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K Y B E R N E T I K A — V O L U M E 7 (1971), N U M B E R 3 

The Representation of a Wave 
in a Development Matrix of a Subsystem 

PŘEMYSL DASTYCH 

A concept of a loop, a branch and a wave (wave of activities, wave of contacts, wave of infor­
mations) in a subsystem is introduced, if the subsystem considered is constituted of elements. 
The loop and the branch, further a loop wave and a branch wave, are represented by means 
of certain matrices. The corresponding loop matrix, branch matrix, loop-wave matrix and 
branch-wave matrix make — in a certain manner — a description of the subsystem and a "visual­
ization" of its development possible. 

1. INTRODUCTION 

When investigating the development of a subsystem, we often have to know 
whether a wave of a certain kind propagates in the subsystem, for example, whether 
a "green wave" propagates in a traffic subsystem. 

Let any subsystem of a system constituted of elements be considered. This sub­
system can possess certain properties, e.g. those given below by Definition 1. The 
configuration of the elements can be represented by a picture in many cases. An 
example of a subsystem constituted of 9 elements (numbered by figures 1,..., 9) 
is depicted in Fig. 1. 

But that example is too simple regarding subsystems beeing usually solved and 
those which ought to be solved in technical cybernetics, biological cybernetics, etc. 
A geometric picture in a plane can get more and more difficult with the number 
of elements and with the number of interelementar relations. One of the further 
possible means is a matrix representation of the subsystem considered and matrix 
representation of a development of the subsystem (see [ l ] , [2]). The subsystem being 
represented by a square matrix, the development of that subsystem can be expressed 
by a three-dimensional matrix (development matrix), as introduced in [ l ] . 

One of the concepts occuring often in a development of a subsystem is the concept 
of a wave. The aim of the present paper is to introduce the representation of a wave 



when applying the above mentioned development matrix. First the matrix representa­
tion of a subsystem and of its development will be recalled [ l ] . The concept of a loop 
and of a branch will be introduced when the loop and the branch are constituted 
of elements. Then the concept of a wave of contacts in a subsystem will be recalled 

Fig. 1. An example of a subsystem constituted of 
elements. 

if the subsystem considered is constituted of elements as well [2]. Analogically, the 
wave of activity and the wave of information are introduced. 

Recalling the concepts of activity matrix, information matrix, activity-development 
matrix and information-development matrix [2], the concepts of contact matrix, 

hi <JM 

a) -> 

Fig. 2. One of the possible arrangements of a three-dimensional development matrix. 

contact-development matrix, activity (contact, information) submatrix, activity-
development (contact-development, information-development) submatrix are intro­
duced. The concept of loop (branch) matrix allows to identify or recognize, to 
a certain extent of course, the structure and configuration of a subsystem. On the 
other hand the familiarity with the arrangement of a loop-wave (branch-wave) 



matrix makes possible, again to a certain extent, to recognize the form of the develop­
ment of the subsystem considered. Several examples illustrate the application of the 
above mentioned concepts. 

2. WAVE (OF CONTACTS, OF ACTIVITY, OF INFORMATION). 

LOOP WAVE. BRANCH WAVE 

First several properties indispensable for our further dealing with subsystems will 
be digested out of definition of a system introduced in [1]. The restriction results 
in Definitions 1 and 2. 

Definition 1. Let a subsystem of a system constituted of elements be given. The 
elements can carry out their activities either in one or in more quality types. The 
single activities of any but the same quality type can be classified with respect to their 
relative priority class (relative priorities of activities). If an arbitrary element is 
in contact with another arbitrary element, then the contact has only one of two 
possible instantaneous transit directions for each quality type. Any two elements 
possess one contact at most for a certain but the same quality type of activity. An 
arbitrary element can influence any other element through a contact only. The 
contact is a total property of a certain pair of elements. Any subsystem can have 
or/and pursue one or more aims (goals). The aims of the single subsystems can 
be classified with respect to their relative priorities (relative priorities of goals). 
In general, some of the activities are interpreted as signals to transfer informations. 
The information content can be evaluated (or classified) with respect to one or more 
goals. 

