
Kybernetika

Evžen Kindler
Can cybernetics contribute to the study of computer development?

Kybernetika, Vol. 9 (1973), No. 6, (475)--482

Persistent URL: http://dml.cz/dmlcz/125837

Terms of use:
© Institute of Information Theory and Automation AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125837
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 6

Can Cybernetics Contribute to the Study
of Computer Development?

EVZEN KlNDLER

The paer contains some critical notes about the conception of development of computers,
which ressembles conceptions of scholar history but not cybernetics. An experiment how to
cybernetize the research of the computer development is presented: it concerns the development
of the relation between data and programs in which certain factor exists that external differences
between data and program tend to disappear.

1. INTRODUCTION

1.1. Computers as subject of history

The subject of the present paper is the development of computers as a subject of
cybernetics. Of course, both the terms of that subject represent two distinguished
types of typical subjects of cybernetics: we need not emphasize that computers have
been studied by methods of cybernetics, and development as well (usually by other
methods of the same science). But if we put the grammatical relation of determination
between them — obtaining a new concept, the development of computers - both
groups have no importance: what one has used for the research of development
generally gives no important results for the development of computers, and what
cybernetics said about computers does not concern their development: it concerns
only computers as static objects, neglecting their laws of change from type to type in
course of time.

The description of computer development is often presented at meetings of serious
cyberneticians but they accept such a description, which is as exact as similar descrip
tions existing in scientifical branches which had great problems with exact expressing
of their information. If we hear that the older computers had certain technological
parameters, a certain operation speed, certain software and a certain contact with
their neighbourhood, while the more modern computers have those aspects modified,

it is similar, as when we heard in the grammar school, that in a certain century a revo
lution in a certain country has removed a king, that in the same century a volcano has
destroyed a town, while in the following century a famous composer lived. Of course,
we can meet a result that certain relation, e.g., between a technological parameter
and a software is formulated, but it is never a general aspect which could be valid for
the computer development in any phase.

Together with the history of computers, their prognostics exists: it is a prolongation
of the history into time which has not existed. Similarly as in the history which does
not concern the computers, the history of computers becomes science fiction if it is
prolongated to the future: some properties are transferred without modification,
some are extrapolated in a random way, and some are neglected and, often without
reason, replaced by some other properties.

Thus a problem arises: do there exist properties which can be considered as absolute
and typical for the development of computers? In the following text, some properties
are studied, which seem to be of that type. Some of them are found not to be suitable;
however, one particular property is shown to be typical for every phase of the com
puter development.

1.2. Mathematical methods

As cybernetics has tried to be an exact science, the use of mathematical methods
offers to be a tool also for expressing the laws of the computer development. Newer-
theless, only very special aspects of it have been reflected by mathematical means,
and thus they have no importance for expressing any general rule, valid in any
phase: their limitations are equivalent to their relativity, because we cannot be sure
how long their terms, though related by exact relations till today, will have their
meaning. We know a lot of graphs, approximated very well by linear or exponential
relation, where one axis represents the time of the computer development and the
other represents some parameter as the cost of an operation, operation speed, capacity
of certain type of memory, number of computers of certain type etc; although we
can extrapolate the graph to the future, we cannot tell nothing about the interpreta
tion of the value, reflected by the second axis. For instance, one predicts the relation
between the numbers of data processing computers and real time control computers
according to the geometrical properties of the graphs concerning both of them, but
nobody knows if in the prognosed time any difference between both types will exist.

The author can present a suitable example of such sophistics that he heard some years ago:
his colleague made graphs of the development of the speeds in the control and arithmetic units
of the computers and compared them with the graphs of the development of the speeds of external
memories. From certain geometrical properties it was clear that there will be a moment when the
disproportion between the electronic units and the auxiliary memories will be so large, that when
compiling, e.g., from ALGOL 60, we shall not need to have prepared subroutines in the machine
code: they will be also in ALGOL 60, because in such form they would occupy a small space in the

auxiliary memory and they would be read and translated in a shorter time than if they were read 477
without translation from a larger space of the auxiliary memory. Of course, that consideration
seems to be very exact and effective but one might not forget another phenomenon, which exists
out of the properties which are reflected by the mentioned exact consideration: similar dispropor
tions in the speeds of the electronic units and auxiliary memories have greater importance in
other fields than in automatic programming; it is for instance data processing, where unfortunately
the disproportions cannot be eliminated as the automatic programming theoretically has offered.
So the whole problem needs another solution. Nowadays we have recognized it very well: it is
multiprogramming which has caused that the result of the exact consideration mentioned above
is completely wrong.

