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KYBERNETIKA ČÍSLO 3, ROČNÍK 5/1969 

A Note on One-Sided Context-Sensitive 
Grammars 

IVAN HAVEL 

In this note it is proved that so called one-sided context-sensitive grammars can generate 
languages which cannot be generated by any context-free grammar. 

This fact is not quite new. It has been proved in [3], [4] and [5] (as far as the 
author knows). In [3] it is proved that a special one-sided context-sensitive grammar 
suggested by Dr. Fris ([1]) generates a language 

{amb'"c"; H n ^ m} 
which is not context-free. 

In [5] an example of a one-sided context-sensitive grammar is given and in [4] 
there is proved, concerning this grammar, that it generates a well-known language 

{a"b"c"; n £ 1} . 

The proofs given in [3] and [4] are rather complicated though the grammars 
in question contain about 20 rules only. 

The aim of the present note is to give a simple proof of the above-mentioned 
statement. 

Let us define a one-sided context-sensitive grammar G = (VT, VN, R, S> as follows: 

VT - {a, b, c} , 
VN = {A, B, C, D, E] , 

R: 1. S -* aaABBcc , 
2. A-* a AB , 
3. A. -> ab , 
4. b B -*Ь C, 
5. CB^CC, 
6. Ъ C -+Ь D , 



7. b D-^b b, 
8. DC -+ D B , 
9. B C -> B B , 

10. B C -*B B c. 

We shall prove 

(1) L(G) = {ambmď; 1 < n 
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L(G) not being context-free. (It may be easily proved directly or derived from general 
theorems in [2].) In what follows => (resp. =>) denotes derivability (resp. immediate 
derivability) in G. 

Assertion 1. For any m, n, 1 < n < m 

S => ambmc". 

Proof. For m > 3 and 2 < i < m — 2 we have 

(2) ambi-1Bm-i + 1ci^ambiB'"-ici+1 , 

for 

ambi-1Bm-i + 1ci => amfo e- 1CBm-'c i =S> a" 'fc ' '- 1 C"- i + 1 c i => 

=> ambi-1DCm~ici => ambi-1DBCm-i-1ci => 

=> amfc'-1DB'"- , '-1Cc'' => ambiBm-t~1Cci => a m 6 ' B m - i c ' + 1 . 

Suppose 1 < ra < m. Using (2) several times we obtain 

S => a2AB2c2 => a^B"'-^2 =5> a'"fr2Bm~2c3 =t o m 6 n - 1 B m - B + V => 

=> amb"-1CBm-"c" => amb"-1DBm~"c" => amb"Bm-"c" => a m 6 " c B m - B " V => 

=> amb"DB'"-"-1c" => a m 6 B + 1 B m - B - V =t a"'fo'"c". 

In order to prove (1), we need the following 

Assertion 2. If 

(3) S = x 0 = > x 1 = > . . . * x p 6 V r * , 

then there are m, n (1 < n < m) such that xp = a'"b'"c". 

Proof. Let a derivation (3) of grammar G be given. There are i and j (0 < i < p, 
2 < j) such that x ( in (3) is of the form aJbBJ~1c2. Actually, the only rule which can 
be applied to x 0 is the rule 1 whose application results in x t = a2AB2c2. To xt only 



188 the rules 2 or 3 can be applied. The application of the rule 3 yields x2 of the desirable 
form (i = 2), the rule 2 results in x2 = a3AB3c2 to which only rules 2 or 3 may 
be applied again. The repeated application of the rule 2 yields strings of the form 
a"AB"c2 (n > 3) and cannot result in the terminal string xp e V*, hence the rule 3 has 
to be applied at least once. The first (and only possible) application of the rule 3 
results in xt of the desirable form. 

Lemma. If j > 2 and aJbBJ~1c2 => ^, then either there is an occurrence of the 
string cB resp. cC in ^, or 

(4) n~aJbkD(pcl, 

where k > 0, I = 2, D is either empty or D = D, <p is a string (maybe empty) 
built of B and C, \bkDq>\ = j and if we denote by y(Dcp) the number of distinct 
occurrences of strings BC and DC in Dq> (with the only exception: we put y(DC) = 0), 
then 

(5) Max (|<p| - 2, 0) + y(Dcp) + I <j . 

Note. Assertion 2 can be easily derived from the lemma: in (3) we have 

S = x0 =>...=> xt = aJbBJ~lc2 =>...=> xp. 

There are no occurrences of cB (resp. cC) in xp, D and cp are empty, therefore xp = 
= aJbJcl; (5) yields / < j . 

Proof. We shall prove the lemma by induction on the length of the derivation 
of?/. 

I. A string aJbBJ~1c2 is obviously of the needed form. 

II. Suppose aJbBJ~1c2 => ^ => >?'; we shall prove the statement of the lemma for »y' 

assuming it valid for ^. 

If there are occurrences of cB or cC in ^, then such occurrences are in rf, too (this may 
be easily seen from the set of rules). Suppose that ^ is of the form (4); let us investigate 
all possible cases generating rf from >y: 

a) the rule 4 is applied to ??; in this case D — A> <P = Bcpt, hence n' = aJbkC(plc
l, 

j ^ C ^ I = j and (5) holds, since y did not increase; 
b) the rule 6 is applied to ^ (D = A» <P — c<Pi); t?' — aJbkDcp1c

l, the length of cp 
decreased (—1), y, if changed, increased (+1) , hence the inequality (5) remains valid. 
The case q> = CC requests a special consideration: y(DC) = 0 and (5) holds; 

c) the rule 7 is applied to ^, then D = D, (5) holds; 
d) the rule 5 is applied to 77; it does not affect \<p\, y does not increase, (5) holds, 

too. 



It may be easily seen that fj' is of the desirable form also when the rule 8 or 9 189 
is applied to ^. 

e) The rule 10 is applied to ?j; there are two possibilities to be considered. Either 
it is applied to an occurrence of J5C which is immediately followed by B or C, then 77' 
contains an occurrence of cB resp. cC; or the rule 10 is applied to the last two symbols 
of the string q>, y decreases ( — 1), / (i.e. the number of c's) increases ( + 1). 

No rule of 1 — 3 may be applied to ^. The lemma, Assertion 2 and also (1) are 
proved. 

The main problem concerning one-sided context-sensitive grammars is that 
of comparison of generative power of such grammars and context-sensitive grammars 
in a usual sense. 

(Received July 24th, 1968.) 
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Poznámka o jednostranně kontextových gramatikách 

IVAN HAVEL 

V práci se dokazuje, že tzv. jednostranně kontextové gramatiky, které jsou v Chom-
ského klasifikaci mezi typy 2 a 1 (tj. mezi gramatikami bezkontextovými a gramati
kami kontextovými), mohou generovat více než jen bezkontextové jazyky. Všechna 
pravidla jednostranně kontextové gramatiky jsou tvaru (pA -> cpa>, kde cp e V*, 
A e VN, co e V* — {A}- Sestrojuje se jednostranně kontextová gramatika o 10 pra
vidlech a dokazuje se o ní, že generuje jazyk {ambmcn; 1 < n < m), který není bez-
kontextový. 

Ivan Havel, Matematický ústav ČSA V, Žitná 25, Praha 1. 
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