Definition 2. Let a set of elements out of whatever but the same state of a system 
be given: 

(i) If a sequence of the elements can be found so that the elements of each order 
(in the sequence) is in contact with the element of the "one less" order or with 
the element of the "one more" order (including both of them), 

(ii) if the sequence proceeds in the transit directions of the single contacts, 

then the elements of the sequence considered constitute a path. 

The configuration of the elements constituting a path can be very various. We shall 
focus our attention to two types of those configurations given by 

Definition 3. Let a path constituted of elements be given. If the path encounters 
each of its elements once and only once, the path is called a branch. If the path 
encounters one and only one of its elements twice, but it encounters all of its other 
elements once and only once, then the path is called a loop. 



Remark 1. That concept of a branch and of a loop is in accordance with those applied in the 
technical and mathematical literature usually. 

Several examples of loops and branches are sketched in Fig. 1 and Fig. 3 — 7. 

The simplest loop is constituted of three elements (Fig. 3a), because any two elements 

Fig. 3. a) The simplest loop is any 
(oriented) three-element loop, b) The 
simplest branch is any (oriented) 
two-element branch. ь) 

(in contact) cannot satisfy the properties required by Definitions 2 and 3. On the 

other hand, two elements will do for the simplest branch (Fig. 3b). Two possible 

directions have to be considered in each contact. Thus, if, for example, a quintuple 

Fig. 4. Two possible orienta­
tions of a loop of five elements. Ь) 

of elements forms a loop, two orientations of the loop are possible (Fig. 4a, b). 

For the same reason, if, for example, a quadruple of elements is considered to consti­

tute a branch, two possible orientations of the branch are possible (Fig. 5a, b). 

a) fa) 

Fig. 5. Two possible orientations of a branch of four elements. 

Any two loops can, but need not, have one or more common elements. Several 

examples of such loops are given in Fig. 6. Two or more loops can constitute a further 

loop. In Fig. 7, three loops constitute a fourth one. Several loops along with several 



Fig. 6. Several examples of two loops: 
a) No common element, b), c) One 
common element, d), e) Two common 
elements, f) Four common elements. 

branches can be seen in the above mentioned Fig. 1, where an example of a subsystem 
constituted of elements is sketched. 

Now the definition of a wave of contacts will be recalled [2]. 

Definition 4. Let a set of h elements be given. Let r i j i+1 be the time interval of the 
contact between the elements e; and e i+1 with transit direction from ef to ei+1, 



206 if i = 1, 2, ..., h - 1. Let AT,- i + 1 be any part (any subinterval) of the time interval 
T i , i+i : 

(-) ATl.l+l « T,,| + 1 . 

Fig. 7. Three loops (a, 6, c) constituting 
a fourth (rf) one. 

Let a i i + 1 be the initial instant and j3 i ) i + 1 be the terminal instant (if any exist) of the 
subinterval AT i | i + 1: 

(2) A T M + 1 = <«! , !+. ; j J | . l + i > . 

If 

(i) a location of the subintervals AT 1 I 2 , AT 2 I 3 , ..., ATh_,<h can be found on the 
time axis so that the ordering of the mentioned subintervals follows the ordering 
of the instants in time sequence, coincidences included, that is 

(3) a ; j + 1 _ _ a y + w + 2 , j - 1 , 2 , . . . , / . - 2 , 

(ii) the differences 
Xj+l,j + 2 ~ av,/+1 

and the magnitudes 

| A T i , i + i | 

of the single subintervals are within certain upper and lower limits for the single 
values i and ;", 

then the contacts form a wave (a wave of contacts) on the elements eu ..., eh, or in 
other words, the contacts form a wave between the elements ey and eh, or a wave 
of contacts propagates from element el to element eh, with respect to the mentioned 
limits which can be time dependent. In this case the element el is called a source 
of a wave and the element eh is called the destination of the wave. 



Remark 2. The wave of contacts (e.g. in Fig. 8) can propagate from element eh away to a further 
element, or/and can be propagated towards the element eY from another one. 

When applying Definitions 3 and 4 we can introduce 

Definition 5. Let a wave of contacts be given. If the wave of contacts encounters 

each of its elements once and only once, the wave is called a branch wave of contacts. 