Let us note that such methods cannot be considered as cybernetical: they are very
primitive though they are exact and one can compare them with classical graphical
methods used even in biomedical sciences many years before cybernetics.

1.3. Computer generations

The idea of the generation, introduced into the computer development, seemed to
be a suitable implement. It has eliminated a lot of misunderstanding, forming suitable
cathegories in the description of computers which have been designed. But from the
general viewpoint it has no efficient meaning, too: under the concept of a generation,
certain phases in the computer development appeared to be static, but one cannot do
an extrapolation from one generation to the following one; let us mention the access
to the computers: the familiar one, existing in the first generation, has been replaced
by another type of access in the second generation, which seemed to be more modern
and which applied the great speed of computers so that the user could not be directly
at the computer console. But the third generation of computers has brought a nega
tion of negation in form of terminals that have enabled to restitute the familiar access
to the computer without destroying the advantages obtained by the second generation.
Similar affair has been in the size of computers: smaller computers of the first
generation have been replaced by larger ones in the following generation and during
the phase of the third generation computers (we can say in the middle of it), mini
computers become to be very important. In other aspects, however, the development
did not respect the hegelian law of the negation of negation.

The concept of computer generation is suitable to be a basis for a certain time scale
by means we can simply determine events in the computer development, but it does
not explain it. It can be also a suitable basis for a simple description of a computer
regarding to its function and place in the general development of computers (we
know, for example, computers, designed and/or manufactured in the phase of the
third generation, which are facilitated by software typical for the first generation.).
The popularization of the computers by their manufactures uses also the term of
generation very freely and so we can see that the length of a generation time in the
computer development becomes shorter and shorter and some manufacturers often
create a new generation (in words) rather than a new type of computer. Originally

the concept of computer generation had a greater contents than now and we can hope
that the manufacturers of the computers will offer another concept to the scientists,
which will have also a great contents and a great interest, at least in its initial phase.
The concept of generation can be also compared to the historical concepts of ancient
age, middle age and modern age, which are also a basis for a certain time scale in
certain social sciences; and similarly with the prognostics in history we can see that
speaking on the future generation of computers ressembles more science fiction than
cybernetics.

2. DATA AND PROGRAM

One can therefore conclude that there is no possibility of a serious formulation of
any property of the computer development, because raivTa QZI. That can be admitted
if we limit our consideration only to material properties modified during the existence
of computers. But we can base our considerations on facts which are related directly
to the computer essence. Such considerations are joined with the properties which
characterize the computers and which distinguish them from the other sorts of things.
In the following parts we shall observe such a property: it is the relation between
program and data, about which we can observe that during the development of com
puters it will be modified, but in certain sense: the real difference between program
and data can be considered as existing in any time because it is suitable for aplication
of computers as realizators of functions (or transformers of data of certain general
form in certain way which is independent on those data). But the formal and physical
properties which reflect that difference will be smaller and smaller because the other
expression and thinking means of the humans do not need such a difference and the
human wants to make his contact with computers similar to his contact with other
systems, where he does not distinguish between data and programs.

Thus we can formulate one aspect of the computer development which we can
consider as a general one, valid always in the development of computers: the formal
differences between data and programs are and will be diminished but they will
never dissappear; if any partial difference dissappears there will rise another property
satisfied in different ways for data and for programs which will have importance in
the following development of computers as the property the satisfying of which will
become equal during the next phase. Let us observe this idea in a greater detail.

2.1. Theorems of mathematical logic

It was already before, the age of computers when the theorems was formulated and
prooved which can be transformed into the physical reality of the computers so that
instead of sets of programs a "universal" program can be made which runs like any
program of the set if the data are enriched by a certain parameter. Thus mathematical

logic has told us about the possibility how to transform programs to data. Of course,
it does not speak of the psychological and social aspects of that transformation.

