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K Y B E R N E T I K A — V O L U M E 19 (1983), N U M B E R 5 

ON THE DETECTION OF A COMPLEX FINITE BINARY 
SEQUENCE IN THE PRESENCE OF AN INTERFERING 
COMPLEX BINARY SEQUENCE 

LUDVIK PROUZA 

A method of removing an unwanted binary sequence from the additive mixture of this sequence 
with a wanted one and with a noise sequence is investigated. The case of complex binary sequences 
— that is the case of quadrature — channel signal reception — is considered. 

1. INTRODUCTION 

In [ l ] , a method of separation of a wanted binary sequence from an inwanted 
one has been investigated. Real sequences have been considered. In this article there 
will be shown that the method can be used with only very slight modifications in the 
case of complex binary sequences. 

2. SOME FUNDAMENTAL RELATIONS 

Let us suppose that the actually received signal {x,} is complex: 

(1) Xi = |x,| eiil = S e*^ + U e,9i>, + n, 

i = 1, 2, ...,N, {tj} is a wanted real binary sequence, normalized to |f,-| = 1, {«?,-} is 
an unwanted real binary sequence, \vt\ = 1, nt is a bivariate white Gaussian sequence 
symmetrically distributed about the origin, with independent real and imaginary 
components, ax = ay — 1. Further U > 0, S = 0, and 

(2) U >> S , U > a 

Now there will be required 

(3) £ | |x( | e''?i - s e^U - u ei,p
Vi\

2 = <P(s, u, \jf, <p) = min . 

The limits 1, At in the sum are omitted in (3) and will be omitted in what follows. 
As in [1], we are interested here only in s. Differentiating (3) with respect to s, u 



xj/, cp, four equations result and can be further simplified by an assumption based 
on (2) 

(4) e'"t)j = e i ? i , e-'".), = e - " ' , i = l , . . . , iV . 

The following two equations can be derived from which s can be computed. 

(5) 2Ns + Au = B, 

(6) As + 2Nu = 2 Y\x,\ , 

with 

(7) A == 5~*i{e**~w + e-**-M) , 

~ = £*.N (e**~W + e-**-w) . 
It is seen that A, £ are real. From (5), (6) 

2.VB-2-:lx,1.4j 
W 4N2 - A2 

3. THE METHOD OF QUADRATURE DETECTION 

The way by which (8) has been derived can now be forgotten and only the proper
ties of the numerator of (8) will be investigated. 

(9) NB - l\xt\ A = e'̂ jjV ">. - , - £ |* , | £ . ; e~i?i] + 

+ e":i>Zt.x,-EN£*.e ,*<]. 
With a bar, complex conjugates are denoted. 

Now, since |e"/'| = 1, it is clear that the investigation can be restricted on the 
random vector 

(10) W=NYJtixi-Y\xi\Y<Ue,i' 
(or, equivalently, W). 

The expression (10) is a direct generalization of (15) of [1]. Remembering that 
{t,} is supposed to be known, that {x j are values the components of which are 
measured in quadrature channel and, finally 

(11) e«< = x]\Xl\ 

it is seen that Wcan indeed be computed. 

To find the properties of the distribution of Wfrom the respective real and imagin
ary parts is an elementary but somewhat lengthy procedure. But from (10) with (2) 
and (4), one can expect that the vectors If will lie substantially on the line containing 
the origin and the direction given by the angle q>( — q> for W). 

The results of computer simulations in Tables 1 and 2 of Section 5 confirm this 
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expectation. The noise being symmetric about the origin, JYcan thus be more naturally 
decomposed into two orthogonal components Y Z, the substantial being Y. 

Repeating then the computation from [ l ] , one finds easily that Yis Gaussian and 

(12) E(Y) = S(7V2 - C2) cos (cp-ip), 

(13) <r2(Y) = a1 N(N2 - C2) 

with 

(14) C = 5> , 

S cos (cp - ij/) is the projection of the wanted signal "amplitude" on Y. It is seen 
that with the conditions (2), only C (and not U) has influence on (12), (13). 

The nonsubstantial component Z is also Gaussian. It is not easy to get simple and 
sufficiently accurate expressions for E(Z), c2(Z), since no simple approximations 
of the second term in (10) exist. But 

(15) E(Z) = E ( Y ) 0 ( U " i ) , 

(16) a2(Z) = a2(Y) 0(U~2) 

with 0 having the known meaning. The degree of approximation in (12), (13), (15), 

(16) can be checked in Tables 1, 2 in 5. paragraph. For practical purposes, the 
distribution of W can be considered as the one-dimensional distribution of Y Z 
being very small. 

If, as usual in quadrature reception, the absolute value | W\ is used for detection, 
then (12) — (16) show that all formulas of [1] for the threshold setting can be directly 
used with the trivial modification that now the one-sided Gaussian and "t" distribu
tions are to be applied and that the term cos (cp — \p) in (12) must be taken into 
account, q> and \j/ being not estimated. Both angles can be considered as randomly, 
independently and uniformly distributed in <0-2TI), and this term can be replaced 
by 2/TT = f. 