If the wave of contacts encounters one and only one of its elements twice (e.g. ey = 

ДГ|,2 

^ - time 
1.2 «2.3 "3.4 «4,5 "5 ,6 1*6,7 

Fig. 8. An example of the location of subintervals Ar of a wave of contacts on the time axis. 

= eh+

f

t), but it encounters all its other elements once and only once, then the wave 

is called a loop wave of contacts. 

Considering the concept of wave of contacts (Definition 4) and the interelementar 

activities and informations (Definition 1), Definitions 6 and 7 can be introduced. 

Definition 6. Let a certain wave of contacts propagate on and only on a set of h 

elements. Let any quality type (m) of activity be chosen. Let 9 i i + l be a time interval 

of the activity of the chosen quality type exerted by the element e ; on the element e ; + 1 , 

where i = 1, 2,. . . , h — 1. Let A T M + 1 be the time interval within which the contact 

between the elements e ; and e i + 1 takes part on the above mentioned wave of contacts, 

where 

$i,i+l <= A T i i i + 1 . 

Then the mentioned single activities form a wave of activity (activity wave) of the 

said quality type on the given elements. 

Definition 7. Let a certain wave of contacts propagate on and only on a set of h 

elements. Let 5 M + 1 be a time interval of the information transfer from element e ; 

to element ei+1, where i = 1, 2, ..., h — 1. Let A T M + 1 be the time interval within 

which the contact between the elements e ; and e ; + 1 takes part on the above mentioned 



208 wave of contacts, where 

<5M+, c A T M + 1 . 

Then the single mentioned information transfers form a wave of information 
(information wave) on the given elements. 

Remark 3. An information transmission is a special case of an information wave if the single 
transfers relate partly at least to a certain common information content. 

Applying Definitions 6 (7) and 5, Definition 8 (and 9) can be introduced. 

Definition 8. Let a wave of activity (a wave of information) be considered. Let the 
corresponding wave of contacts be a loop wave. Then the wave of activity is a loop 
wave of activity. (Then the wave of information is a loop wave of information.) 

Definition 9. Let a wave of activity (a wave of information) be considered. Let the 
corresponding wave of contacts be a branch wave. Then the wave of activity is 
a branch wave of activity. (Then the wave of information is a branch wave of infor­
mation.) 

3. ACTIVITY-DEVELOPMENT (CONTACT-DEVELOPMENT, 

INFORMATION-DEVELOPMENT) MATRIX 

In the further text first the concepts of four matrices (Definitions 10-13) are 
recalled. 

Definition 10. Let n elements be given. Let aik, be the probability of activity 
exerted by the i'-th element on the k-th element. Then the matrix A, with components 
a ; k, in the i-th row and the fe-th column is an activity matrix related to instant f. 
(See [1], [2].) 

Definition 11. Let n elements be given. Let Fik, be the content of information 
(e.g. classification of activities, formulation of goals, classification of goals, etc.) 
related with the pair of elements e, and ek, if the element e; is a source of information. 
Then the matrix T, with components rikyt in the i-th row and the /c-th column is an 
information matrix with respect to instant t ([l], [2]). 

Definition 12. Let a time sequence of activity matrices be given, the single activity 
matrices of which relate one by one to the single but all and only all instants out 
of any given time interval. Then the time sequence of those activity matrices constitute 
a three-dimensional activity-development matrix (D) related to the time interval. 
The third dimension of that matrix is the time axis ([1], [2]). 



Definition 13. Let a time sequence of information matrices be given, the single 
information matrices of which relate one by one to the single but all and only all 
instants out of any given time interval. Then the time sequence of those information 
matrices constitute a three-dimensional information-development matrix (/) related 
to the time interval. The third dimension of that matrix is the time axis [2]. 

Now several further matrices will be introduced (Definitions 14-19). 

Definition 14. Let n elements be given. Let j i > M be the probability that there 
is a contact between the elements et and ek with transit direction from the element ef 

towards the element ek at instant t. Then the matrix F, with components j i > M in the 
i-th row and the fc-th column is a contact matrix with respect to instant t. 

