Kybernetika

Armin B. Cremers; Kenneth M. Weiss
Some further remarks on the index of context-free languages

Kybernetika, Vol. 9 (1973), No. 6, (461)--466
Persistent URL: http://dml.cz/dmlcz/125835

Terms of use:

© Institute of Information Theory and Automation AS CR, 1973
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

Some Further Remarks on the Index of Context-Free Languages

A. B. Cremers, K. Weiss

Let x be a complexity measure for grammars. The following problem is investigated: Do there exist such context-free languages L that no context-free grammar generating L can be minimal both according to x and according to the index? For a set of well known complexity measures the answer is in the affirmative.

1. THE INDEX OF GRAMMARS AND LANGUAGES

Let $G=(N, T, P, S)$ be a context-free grammar (CFG), where N is the set of nonterminal symbols, T the set of terminal symbols, $P \subset N \times(N \cup T)^{*}$ the set of productions and S in N the start variable. Let ε denote the empty word and $L(G)$ the language generated by G.

Following [1], we now define the index of G. Let F be a derivation of a word w in $(N \cup T)^{*}$ according to G :

$$
F: S=w_{0} \Rightarrow^{*} w_{1} \Rightarrow^{*} \ldots \Rightarrow^{*} w_{n}=w
$$

We define

$$
\text { Ind }(F)=\max \left\{l\left(d\left(w_{i}\right)\right) \mid 0 \leqq i \leqq n\right\}
$$

where $d(w)$ is the word obtained from w by deleting all terminal symbols, and for a word $w, l(w)$ denotes the length of w;

$$
\begin{aligned}
& \text { Ind }(w)=\min \{\operatorname{Ind}(F) \mid F \text { is a derivation of } w \text { according to } G\} ; \\
& \text { Ind }(G)=\max \{\operatorname{Ind}(w) \mid w \text { in } L(G)\}, \\
& \text { Ind }(L)=\min \{\operatorname{Ind}(G) \mid L=L(G)\} .
\end{aligned}
$$

In [5] the existence of a context-free language (CFL) of infinite index is proved and in [3] a hierarchy of context-free languages is established with respect to the index. This gives rise to the question how this hierarchy is related to well known
complexity hierarchies of context-free languages. To this end, we collate in Section 2 the definitions of several complexity measures for grammars, as introduced in [2]. In Section 3 we show that, for a CFG, the requirements of simplicity with respect to such a complexity measure and with respect to the index are in general in conflict.

2. COMPLEXITY MEASURES FOR GRAMMARS

Let $G=(N, T, P, S)$ be a CFG. A binary relation \triangleright on N is defined as follows. For A, B in N the relation $A \triangleright B$ holds, iff there exist x, y in $(N \cup T)^{*}$ such that $A \rightarrow$ $\rightarrow x B y$ is a production in P. Let \square^{*} denote the reflexive and transitive closure of the relation \triangleright. The nonterminal symbols A and B are said to be equivalent, shortly $A \equiv B$, iff both $A \triangleright^{*} B$ and $B \triangleright^{*} A$ holds. Each equivalence class of N according to \equiv is called grammatical level of G (cf. [2]). For a grammatical level Q of G, let

$$
\operatorname{Depth}(Q)=\operatorname{card}(Q)
$$

A grammatical level Q is termed nontrivial if Depth $(Q)>1$.
We define

> Depth $(G)=\max \{\operatorname{Depth}(Q) \mid Q$ is a grammatical level of $G\}$, $\operatorname{Lev}(G)=$ the number of grammatical levels of G,
> NLev $(G)=$ the number of nontrivial grammatical levels of G,
> $\operatorname{Var}(G)=\operatorname{card}(N)$,
> $\operatorname{Prod}(G)=\operatorname{card}(P)$.

Let x_{y} be a complexity measure defined for a class γ of grammars and L a language which can be generated by a grammar in γ.

Then we define

$$
x_{\gamma}(L)=\min \left\{x_{\gamma}(G) \mid G \text { in } \gamma, L=L(G)\right\}
$$

If a complexity measure x is defined for all CFG's and CFL's, respectively, we mostly omit the subscript of x.

3. INCOMPATIBILITY OF THE INDEX AND GRUSKA'S COMPLEXITY MEASURES

Let x be one of Gruska's complexity measures of Section 2. In the following, we study the question whether there are CFL's L such that no CFG generating L can be minimal both according to x and according to the index. As it will be shown in this section, the answer to this question is in the affirmative for each complexity criterion of Section 2.

