the special case of (49) for r -> oo: 

(91) V = Vfi% + VC[J - G0Gl\ . 

It may be concluded that the minimum penalty estimate in the case r -» oo leads 
to minimization of the error of the second kind | | £ 0 | constrained by the requirement 
to minimize the error of the first kind ||LX| unconditionally. 

Estimability 

We have seen that the minimum penalty estimate always exists. In this sense the 
problem of estimability is dropped. But the ordinary concept of estimability relates 



to the existence of such CMSE for which 

(92) Ex = WYX - Zx = 0 . 

It is clear from (6), that it means also that the error of the first kind ||EX| is zero. 

For linear operators the required result Zx of the estimation in the case of data 

represented as 

(93) YX=XA, 

where the matrix A is a random matrix for which 

(94) (AQAT)=I, 

should equal 

(95) Zx= P,A 

with a given operator Ea. The matrix X is non-random. As shown above, the estimator 
of the CMSE type is obtained from (49) by r -> oo 

(96) Wbv = <Zxo,Yx
T> XgT(XTBeX)eXTBg + 

+ <Z0QYj) Bg[l - X(XTBeX)gXTBg] . 

It is easily seen that for the Moore-Penrose inversion 

(97) X[(XTBeX)e XTBeX] = X 

and 

(98) . XeT[(XTBeX)g XTBgX] = XgT . 

The condition of the estimability thus follows by substitution of (92), (94), (96) 
and (97) into (91) 

(99) P,XTXsT = Pa . 

One may conclude that every linear function of data is "minimum-penalty-esti
mable", but for that ones for which (99) holds, an estimate exists minimizing the 
error ||E0|| under constraint that the error matrix Ex as well as the error |EX|| are zero. 

Least squares estimates as special cases of the minimum penalty estimate 

A generalization of the discrete Zadeh-Ragazzini estimate for the case of estimable 
linear functions and for vector data has been presented in [6]. This result can be 
obtained from (96) by replacing the matrix Q by the scalar 1 and by using (99). 



316 In order to obtain from (96) the Lewis-Odell's generalization of the Gauss-Markov 

estimate applicable also in estimating non-estimable linear functions of data in the 

sense of CMSE, following simplifications have to be supposed: 

1. There are no correlations of data with noise 

2. Noise variance matrix B (26) is nonsingular 

3. Data are vectors, Q — 1 

4. <z 0eY e
T> = 0 

5. P a = /. 

It has been shown in [1] that all the results obtained via the linear filter development 

are special cases of the results obtainable from the method of least squares viewpoint. 

In the terms of the present paper, the main result of [1] presenting the optimum 

linear estimates of a random process having a priori statistics, is a special case of 

(40) for r = 0, and it may be understood as the Semyonov estimate. 

(Received December 3, 1973.) 
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