Remark 4. The contact matrix is a special case of the configuration matrix (Configuration 
matrix see [1], [2]). 

Definition 15. Let a time sequence of contact matrices be given, the single contact 
matrices of which relate one by one to the single but all and only all instants out 
of any given time interval. Then the time sequence of those contact matrices consti­
tutes a three-dimensional contact-development matrix (G) related to the time interval. 
The third dimension of that matrix is the time axis. 

Definition 16. Let n elements be given. Let the activity matrix of those elements 
related to instant t be given. Let any combination of the h-th class out of the given n 
elements be chosen (h ^ n). Then the corresponding submatrix (of the activity 
matrix) related to the chosen elements is an activity submatrix. 

Definition 17. Let n elements be given. Let the contact matrix of those elements 
related to instant the given. Let any combination of the h-th class out of the given n 
elements be chosen (h ^ n). Then the corresponding submatrix (of the contact 
matrix) related to the chosen elements is a contact submatrix. 

Definition 18. Let n elements be given. Let the information matrix of those elements 
related to instant t be given. Let any combination of the h-th class out of the given n 
elements be chosen (h :£ n). Then the corresponding submatrix (of the information 
matrix) related to the chosen elements is an information submatrix. 

Definition 19. Let any combination of the h-th class out of the given n elements 
be chosen. Let a time sequence of the corresponding activity submatrices (contact 
submatrices, information submatrices, respectively) be given, the single activity 
(contact, information) submatrices of which one by one relate to the single but all 
and only all instants out of any given time interval. Then the time sequence of those 
activity (contact, information) submatrices, respectively, constitute a three-dimensio-



nal activity-development submatrix (contact-development submatrix, information-
development submatrix, respectively) related to the time interval. The third dimension 
of those submatrices is the time axis. 

Example 1. Due to Definition 16, the activity submatrix is a proper or improper part of the 
activity matrix and originates from a certain partitioning of the activity matrix. Let the subsystem 
sketched in Fig. 1 be considered. Let two combinations of elements, e.g. e3, e4, e5, e6 and e5, 
e_, e9, be chosen. Then the corresponding activity matrix is 

el e2 e3 e4- e5 e6 el e8 e9 

el °1,1 fll,2 - 1 . 3 fll,4 fl1.5 fl1.6 fll,7 fll,8 fll,9 
e2 fl_2A fŁ?_ Лы a2Л_ *".--_ ._*___ Љi. ._вм____ 
e3 fl3,l fl3,2 

flз,з fl3,4 fl3,5 fl3,6 fl3,7 fl3,8 fl3,9 
eA-

fl4.1 fl4,2 fl4,3 fl4,4 fl4,5 fl4,6 fl4,7 Љ.Ş.Љ? 
e5 ".?...! .?м. fl5,3 Я5.4 fl5.5 

aм.. Љl.. <M°M 
e6 %1 Љt. fl6,3 fl6,4 fl6.5 û 6 . 6 _ Љг _-____*._ 
e l .--.1 aЪl. 

aы fl7,4 fl7,5 fl7,6 fl7.7 aЪ*.aЪ9 

e8 fl8,l fl8,2 fl8,3 fl8,4 fl8,5 fl8,6 
fl8,7 fl8,8 fl8,9 

e9 L f l 9,l fl9,2 fl9,3 fl9,4 fl9,5 fl9,6 fl9,7 fl9,8 fl9,9 

and the corresponding activity submatrices are 

a з , з " 3 , 4 " 3 , 5 fl3,6 
я 4 , 3 fl4,4 fl4,5 fl4,6 
й 5 , 3 fl5,4 fl5,5 fl5,6 

[fl5,5 fl5.8 fl5,9І 
fl8,5 fl8,8 fl8,9 
fl9,5 fl9,8 fl9,9-' 

e6 L f l 6,3 fl6,4 fl6,5 fl6,6-l 

respectively. In general, some or none or all of the entries can be zeros. 