Let γ denote a class of grammars and $\Gamma=\{L=L(G) \mid G$ in $\gamma\}$. For a complexity

$$
x_{\gamma}^{-1}(L)=\left\{G \in \gamma \mid L=L(G), x_{\gamma}(G)=x_{\gamma}(L)\right\} .
$$

Definition. Two complexity measures $\chi_{\gamma, 1}$ and $\varkappa_{\gamma, 2}$ are said to be compatible iff

$$
x_{\gamma, 1}^{-1}(L) \cap x_{\gamma, 2}^{-1}(L) \neq \emptyset
$$

for each L in Γ.
Let c and lin denote the class of all context-free grammars and the class of all linear grammars, respectively.

The proofs of the results in this section are based on the following consideration:
Clearly, for each linear language L, Ind $(L)=1$ holds; furthermore, Ind $(G)=1$ iff G is a linear grammar. Thence, in order to show that a complexity measure x and Ind are incompatible, it is sufficient to construct a linear language L such that for a nonnegative integer n both $x_{\mathrm{c}}(L) \leqq n$ and $\chi_{\operatorname{lin}}(L)>n$ holds.

Theorem 1.

(1) Var and Ind are incompatible.
(2) Lev and Ind are incompatible.

Proof. Let $R=\{b\}^{*} a\{b\}^{*} a\{b\}^{*} a\{b\}^{*} a . R$ is also written in the form

$$
R=R_{1} R_{2}
$$

where $R_{1}=\{b\}^{*}$ and $R_{2}=a\{b\}^{*} a\{b\}^{*} a\{b\}^{*} a$ and

$$
R=R_{3} a R_{4} a R_{5} a R_{6} a
$$

where

$$
R_{i}=\{b\}^{*}, \quad 3 \leqq i \leqq 6
$$

(1) R is generated by the following grammar:

$$
G_{1}=(\{S, A\},\{a, b\},\{S \rightarrow A a A a A a A a, A \rightarrow b A, A \rightarrow \varepsilon\}, S)
$$

Thence, $\operatorname{Var}(R) \leqq 2$.
Next we show that $\operatorname{Var}_{1 \mathrm{in}}(R)>2$.
Assume $\operatorname{Var}_{\text {lin }}(R)=1$. Let G_{2} be a linear grammar with only one variable S generating R. For a word $x=x_{1} x_{2} \ldots x_{n}$ of arbitrary length, x_{i} in $\{a, b\}$, let $q(x)$ denote the number of indices i such that $x_{i} \neq x_{i+1}$. Clearly, for all w in $R, q(w) \leqq 7$ holds.

If $S \rightarrow \beta_{1} S \beta_{2}$ is a production in G_{2}, then $q\left(\beta_{1}\right)=q\left(\beta_{2}\right)=0$. Otherwise, a word $\beta_{1}^{8} w \beta_{2}^{8}$ could be generated which does not belong to R. But then we may conclude that β_{1} is in $\{b\}^{*}$ and $\beta_{2}=\varepsilon$. Thence, by productions of the form $S \rightarrow \beta_{1} S \beta_{2}$ only R_{1} is generated. Therefore, $R \neq L\left(G_{2}\right)$.

Assume $\operatorname{Var}_{\text {lin }}(R)=2$ and let G_{3} be a linear grammar for R with only two variables S and A. If $S \equiv A$ then for all $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ in T^{*} with $S \Rightarrow \beta_{1}^{*} A \beta_{2}$ and $A \Rightarrow{ }^{*} \beta_{3} S \beta_{4}, \beta_{1} \beta_{3}$ in $\{b\}^{*}$ and $\beta_{2} \beta_{4}=\varepsilon$ holds. Furthermore, if $A \rightarrow \alpha_{1} A \alpha_{2}$ and $S \rightarrow \gamma_{1} S \gamma_{2}$ are productions of G_{3}, then $\alpha_{1} \gamma_{1}$ is in $\{b\}^{*}$ and $\alpha_{2} \gamma_{2}=\varepsilon$. Thence, only R_{1} is generated by the productions considered so far. If $S \neq A$, then $R_{4} a R_{5} a R_{6}$ must be generated by productions of the form $A \rightarrow \alpha_{1} A \alpha_{2}$ and $A \rightarrow \gamma$ where $\alpha_{1}, \alpha_{2}, \gamma$ in T^{*}; but this is impossible. Therefore, $\operatorname{Var}_{\text {lin }}(R)>2$.
(2) Since $R=L\left(G_{1}\right)$, $\operatorname{Lev}(R) \leqq 2$ holds.