The theorems are, e.g. about the existence of the universal normal Markov algo
rithm (see [1], part IV., par. 2, theorem 1.1), the universal Turing machine (see [2],
[3], [4]), about the explicite form of recursive function (see e.g. [5], part 17, par. 10,
page 139 or part 18, par. 7, page 148, or [6], part III., chapter XL, par. 58, theorem
IX, or [7]).

2.2. Programs and data in computer hardware

The material synthesis of program and data properties in the computer memory
has been realized very soon in the computer development by the idea of automatic
computer of Von Neumann, who has designed a system of information processing
with a unique memory for both data and program. Thus programs can modify their
own instructions and data can be used as instructions of programs. There is a certain
difference between the interpretation of the instructions read from the memory during
the computation and of the processed data. The difference can be logically removed so
that we consider the computer as a special pourpose one which can realize only one
program, wired inside. This program reads the data corresponding to the instructions
which are interpreted as switching to various computer operations over the other data.
This conception, however, neglects the psychological aspects of programming;
further material diminishing of the distinction between program and data can be
expected in the nearest future by implementing the possibility that one can control
parts of computer units, or modify standart operations of the computer by means of
data (microprogramming is an example of such a possibility).

2.3. Programs and data in computer software

The idea of Von Neumann, mentioned in the preceding paragraph, has been
reflected in the operating systems of computers so that the input file makes no sub
stantial difference between the records of programs and those of data: series of such
records are only preceded by control records which are also similar in both cases,
whether they precede data or program; they differ only in certain "parameters"
which switches the operating system to perform special action, often different for
data and for programs.

There is no reflection of Von Neumann's idea in classical programming languages as ALGOL
60 or FORTRAN: they distinguish essentially between the program itself and data, and there is
no possibility that a program could change its proper instructions (statements). Von Neumann's
idea has been used only in the translators and in the interpreting programs so that they process
the source program as data and generate eventual target program to which use they to jump.
This aspect is, however, similar to that, mentioned at the beginning of the present paragraph in
relation to the operating systems.

480 The phenomenon that certain different properties of programs and data are
removed, exists in the programming languages only in the third generation phase:
it is realized in two main types; in the conversation languages certain differences
between data and programs do not exist because the user gives the demands to the
computer in a form where the data are incorporated into the program; in the general
pourpose third generation languages as SIMULA 67 or ALGOL 68, the familiar
relation between data and programs is realized, so that both of them can have attri
butes of structures which are handled as "individuals" equivalently in case that they
have only program attributes, or only data attributes, or both of them.

2.4. Prognoses

We have learned from the living systems that it is not necessary to distinguish
between data and programs from the viewpoint of any external property. If we want
to cause an animal or a human to do some action we give him signals where the
character of the action is coded together with its parameters. Though we know that
we can assume another - more general — program in his neural system, for which
our demands form data (we can say metaphorically that the demands are not distin
guished to programs and data for that more general program similarly as the input
file is not distinguished into programs and data for the operating systems, or similarly
as the data and programs are not distinguished in a conversation with a computer
facilitated by a conversational system of automatic programming), we usually neglect
it in many usual situations. If we want to communicate with a computer as with
a specialized but powerful collaborator we shall realize systems of control for com
puters similar to those which exist for living beings. So the users of computers will
be more and more in situations where less and less differences between the form of
program and data will exist.

On the other hand, preparation of programs which perform certain actions with
any data of certain very general classes is a result, which has been accessed by the
computer development till now and the value of which is rather important so that
one cannot assume that it might be neglected in the further development, even if the
form of implementation can be different. Thus we can expect that certain typical and
essential properties of programs will distinguish them always from data, but we cannot
expect that they would be interpreted in physical form of signals given to the com
puters.

Let us note that we could have an impression that the difference between the pro
grams and data is completely subjective, reflecting only the intentions of the user:
what he takes as a function should be program and what he takes as its arguments
should be data. The author would like to refer to the principle of ancient philosophers
that the laws of meaning reflect the laws of being: thus it would be certainly something
objective in the difference between data; but we cannot express it because there is no

suitable ontology of computers and their software (such an onthology would be create
in the nearest future also for many other reasons!).

