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KYBERNETIKA- VOLUME 27 (1991), NUMBER 3  

ON THE REPRESENTATION OF 2-D SYSTEMS 

PAULA ROCHA, JAN C. WILLEMS 

2-D systems are here considered from a behavioral point of view. The main purpose is to 
express structural properties of behaviors in terms of their mathematical descriptions. Special 
attention is paid to two kinds of controllability which will be defined as properties of the system 
signals. 

1. INTRODUCTION 

The behavioral approach to 2-D systems essentially consists in viewing a system 
as a family of admissible signals (the system behavior) instead of as a set of describing 
equations (which constitute a system representation). From this stand point, it is 
natural to define properties of systems in terms of their signals and not of their 
representations. The translation of the system structure into properties of the re
presentation parameters is, of course, a crucial issue, but in our opinion should 
not be taken as a starting point. 

This paper is mainly concerned with the study of controllability properties in the 
above framework. Our notions differ from the classical ones as they are introduced 
as properties of the external signals, without making appeal to state space reali
zations. Controllabilite of state space systems can however be considered as a parti
cular case of our definitions if the state is regarded as an external variable. 

2. PRELIMINARIES 

We will start by defining a 2-D system I as a triple I = (T, W, 93), where T is 
a two-dimensional index set, W the signal space and 93 £ WT the behavior of the 
system, i.e., the set of all signals which are compatible with the system laws. Here, 
we consider in particular systems in q real valued variables — W = Rq — defined 
over the grid T= Z2. 
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Denote by o^ and a2 the following shift-operators: at: (Rq)z2 -* (Rq)z , f -= 1, 2, 
with a1 w(tu t2) = w(ti + 1, t2) and a2 w(tu t2) = w(tu t2 + l) for all w e (Rq)z2. 
A subset 33 £ (Rq)z2 is said to be shift-invariant if cr, 93 = 93 (i = 1, 2). 

The class of systems studied in the sequel consists of all those systems whose be
havior 33 is a linear, shift-invariant and closed subspace of (Rq)z (for some positive 
integer q), equipped with the topology of pointwise convergence. This behavioral 
characterization can be translated as follows. 

Theorem 1 [2]. 93 £ (Rq)Z2 is a linear, shift-invariant and closed subspace (in the 
topology of pointwise convergence) if and only if it can be described as 33 = 
= {we(Rq)z | R(at, a2) w = 0}, where R(s1,s2) is a real polynomial matrix in 
in the indeterminates s^ and s2. 

The equation R(at, c2) w = 0 in the theorem above is said to be an AR-representa-
tion for 33. We will call I = (Z2, Rq, 33) and AR-system if 93 admits such a re
presentation. 

3. CONTROLLABILITY PROPERTIES 

In this section we introduce two notions of controllability for 2-D systems. The 
main aspects of our approach are the following. First, we do not restrict to state space 
realizations, and will view controllability as an external property of general 2-D 
systems I = (Z2, Rq, 93). Second, our definitions are stated in a set theoretic way, 
in terms of the system signals, and not in terms of representations. 

Intuitively, a 2-D system I is controllable if its memory has a limited range, i.e., 
no matter what system signal is given in T' £ T, at sufficiently large distance from 
T' every other system signal can occur. Formally: 

Definition 1. A 2-D system I = (Z2, W, 93) is said to be controllable if the following 
condition holds. There exists a positive real number Q such that {wx, w2 e 33; I2,12 £ 
£ Z 2 ; d(l1,I2) ^ Q} •=> {wj \Jt A w2 |/2 e 33| / l u /2}. Here d(ly,I2) stands for the 
Euclidean distance between Il9 and I2; w^ A w2|/2 denotes the signal w: Ix u I2 -* 
->• W such that w|/x = wx\l2 and w|/2 = w2|/2, and is called the concatenation of 
w1\Jl andw2 | / 2 . 

Thus, I! is surrounded by a band of width Q beyond which all the information 
about the phenomenon w1\Il occurring in Ix is lost. The same happens for I2 with 
respect to w2. In this sense Q measures the memory range of the system. 

In order to state our second notion of controllability we need to introduce the 
concept of local behavior. Given the system I = (Z2, W, 93), the behavior 93 is 
said the be local if these exist a positive integer N and a subset AN of W{2N+1)2 such 
that {w e %} o {w\lNitut2) e ANJor att^i, t2) e Z2} (whereIN(tu t2) := [ t 1 - N, t. + 
+ N] x [t2 — N, t2 + N] n Z2). This means that in order to check whether or 
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not w is an admissible system signal it suffices to verify if it satisfies the system laws 
locally, on the finite windows IN(tu t2). If N* is the smallest value of N for which 
the condition of the definition of local behavior is satisfied we will say that 33 is 
N*-local. Behaviors which can be described by means of an AR-representation (as 
in Section 1) constitute an example of local behaviors. Further, given a system I 
with N*-local behavior, we will say that a signal w e WZ2 satisfies the laws of I in 
I t Z2 if w\lN,(tut2) e AN* for all (tt, t2)el. 