Example 2. Let the subsystem sketched in Fig. 1 be considered at instants /, «* + 1, / + 2. 
Then the activity-development matrix (the time axis is arranged in the vertical direction) is 

el ••• e9 

_i r - i , i . , ••• fli.9,t -I 

e9 L ^ . l . t •• fl9,9,t -I 

e_ . . . eg 

.i r f l i , i , t + i ••• fli,9,t+i"i 

e9 l - f l 9 , l , t + l ••• a9,9,t+l-* 

e_ ... eg 

el r f l l , 1 , 1 + 2 -•• fll,9,t + 2 " | 

e9 L f l 9 , l , t + 2 ••• fl9,9,t + 2-l 



and the activity-development submatrices, corresponding to combinations of elements e3, ...,e6 211 

and e 5 , <?8, eg, are 

respectively. 

F 
3,3,t 

6,3,1 

eз 

eз Гaз,з,r + i 

e6 L a б , 3 , r + 1 

eз 

°3 ГaЗ,3,Г + 2 

e6 L a б , 3 , 1 + 2 

• Ű 3,6, I 

• a 6 , 6 , t 

• e6 

• a 3 , 6 , r + l 

\ 

6 , 6 , ř + l " 

я З,6,t + 2 

3 6,6,t + 2-

! 5,5,t a 5,8,Г Û5,9,Г 
! 8,5,t a 8,8,Г a 8 , 9 , r 

'9,5,Г a 9,8,Г û 9 , 9 , t ]• 

Г a 5 , 5 , 1 + 1 a 5 , 8 , t + l a 5 , 9 , t + l~| 
a 8 , 5 , t + l a 8 , 8 , t + l a 8 , 9 , t + l > 

L a 9 , 5 , 1 + 1 a 9 , 8 , 1 + 1 °9,9,1 + 1-' 

e5 e8 e9 

Г a 5 , 5 , l + 2 a 5 , 8 , 1 + 2 a 5,9,Г + 2~] 
a 8 , 5 , 1 + 2 a 8 , 8 , 1 + 2 a 8 , 9 , t + 2 > 

L a 9 , 5 , I + 2 a 9,8,1 + 2 a 9 , 9 , r + 2-l 

4. LOOP MATRIX, BRANCH MATRIX, LOOP-WAVE MATRIX, 

BRANCH-WAVE MATRIX 

It will be proved that a loop or a branch can be represented by a square matrix 

constructed in a certain manner, and that a loop wave or a branch wave can be 

represented by a three-dimensional development matrix. 

Theorem 1. Let a contact (activity, information) submatrix of order (h x h) 

(h = 3, 4, ..., n) be given. If any matrix of the same order can be constructed 

(i) by selecting one and only one non-zero valued entry out of each row and each 

column of the mentioned submatrix, 



212 (ii) by putting all other entries of the constructed matrix to be zeros, 

then the constructed matrix represents a loop. 

Proof. There exists a non-zero entry bJtktt (i,j, k = 1, 2, ..., h; i + j ; j 4= k; 

t arbitrary) to each non-zero entry bitjtt (where btJtt equals attjtt or fiJit or rijt). 

Theorem 2. Let a contact (activity, information) submatrix of order (h x h) 

(h = 2, 3, ..., n) be given. If any matrix of the same order can be constructed 

(i) by selecting one and only one non-zero valued entry out of each row and each 

column of the mentioned submatrix, except one and only one row and column, 

(ii) by putting all other entries of the constructed matrix to be zeros, 

then the constructed matrix represents a branch. 

Proof. The mentioned exception acts as an absence of contact between certain 

pair of the chosen elements, the pair given by the only one row and column of the 

constructed matrix. 

Definition 20. Any matrix (Theorems 1, 2) which represents a loop (branch) is 

a loop (branch) matrix. 

Example 3. Let the subsystem sketched in Fig. 1 be considered and let the combination of 
elements e3,...,e6 be chosen. The following matrix can be constructed by selecting certain 
entries (according to Theorem 1) of the entries of the activity submatrix corresponding to the 
chosen elements (Example 1): 

e3 e 4 ^5 e6 

0 a3A 0 0 
0 0 ' o4 5 0 
0 0 0 ' a. 

It can be proved that the constructed matrix is a loop matrix (Theorem 1, Definition 20). 