3. CONCLUSIONS

We have presented a property which seems to be one of the general aspects of the
development of computers, having its proper meaning always during the development
of computers. We do not state that it would be the unique property which charac
terizes the development of computers and that there would not be any other property
of such qualities, which would tell another information than the presented one. The
author hopes that there will be soon discovered other properties valid always in the
development of computers and able to be studied by methods typical for cybernetics,
but he feels not to be able to express them technically in the present paper (experts in
probability can surely formulate other properties related to their interests, specialists
in system theory can do the same in their field etc.).

3.1. Hardware and software

Newertheless, the author would like to propose to pay attention to a property
which seems to be in certain sense a special case of the property studied in the preced
ing part, but in the physical interpretation it can give more information. The relations
between data and programs can be simply transformed between software and hard
ware: let us consider computer as a specialized single device which can read data
representing instructions and interpret them as one "address" of the instruction,
equivalent (in logical meaning) to the other address representing the "efficient" data;
then we can make the considerations mentioned above also for such a special program
(wired in it). They will be similar to the considerations, noted at the end of 2.2. Of
course, a greater development of such considerations would be platonic present days
because it has no realization: the difference between hardware and software is clear
enough and constant. But it has been caused that nowadays the transport of energy
and that of matter is clear enough in the computer, too, because the transport of matter
can be simply neglected in it. When the transport of matter in computers will be more
important (when the computers will repare and modify its own hardware) we can
expect the processes where we cannot state if the main factor which carries the in
formation is matter or energy and so certain properties which distinguish hardware
from software will be removed, because hardware is an affair of substance while
software is represented at computers by energetic signals. We can state that this
aspect of the computer development exists but only in its initial, singular state. When
it leaves it we shall be able to study it in a more interesting way; nowadays we can
have use only of the analogies between the hypothetical situation in future and the
present state in the living systems where the familiar contact between hardware and
software has been already realized (in genetical information, neural system, etc.).

482 3 .2 . Cybernetics and mathematics

The p rope r ty presented in the second p a r t of this paper can serve as a very clear

i l lus t ra t ion of the difference be tween ma themat i c s a n d cybernetics. If we a re l imitted

to ma thema t i ca l objects only , we can finish any discussion o n tha t p roper ty if we have

proved ma thema t i ca l t heo rems men t ioned in 2 .L But if we are cyberneticians we mus t

s tudy tha t p roper ty f rom all viewpoints , namely concerning its relat ion to psychology,

social env i ronment , technology etc. Some of t h e m can be expressed in ma themat i ca l

t e rms a n d studied by ma thema t i ca l m e t h o d s bu t the science of cybernetics mus t

de termine p rob lems before such an abs t rac t ion .

Acknowledgements. The author would like to express his thanks to Czechoslovak Association
for Cybernetics of the Czechoslovak Academy of Sciences, which has enabled him to discuss the
presented ideas with a very wide forum of specialists, of which namely Prof. Dr. K. Culik, DrSc.
and Doc. Dr. J. Habr have presented good stimuli to make considerations more exact.

(Received March 8, 1973.)

REFERENCES

[1] A. A. MapKOB: TeopHfl ajiropH<J>MOB (Theory of algorithms). Tpy/na MaTeManwecKoro HHCTH-
TyTa HMeHH B. A. CreKJiOBa, XL-II, Hb/taTencTBO AKa/teMHH HayK CCCP, Mocraa—JleHHHrpafl
1954.

[2] A. M. Turing: Computable numbers with an application to Entscheidungsproblem. Proc.
London. Math. Soc. ser. 2., 42 (1936—7), 230-265.

[3] C. E. Shannon: Universal Turing machine with two inner states. In: Automata studies.
Princeton University Press, Princeton 1956.

[4] M. D. Davis: Note on universal Turing machines. In: Automata studies. Princeton University
Press, Princeton 1956.

[5] R. Peter: Recursive Funktionen. Akademiai Kiado, Budapest 1951.
[6] S. C. Kleene: Introduction to Metamathematics. D. Van Nostrand Comp., New Y o r k -

Toronto 1952.
[7] S. C. Kleene: General recursive functions of natural numbers. Math. Ann. 112 (1936),

727-742.

PhDr. RNDr. Evien Kindler, CSc, Biofysikdlni ustav FVL KU (Biophysical Institute, Charles
University), Salmovskd 3, 120 00 Praha 2. Czechoslovakia.

		webmaster@dml.cz
	2012-06-04T23:38:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

