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countable graphs which correspond in a certain sense to various distances between isomor
phism classes of finite graphs. 

Keywords: distance between graphs, isomorphism class graphs, tree, edge rotation, equiv
alence relation 

A MS classification: 05C99, 05C05 

Various distances between isomorphism classes of graphs were defined. An iso
morphism class of graphs is the class of all graphs which are isomorphic to a given 
graph. For the sake of brevity we may speak about distances between graphs instead 
of distances between isomorphism classes of graphs; in this case we must have in 
mind that two graphs whose distance is zero need not be identical, but they are 
isomorphic. 

Let Gi, G2 be two finite graphs with the same number n of vertices. The distance 
6(G\, G2) is equal to n minus the maximum number of vertices of a graph which is 
isomorphic simultaneously to an induced subgraph of Gi and to an induced subgraph 
ofG2[4]. 

Now let Gi, Ĝ  be arbitrary two finite graphs. The edge distance ^(Gi^Gj), 
introduced by V. Balaz, J. Koca, M. Kvasnitka and M. Sekanina [1], is defined so 
that 

SE(GUG2) =- \EX\ + \E2\ - \El2\ + | h l - Ml , 

where V\, V2 are the vertex sets of G\, G2 and E\% E2 are their edge sets, the symbol 
E\2 denotes the edge set of a graph which is isomorphic simultaneously to a subgraph 
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of G\ and to a subgraph of G2 and has the maximum number of edges among all 
graphs with this property. 

Let T\, T2 be two finite trees with the same number n of vertices. The tree distance 
5T»(TI ,T 2 ) is equal to n minus the maximum number of vertices of a tree which is 
isomorphic simultaneously to a subtree of T\ and to a subtree of T2 [5]. 

Now we shall define the edge rotation and the edge shift. Let x, y, z be three 
vertices of an undirected graph G such that x is adjacent to y and not to z. To 
perform an edge rotation of the edge xy to the position xz means to delete the edge 
xy from G and to add the edge xz to it. If, moreover, y and z are adjacent in G, 
such an edge rotation is called an edge shift of the edge xy to the position xz along 
the edge yz. 

Let G\, G2 be two finite graphs with the same number of vertices and the same 
number of edges. The edge-rotation distance 6R(G\,G2) is the minimum number 
of edge rotations which are necessary for transforming the graph G\ and G2 into a 
graph isomorphic to G2. If, moreover, both G\ are connected, then the edge-shift 
distance 6s(G\,G2) is the minimum number of edge shifts which are necessary for 
transforming the graph G\ into a graph isomorphic to G2. The edge-rotation distance 
was introduced by G. Chartrand, F. Saba and H.-B. Zou in [2], the edge-shift distance 
by M. Johnson in [3]. 

All these distances were defined and studied for finite graphs. Here we will intro
duce some equivalence relations between isomorphism classes of infinite graphs which 
correspond in a certain sense to the above mentioned distances. We will limit our 
considerations to countable graphs, i. e. graphs in which the cardinality of the vertex 
set is No- For the sake of simplicity again we will speak about equivalences between 
graphs instead of equivalences between isomorphism classes of graphs. Obviously, if 
two graphs belong to the same isomorphism class, then they are equivalent in each 
of the described equivalence relations. 

Thus we consider countable undirected graphs without loops and multiple edges. 

If G is a graph, then V(G) denotes its vertex set and E(G) its edge set. 
First we shall define the relation e. For two countable graphs G\, G2 we have 

(Gi ,G 2) G £ if and only if there exists an induced subgraph G[ of Gi and an induced 
subgraph G'2 of G2 such that G\ ~ G'2 and the sets V(Gi) - V(G'\), V(G2) - V(G'2) 

are finite. 
Now let us define the relation BE- For two countable graphs G\1 G2 we have 

(G\, G2) € SE if and only if there exists a subgraph G\ of G\ and a subgraph G'2 of 
G2 such that G\ S G'2 and the set E(G\) - ^(G',), E(G2) - E(G'2) are finite. 

The next relation is SR. If Gi, G2 are countable graphs, then (Gi,G2) E £R if 
and only if G\ can be transformed by a finite number of edge rotations into a graph 
isomorphic to G2. 
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Finally, let Ti, T2 be two countable trees. We have (Ti,T2) € ST if and only if 
there exists a subtree T{ of Ti and a subtree T2 of T2 such that T{ •* T2 and the sets 
V(Ti) - V(T{), V(T2) - V(t'2) are finite. 

Evidently, the following assertion holds. 

T h e o r e m 1. The relation e, £E, £R are equivalences on the set of all isomor

phism classes of countable graphs, the relation ST is an equivalence on the set of all 

isomorphism classes of countable trees. 