Example 4. Let the subsystem sketched in Fig. 1 be considered and let the combination of 
elements e5, e8, eg be chosen. When applying the two steps, (i) and (ii), introduced in Theorem 2, 
then the following matrix can be constructed: 

Г° a5,8 0 П 
0 0 a 8 9 . 

Lo o o J 

It can be seen that the constructed matrix is a branch matrix (Definition 20). 



Example 5. Let two possible orientations of a loop constituted of five elements be considered 
(Fig. 4). Then the corresponding loop matrices of activities are 

1 2 3 4 5 1 2 3 4 5 

"o aí 2 0 0 0 ' 1 "0 0 0 0 ű 1 . 5 ~ 
0 0 a2 з 0 0 2 a 2 . t 0 0 0 0 
0 0 0 a з , . o ; з 0 a з,2 0 0 0 

0 0 0 0 «4.5 4 0 0 a 4 з 0 0 

-°5, l o 0 0 0 _ 5 .0 0 0 ű 5 . 
4 o J 

Theorem 3. Let a three-dimensional contact-development (activity-development, 
information-development, respectively) submatrix be given within a time interval. 

(i) If any matrix of the same order as the mentioned submatrix can be constructed 

(i,i) by selecting one and only one non-zero valued entry out (of all rows and 
all columns) of and only of each of the single contact (activity, infor­
mation) submatrices related to the single considered instants of time, 

(i,ii) by putting all other entries of the constructed matrix to be zeros, 

(ii) if in the constructed matrix to each biJMiJ) (where biJMiJ) means a i J t i i J ) 

or fij,t(ij) or Tj,j,,(i,j), respectively; i,j = 1, 2, ..., h; i 4= j ' , t(iJ) arbitrary out 
of the considered instants of time) there exists bJikJU_k) (j, k = 1,2,..., h; 
j * k; i ( i J ) ^ _ 0 i k ) ) , 

then the constructed matrix represents a loop wave. 

P r o o f follows from the conditions (i) and (ii). Each element acts on its successor 
in the considered loop wave and is acted by its predecessor in the same loop wave. 

Theorem 4. Let a three-dimensional contact development (activity-development, 
information-development, respectively) submatrix be given within a time interval. 

(i) i/ any matrix of the same order as the mentioned submatrix can be constructed 

(i,i) by selecting one and only one non-zero valued entry out (of all rows and 
all columns) of and only of each of the single contact (activity, infor­
mation) submatrices related to the single considered instants of time, 
except one and only one row and column, 

(i,ii) by putting all other entries of the constructed matrix to be zeros, 

(ii) if in the constructed matrix to each biJt(iJ) (where biJttUJ) means aiJMiJ) 

or fij,t(ij) or T;,j,r(;,j> respectively; i,j = 1, 2,..., h; i 4= j ; tUJ) arbitrary 
out of the considered instants of time) there exists bj:ki,Uik) (j, k = 1,2, ..., h; 
j 4= k; t{iJ) ^ t(j,„)), except one and only one biJtUJ), 

then the constructed matrix represents a branch wave. 

P r o o f follows from conditions (i) and (ii). 



Definition 21. Any matrix which represents a loop wave (branch wave) is a loop-

wave (branch-wave) matrix or, briefly, a wave matrix. 

Corollary 1. Let a loop-wave matrix be given. Then there exists a certain loop 

matrix which is a special case of the loop-wave matrix. 

Proof. The case t(iJ) — tUM is the matter. 

Corollary 2. Let a branch-wave matrix be given. Then there exists a certain branch 

matrix which is a special case of the branch-wave matrix. 

P r o o f is the same as for Corollary 1. 

Corollary 3. The concept of wave matrix is invariant with respect to the order 

of the chosen elements in the construction of the matrix. 

Proof. Due to Theorem 3 and 4 and Definition 21, the chosen elements of a 

considered subsystem 

(i) can be taken in any order, and 

(ii) can be permuted. 

Remark 4. The wave matrix allows to track certain changes in the investigated subsystem. 
That matrix makes possible a look into the subsystem from a certain point of view. That matrix 
facilitates a visualization of the development of the subsystem. For example a decision can 
be made from the contact-development matrix or information-development matrix, whether 
a "green — wave" propagates in a traffic subsystem or not. 