Definition 2. A 2-D system I = (Z2, W, 33) with N*-local behavior is said to be 
strongly controllable if there exists a positive real number Q such that (w ls w2 e Wz2; 
Ii,I2 <= Z2; d(luI2) = Q; wt satisfies the laws of I in It (i = 1, 2)} => {wt |7l A 
A w2| /2e33| / lu /2}. 

Note that while controllability deals exclusively with admissible system signals, the 
signals wl5 w2 involved in the definition of strong controllability do not a priori 
necessarily belong to the system behavior as they are required to satisfy the system 
laws only in some subsets of Z2 and not in the whole grid. It follows immediately 
from the definitions that strong controllability implies controllability. We shall later 
show that the converse is not true. 

For AR-systems, controllability and strong controllability can be characterized 
in terms of the corresponding AR descriptions by means of primeness conditions. 
A full rank 2-D polynomial matrix R(sls s2) is said to be factor-left-prime if all its 
left-divisors are unimodular (i.e., invertible as polynomial matrices in st and s2). 
If, for all (I j , k2)

 E c \ { 0 } x C\{°}> r a n k R(^i> &2) is constant R(sl5 s2) we will say 
that zero-left-prime. 

Theorem 2 [3]. Let I = (Z2, Rq, 33) be an AR 2-D system. Then I is controllable 
if and only is there exists a factor-left-prime polynomial matrix R(sl5 s2) such that 
-R(°i' ai) w = 0 is an AR-representation of 33. 

Theorem 3. I = (Z2, Rq, 33) is a strongly controllable AR 2-D system if and only 
if 33 admits an AR representation R(a1,cr2)w = 0 with R(s1,s2) zero-left-prime. 

Proof.Seethe Appendix. 

Remark. The conditions obtained in Theorems 2 and 3 are similar to the ones 
given in [1] for approximate and exact modal controllability of state space systems. 
In fact, Definitions 1 and 2 can also be applied to this class of systems and provide 
a new (system theoretic) interpretation of modal controllability. 

Given the above characterizations, it is not difficult to construct examples of 
controllable systems which are not strongly controllable. 

Example. Let I = (Z2, R2, 33) be the system described by: 

(<r1 - 1) wt = (a2 - 1) w2 (1) 
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Thus 23 is represented by R(ffl5 a2) w = 0 with R(sl, s2) : = [sl — l | — (sj — 1)]. 
Clearly, the matrix R(sl5 s2) is factor-left-prime and hence (by Theorem 2) I is 
controllable. However, since R(l, 1) =- [0 0], R(sl5 s2) is not zero-left-prime implying 
(by Theorem 3) that I is not strongly controllable. This can also be shown using 
Definition 2 in the following way. 

For a given positive integer N define Tjv : = Z2\[—N, N] x [-N, N] and consider 
the following trajectories w(N) and vv(0) in (R 2 ) z 2 . The trajectory w(N) : = col (w(N). wlN)) 
is such that w(

2

N)(k, /) = 0 for all (k, I) e Z 2 and w\N)(k, 0) = 1 if k ^ N + 1 and 
otherwise w\N)(k, /) = 0 (see Figure l). The trajectory vv(0) is simply defined as the 
zero trajectory. 

(-ЛM.ЛЧl) 

(-N-l,-N-l) 

( 0 , 0 ) 

(ЛЧ 1 ,ЛЧ 1) 

(ЛЧ 1 , - Л ' - l ) 

Fig. 1. On the points indicated by i w4 = 1, elsewhere wx 
0. 

It is not difficult to check that w(N) satisfies the laws of 2 in TN. On the other hand, 
vv(0) obviously satisfies the laws of I in T0 = {(0, 0)}. Moreover, d(TN, T0) = N + 1. 
Thus, if I is strongly controllable, it follows from Definition 2 that the condition 
W ( 0 ) | T 0

 A W<~N)\TN

 G ^\T0^TN holds for some N. In particular this implies that 
W(N)\TN

 G |̂rjv> i-e-> that w(iV)|TiV can be extended to the plane as an admissible system 
trajectory. We next show that this is not the case. 