We show that $\operatorname{Lev}_{\text {lin }}(R)>2$:
Clearly, $\operatorname{Lev}_{\text {lin }}(R)>1$. Assume $\operatorname{Lev}_{\text {lin }}(R)=2$. Then there is a linear grammar G_{4} generating R. Let $N_{1}=\left\{S=A_{0}, A_{1}, \ldots, A_{n}\right\}$ and $N_{2}=\left\{B_{1}, \ldots, B_{m}\right\}$ be the equivalence classes of nonterminal symbols of G_{4} according to \equiv. If $A_{i} \rightarrow \alpha A_{j} \beta, 0 \leqq$ $\leqq i \leqq n, 1 \leqq j \leqq n$, is a production of G_{4}, then α is in $\{b\}^{*}$ and $\beta=\varepsilon$ holds. Thence, $R_{4} a R_{5} a R_{6}$ must be generated by productions whose left-hand sides are in N_{2}, i.e. productions of the form $B_{i} \rightarrow \alpha^{\prime} B_{j} \beta^{\prime}$ and $B_{i} \rightarrow \gamma$. Since $\alpha^{\prime} \beta^{\prime}$ must be in $\{b\}^{*}$ we get a contradiction. Therefore, $\operatorname{Lev}_{\text {lin }}(R)>2$.

Theorem 2. Depth and Ind are incompatible.
Proof. Let $R=\left\{\{b\}^{*} a\{b\}^{*} a\{b\}^{*} a\{b\}^{*} a\right\}^{+} a . R$ is a regular language, therefore Depth $(R)=1$. (For a set of words M, M^{+}denotes the ε-free catenation closure of M.)

In the following, we show that $\operatorname{Depth}_{1 \mathrm{in}}(R)>1$:
Assume that there is a linear grammar $G=(N, T, P, S)$ such that Depth $(G)=1$ and $R=L(G)$. Let $N=\left\{S=A_{1}, \ldots, A_{n}\right\} . G$ is a sequential grammar, i.e.

$$
A_{i} \triangleright^{*} A_{j} \quad \text { implies } \quad i \leqq j, \quad 1 \leqq i \leqq n
$$

At first we consider productions of the form

$$
A_{i} \rightarrow \alpha_{i j} A_{i} \beta_{i j}
$$

$1 \leqq i \leqq n, 1 \leqq j \leqq n_{i}$. Let $l_{a}(w)$ denote the number of occurences of a in a word w.
Assertion 1. For each production $A_{i} \rightarrow \alpha_{i j} A_{i} \beta_{i j}$ there is a nonnegative integer q such that

$$
l_{a}\left(\alpha_{i j} \beta_{i j}\right)=4 q
$$

Proof. Let x_{1} in R be so that there is a derivation of x_{1} according to G in which the production $A_{i} \rightarrow \alpha_{i j} A_{i} \beta_{i j}$ is applied:

$$
A_{1} \Rightarrow * \alpha A_{i} \beta \Rightarrow \alpha \alpha_{i j} A_{i} \beta_{i j} \beta \Rightarrow{ }^{*} \alpha \alpha_{i j} \gamma_{i} \beta_{i j} \beta=x_{1}
$$

Since for each x in R there is a nonnegative integer k with $l_{a}(x)=4 k+1$, there
exists an i_{0} such that

$$
l_{a}\left(\gamma_{i}\right)=4 i_{0}+1-l_{a}(\alpha \beta)-l_{a}\left(\alpha_{i j} \beta_{i j}\right) .
$$

For $x_{2}=\alpha \alpha_{i j} \alpha_{i j} \gamma_{i} \beta_{i j} \beta_{i j} \beta$ we have

$$
l_{a}\left(x_{2}\right)=4 i_{0}+1+l_{a}\left(\alpha_{i j} \beta_{i j}\right)
$$

Since x_{2} is in R there exists a j_{0} such that $l_{a}\left(x_{2}\right)=4 j_{0}+1$. Thence,

$$
j_{0}=i_{0}+\frac{l_{a}\left(\alpha_{i j} \beta_{i j}\right)}{4}
$$

This proves Assertion 1.
In the sequel, we consider words of the form

$$
x=\left(b^{l} a\right)^{4 m} a
$$

Let $A \rightarrow \beta_{1} A \beta_{2}$ be a production of G with $l_{a}\left(\beta_{1} \beta_{2}\right)>0$. Then $l_{a}\left(\beta_{1} \beta_{2}\right) \geqq 4$ by Assertion 1; so either β_{1} or β_{2} or both can be written in the form

$$
u a b^{n_{1}} a v
$$

where u and v are in T^{*}.
If $r=\max \{l(\beta) \mid A \rightarrow \beta$ is a production of $G\}$ then $n_{1}<r$. Consequently, if a production $A \rightarrow \beta_{1} A \beta_{2}$ with $l_{a}\left(\beta_{1} \beta_{2}\right)>0$ is applied in a derivation of a word $x=\left(b^{l} a\right)^{4 m} a$ according to G, then $l<r$ holds.