Example 6. Let the subsystem sketched in Fig. 1 be considered at instants /, / + 1, / + 2, 
/ + 3, / + 4, / + 5. Let the combination of elements e3, e4, e5, e6 be chosen. Then the following 
three-dimensional matrix can be constructed when applying the procedure introduced 
in Theorem 3: 

e5 e6 

0 0 

«4,5,t 0 
0 0 
0 0 

e3 Є4 

0 0 
0 0 
0 0 

.0 0 

eз e, 

0 0 
0 0 
0 0 

.0 0 

eз є4 

0 0 
0 0 
0 0 

.0 0 

0 
0 
a 5 , 6 , t + l 

0 



e3 eA e5 e6 

e3 "0 0 0 0 

eA 0 0 0 0 

eS 
e6 

0 
_0 

0 
0 

0 
0 

°5,6,1 + 3 

0 

eз eA e5 ч 
e3 '0 0 0 0 

eA 0 0 0 0 

e5 0 0 0 0 

e6 -°6,3 1 + 4 0 0 0 

eз eA e5 e6 

e3 
eA 
eS 

"0 
0 
0 

ûЗ,4,l + 5 

0 
0 

0 
0 
0 

0 
0 
0 

e6 .0 0 0 0 

It can be seen that the constructed matrix is a loop-wave matrix. 

Example 7. Let the subsystem sketched in Fig. 1 be considered at instants t, t + 1, t + 2, t + 3, 
t + 4. Let the combination of elements es, e8, eg be chosen. Then the following three-dimensional 
matrix can be constructed, when using the procedure introduced in Theorem 4: 

0 a 

0 0 

0 0 

e5 eí 

0 a 

0 0 

0 0 

Г° ű5,8,í + 2 0 
0 0 0 

Lo 0 0 
eS e8 Єç 

0 0 0 

0 0 a 
0 0 0 

e5 e8 Єç 

0 0 0 
0 0 a 
0 0 0 

a8,9,t + A 

It can be seen that the constructed matrix is a branch-wave matrix. 



Remark 5. Let any loop-wave matrix be given. Let its single square matrices (of order (h X h)) 
with their entries be projected by a parallel projection in the direction of the time axis on an 
auxiliary plane, which is parallel with the planes of the single mentioned square matrices. The 
incidences of the single nonzero entries on the auxiliary projection plane form a loop matrix 
(all other entries being zeros). Hence the name "loop" wave. The path of the wave forms a loop. 

Remark 6. Let any branch-wave matrix be given. Let its single square matrices (of order 
(/i x h)) with their entries be projected by a parallel projection in the direction of the time axis 
on an auxiliary plane which is parallel with the planes of the single mentioned square matrices. 
The incidences of the single nonzero entries on the auxiliary projection plane form a branch 
matrix (all other entries being zeros). Hence the name "branch" wave. The path of the wave 
forms a branch. 

5. CONCLUSION 

A representation of a wave (wave of activities, wave of contacts, wave of infor­

mations) has been introduced applying a matrix form. The corresponding three-

dimensional matrix can be helpful in an evaluation of the subsystem considered. 

The possibility of an application of the wave matrix depends on the considered 

quality types of activities in the activity-development matrix and/or on the infor­

mation content in the information-development matrix. For example a decision can 

be made, whether a "green wave" propagates in a traffic subsystem, or not. The wave 

matrix can replace a geometric representation of a wave. 
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Zobrazení vlny v matici vývoje podsystému 

PŘEMYSL DASTYCH 

Je uveden pojem smyčky, větve a vlny (vlny aktivit, vlny kontaktů, vlny informací) 
v podsystému, jestliže uvažovaný podsystém je tvořen elementy. Smyčka a větev, 
dále smyčková vlna a větvová vlna jsou vyjádřeny pomocí jistých matic. Příslušná 
smyčková matice (matice smyčky), větvová matice (matice větve), matice smyčkové 
vlny a matice větvové vlny svým způsobem umožňují popis podsystému a „zvidi­
telněni" vývoje toho podsystému. 
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