For a given positive integer N, let col (wu w2) = vv e 23 be an admissible system 
trajectory such that w(k, Z) = 0 if |/| _• N + 1 or k ^ - ( N + 1). Further, define 

N 
the 1-D trajectories wN+l : = wt(N + 1, •) and vN + 1 : = £ w2(j, •), and let a denote 

j=-N 
the 1-D shift. Then, it is easily seen from Equation (1) that: 

J V + 1 = (a - 1) v N+Í 
(2) 

Note that vN+1 has compact support. Hence, Equation (2) implies that wN+i is 
contained in the image under a — 1 of the compact support sequences in Rz. This 
condition is clearly not satisfied by the trajectory w(N). Consequently W(N)\TN can not 
be extended to Z2 as an element of the system behavior 23. This shows that I is 
not strongly controllable. 
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4. CONCLUSION 

The main aspects of this note can be summarized as follows. A distinction was 
made between systems and their representations. Structural properties of 2-D 
behaviors (such as linearity, shift-invariance and closedness, controllability and strong 
controllability) were first defined in terms of the system signals and then expressed 
in terms of the system representations. It turns out that our definitions of control
lability and strong controllability provide system theoretic interpretation of the 
notions of approximate and exact modal controllability introduced in [1]. 

APPENDIX: PROOF OF THEOREM 3 

"only if" 

Suppose that I = (Z2, Rq, 23) is strongly controllable. Then, it will obviously be 
controllable and, by Theorem 2, there exists a full rank, factor-left-prime poly
nomial matrix R(sx, s2) such that 23 is represented by R(crl5 a2) w = 0. We will 
prove that R is also zero-left-prime. This is equivalent to say that, if R is a g x q 
matrix, the operator R(ax, a2): Kq -> Kg (where K, denotes the set of compact 
support signals in (R')z2) is surjective (cf. [1]). Note that as R(sx, s2) is full row rank, 
R(crj, a2) is surjective as an operator (Rq)z -* Kg. Thus, for every element a eKg, 
there exists w e (Rq)z2 such that R(crl5 a2) w = a. Consequently, outside the support 
S of a, w satisfies the laws of I, once R(ax,a2) w(tx,t2) = 0 for all (fl5 t2) e Z2\S. 
It is not difficult to check that strong controllability implies that there exist vv e 23 
and a finite subset I c Z2 such vv|22v/ = w|22x/. Finally, defining w* = w — vv, we 
will have that w* e Kg and R(ax, a2) w* = R(ax, a2) w — R(ax, a2) w = a — 0 = a. 
This shows that R(ax, a2): Kq -* Kg is surjective as desired. 

"(T 
Let I admit a representation R(crl5 a2) w = 0, with R(sx, s2) zero-left-prime. Then, 

as the ring of polynomials in two variables is a Hermite ring, R admits a unimodular 
completion, i.e., there exists a polynomial matrix S(sx, s2) such that U(sx, s2) : = 
:= col (R(sl5 s2), S(si, s2)) is square, and invertible as polynomial matrix. Thus, 
denoting U-1^, s2) = : [N(sx, S2) j M(sx, S2)~] = : V(sx,s2), w := col(w l5 a), wx : = 
:= R(ax, a2) w and a := S(ax, a2) w, there holds that {Rw = 0} o {RVUw = 0} «s> 
<=> {[I 0] vv = 0 and w = Vw} <=> {w = M(ax, a2) a, a free}. Suppose further that S 
can be written as S(ax, a2) = £ S;ja\a2, for a finite index set J and suitable nonzero 

real matrices Stj, and define the radius of S as r(S) := max {/2 + j 2 | (i,j) e J}. 
Now, take Q > 2r(S), lx,l2 *= Z2 such that d(lx,I2) = Q, and consider two 

signals wx, w2 e (Rq)Z satisfying the laws of I in Ix and I2 respectively. It follows 
from the above that there exist at (i = 1, 2) such that wt(tx, t2) = M(ax, a2) ai(t1, t2) 
for all (tx, t2)eli, namely at := S(ax, a2) wt. With basis on ax and a2, construct 
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a new signal a* such that a*(tj, t2) = a1(t1, t2)ifci((ti, t2),It) ^ r(S) and a*(tt, t2) = 

= tf2(ti, t2) if d((t1, t2),I2) S r(S), and define w* = Ma*. Note that w* is an ad

missible signal of 27, i.e., w* G 33. Moreover, is not difficult to check that w*|7l = wij/t 

and w*j/2 = w2|/2. This means that Wjjj. A w2|/2 e 23j / lu /2, and hence 27 is strongly-

controllable. D 

(Received November 14, 1990.) 
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