Let

$$
\begin{aligned}
& P_{1}=\left\{A_{i} \rightarrow \bar{\alpha}_{i j} A_{i} \bar{\beta}_{i j} \text { in } P \mid l_{a}\left(\bar{\alpha}_{i j} \bar{\beta}_{i j}\right)=0\right\} \\
& P_{2}=\left\{A_{i} \rightarrow \xi_{i j} A_{j} \eta_{i j} \text { in } P \mid 1 \leqq i \leqq j \leqq n\right\} \\
& P_{3}=\left\{A_{i} \rightarrow \gamma \text { in } P \mid \gamma \text { in } T^{*}\right\}
\end{aligned}
$$

and let

$$
k=\sum_{P_{2}} l_{\Delta}\left(\xi_{i j} \eta_{i j}\right)
$$

Consider $x=\left(b^{r} a\right)^{4(k+r)} a$. By the above remark, no production $A \rightarrow \beta_{1} A \beta_{2}$ with $l_{a}\left(\beta_{1} \beta_{2}\right)>0$ can be applied in a derivation of x. Since G is assumed to be linear and sequential, each production of P_{2} can only be applied once in a derivation according to G. Hence, any word generated by productions in $P_{1} \cup P_{2} \cup P_{3}$ contains at most $k+r$ occurrences of a.

Clearly, by the above construction

$$
x=\left(b^{r} a\right)^{4(k+r)} a
$$

is not in $L(G)$; but x in R, a contradiction.
This proves Theorem 2.

Corollary 3. NLev and Ind are incompatible.
Proof. Let R be as in the proof of Theorem 2. Clearly, NLev $(R)=0$. Since $\operatorname{Depth}_{\text {lin }}(R)>1$, also NLev $(R)>0$ holds.

Theorem 4. Prod and Ind are incompatible.
Proof. Let $L=\left\{a^{i} \mid 0 \leqq i \leqq 10\right\}$.
L can be generated by the following grammar

$$
G=\left(\{S, A\},\{a\},\left\{S \rightarrow A^{10}, A \rightarrow a, A \rightarrow \varepsilon\right\}, S\right) .
$$

Thence, $\operatorname{Prod}(L) \leqq 3$.
We show that $\operatorname{Prod}_{\text {lin }}(L)>3$.
Assume $\operatorname{Prod}_{\text {lin }}(L)=3$ and let G be a linear grammar with $\operatorname{Prod}(G)=3$ generating L. For no nonterminal symbol $A, A \Rightarrow \Rightarrow^{*} \alpha A \beta$ holds. Therefore, the set of productions of G is of one of the following forms:

$$
\begin{equation*}
S \rightarrow \alpha_{1} A \beta_{1}, \quad A \rightarrow \alpha_{2} B \beta_{2}, \quad B \rightarrow \gamma, \tag{1}
\end{equation*}
$$

(2.1) $S \rightarrow \alpha_{1} A \beta_{1}, A \rightarrow \gamma_{1}, \quad A \rightarrow \gamma_{2}$,
(2.2) $\quad S \rightarrow \alpha_{1} A \beta_{1}, \quad S \rightarrow \gamma_{1}, \quad A \rightarrow \gamma_{2}$,
(2.3) $\quad S \rightarrow \alpha_{1} A \beta_{1}, \quad S \rightarrow \alpha_{2} A \beta_{2}, \quad A \rightarrow \gamma_{1}$,

$$
\begin{equation*}
S \rightarrow \gamma_{1}, \quad S \rightarrow \gamma_{2}, \quad S \rightarrow \gamma_{3} \tag{3}
\end{equation*}
$$

where all $\alpha_{i}, \beta_{i}, \gamma_{i}$ are in T^{*}.
But no one of these production sets can generate L, a contradiction.
This proves Theorem 4.
(Received February 21, 1973.)

REFERENCES

[1] Brainerd, B.: An Analog of a Theorem about Context-Free Languages. Information and Control 11 (1968), 561-567.
[2] Gruska, J.: Some Classifications of Context-Free Languages. Information and Control 14 (1969), 152-173.
[3] Gruska, J.: A Few Remarks on the Index of Context-Free Grammars and Languages. Information and Control 19 (1971), 216-223.
[4] Jones, N. D.: A Note on the Index of a Context-Free Language. Information and Control 16 (1970), 201-202.
[5] Salomaa, A.: On the Index of Context-Free Grammars and Languages. Information and Control 14 (1969), 474-477.

Dr. A. B. Cremers, University of Southern California, Computer Science Program; Los Angeles, Cal. 90007. U.S.A.
K. Weiss, Universität Karlsruhe, Institut für Informatik I; Postfach 6380, 75 Karlsruhe 1. BRD.