4. THE SIGNAL/NOISE RATIO AND TWO TYPES OF UNWANTED 
SEQUENCES 

From (12), (13) 

(17) ( ^ Y = ^ ^ ^ 2 c o s 2 ( < ^ ) . 
V ' \<T(Y)J 2a2 N V ' 

The mean value of cos2 (cp — »//) is ^ under the above assumptions. Thus 

(18) ( ' / » W - l » ) . - * ~ ^ -

This is the same formula as (23) in [1] and is now somewhat optimistic due to 
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neglection of the nonsubstantial component Z of W. The last term on the right 
represents the diminution of sjn due to the presence of the unwanted sequence. 

Two interesting cases of thjs binary sequence will now be considered. 
Firstly, let all sequences be real and let 

(19) vt=l, i = l,...,N 

Generally, 

(20) C = YtiVi = N - 2m , 

where m is the number of places on which {tt} and {",•} differ by signs. Now with 
respect to (19) 

(21) C = the number of (+1) in {tt} - the number of (-1) in {tt} . 

It is well known that there exist binary sequences very good with respect to (21), 
e.g. all PN sequences, in contrast to other sequence, e.g., Barker- 5 or Barker- 13 
which are not so good. 

Secondly, let {tt} be a given real binary sequence and let {vt} be real binary sequence 
chosen at random so that independently on i the probabilities 

(22) p("i = l ) .= - » ( " i = - l ) = - » = l / 2 . 

Then, the distribution of sign differences of {tt}, {u,} is binomial, 

(-3) PH = (Z)PN 

and for last term on the right in (18), there is to be computed 

(24) EfM-f «±*,'*-e 

N2 J C=-N N2 \ N 

The step of C in this sum is 2. 
From (20) 

(25) m = (N - C)/2, 

(26) (N2 - C2)JN2 = Am(N - m)JN2 

and obviously for a given C 

(27) P('~^)=P(™) 

with m from (25) and p(m) from (23). Then 

(28) E ( n ^ ) = £ l m ( N —>»<->-4*-">('-*)-'-s-
due to (22). 
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Thus, the diminution of sjn is independent of the wanted sequence and is very 
small for sufficiently great TV. 

5. SIMULATION RESULTS 

The formulas of the preceding paragraphs have been tested by many computer 
simulations from which some results will be shown here. In whar follows 

(29) {t;} = + + + + - = Barker-7 

{»,} = + + + 

S = 0 ,1 , U = 4, 16, q> = 0°, \\i = 30°, 60°, 90°, the noise n is "pseudo-Gaussian" 
with independent real and imaginary components, ax = ay = 1. 

In the following two tables the results of repeated 25 random experiments are 
contained. The bivariate distribution of W has been observed. Empirical mean values 
and dispersions are contained in both tables, the values computed from (12), (13) 
are shown in parentheses. 

Table 1. 

s = 0 S = 1, W = 30° S = 1, W = 60° S = 1, w = 90° 

X 0-027 (0) 19-4 (20-9) 10-9 (12-0) -0-122 (0) 
• Ӯ -0-93 (0) -0-76 -0-79 -1-13 (0) 

4 128 (168) 137 (168) 139 (168) 150 (168) 

4 11-5 15-6 9-2 8-3 

U= 16 

s = 0 S = 1, W= 30° S = 1, W= 60° S = 1, V= 90° 

- -x -0-43 (0) 20-3 (20-9) 11-5 (120) -0-47 (0) 

Ӯ -0-23 (0) - 0 1 7 -0-20 -0-24 (0) 

4 135 (168) 137 (168) 139 (168) 139 (168) 

4 0-71 0-79 0-69 0-67 

Further, the results of repeated 100 random experiments are contained in the follow
ing Table 3 with the sequences from (29), S = 0 ,1 , U = 4,16, <p = 30°, ij/ = 60°, 
ax = ay = 1. Cumulative absolute frequencies of the distribution of \w\ grouped 
in intervals of the width 10 are shown. 

412 



The values in parentheses have been computed as follows. From (12) E(W) = 20-9. 
From (13) a{W) = 13-0. Thus the standardized mean in the case of S = 0 (l) is 
E{W)la{W) = 0 (1-61). The standardized threshold is 20/<r(PF) = 1-54. Now, instead 
of constructing the table of one-sided Gaussian distribution, one can choose the pro-

Interval 
5 = 0 á = 1 

U= 4 U = 16 U= 4 U= 16 

< 0, 10) 51 55 23 22 
< Ю , 20) 91 88 (87-6) 50 49 (47-2) 

<20, 30) 98 97 79 76 

<30, 40) 100 100 98 94 

<40, 50) 100 99 

<50, 60) 100 

bability that the standard normal variable is contained in the interval (-1-54, 1-54) 
for S = 0 and in the interval (-1-54-1-61, 1-54-1-61) = (-3-15, -0-07) for 
S = 1. Analogously one could use the table of the ".-"-distribution. 

6. CONCLUDING REMARKS 

There remain some interesting questions to be answered, e.g. 
1) what would happen if (2) were not valid, 
2) what would be the profit from computing all the values s, u, i]/, (p. 
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