We can call e the subgraph equivalence, EE the edge equivalence, SR the edge-

rotation equivalence, ST the tree equivalence. 

T h e o r e m 2. Let G\, G2 be two countable graphs without infinite sets of isolated 

vertices, and let (G\, G2) E €E- Then (G\, G2) G e. 

P r o o f . Let G\, G2 be the graphs described in the definition of £#. Let Vi 
be the set of all end vertices of edges from the set E(G\) — E(G\) which belong to 
V(Gi). Similarly, let V2 be the set of all end vertices of edges from E(G2) — E(G2) 

which belong to V(G2). The sets Vi, V2 are evidently finite. Let <p be an isomorphic 
mapping of Gi onto G'2. Let G'{ be the subgraph of G\ induced by the set V(Gi) — 
(Vi U(p"l(V2)), let G'2' be the subgraph of G'2 induced by the set V(G'2)- (V2U<p(Vi)) • 
Evidently, the restriction of <p onto V(G'{) maps G'{ isomorphically onto G2 and 
therefore G'{ 2 G'2'. The subgraph of Gi induced by the set V(Gi) - V(Gi) has a 
finite edge set (a subset of E(G\) - K'(Gi)), and therefore a finite number of non
isolated vertices. As we have assumed that Gi does not contain an infinite set of 
isolated vertices, the set V(Gi)-V(Gi) is finite. The set V(Gi)-V(Gi') is the union 
of three finite sets V(Gi) - V(Gi), Vi, <p~l(V2) and thus it is finite. Analogously, 
V(G2) - V(G'2') is finite. Hence (Gi, G2) G e. D 

R e m a r k 1. There exist countable graphs Gi, G2 without infinite sets of isolated 

vertices such that (G\,G2) G e and (Gi,G2) £ 6E> 

For G2 we may take an arbitrary locally finite countable graprr without an infinite 
set of isolated vertices; the graph obtained from G2 by adding a new vertex v and 
joining it by edges with all vertices of G2 will be Gi. Evidently (G\, G2) G e. Now let 
Gi be a subgraph of Gi such that £*(Gi) —i?(Gi) is finite. The vertex v is incident in 
Gi with infinitely many edges; as only a finite number of them is in E(G\) — E(G\), 

the vertex v has the infinite degree also in G\. The graph Gi is not locally finite and 
cannot be isomorphic to any subgraph of the locally finite graph G2. This implies 
(GltG2)^eE. 

The following assertion is evident. 
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Theorem 3. Let G\, G2 be two locally finite countable graphs such that 

(GuG2)ee. Then(GuG2)eeE. 

Now we turn to trees. 

Theorem 4. Let T\, T2 be two countable trees such that (T\,T2) £ €T> Then 

(T\,T2)eeE. 

P r o o f . Let T,', T2 be the trees used in the definition of ST- The set V(Ti) — 
V(T{) is finite. Consider the set £(Ti) - E(T{). No edge of this set may join two 
vertices of Tf; otherwise there would be a circuit in Tj and Ti would not be a tree. 
For the same reason each vertex of V(Ti) — V(T{) may be adjacent at most to one 
vertex of T{. The set E(T\) — E(T{) consists of the edge set of the subgraph of 
G\ induced by V(T\) - V(T{) and of all edges joining a vertex of V(Ti) - V(T{) 

with a vertex of T{. The former set is the edge of a graph with a finite vertex set, 
therefore it is finite. The latter set has a cardinality not exceeding the cardinality 
of V(Ti) - V(T{), therefore it is also finite. Hence E(T\) - E(T{) is finite and 
(T\,T2)eeE. D 

R e m a r k 2. There exist countable trees Ti, T2 such that (Ti,T2) G €E and 

{Ti,T7)(eT. 

Let Ci, C2 be two vertex-disjoint two-way infinite paths. Choose a vertex u\ of 
Ci and a vertex u2 of C2. Add a new vertex v and join it by edges with u\ and 
u2; the tree thus obtained will be denoted by Ti . If instead of v we take two new 
vertices w\, w2 and new edges u\w\, w\w2, u2w2i we obtain a tree T2. Evidently 
(T\,T2) € €E. Evidently, every proper subtree T{ of Ti has the property that there 
exists a one-way infinite path in Ti which is disjoint with T\, and thus Ti is in the 
relation €T only with itself. The same holds for T2. Hence (Ti,T2) £ et-

Now we shall treat edge rotations. The following assertion is evident. 

Theorem 5. Let G\, G2 be two countable graphs, let (G\,G2) G €R. Then 

(GuG2)eeE. 

Note that at each edge rotation the number of vertices of odd (finite) degrees in 
the graph either increases by two, or decreases by two, or remains the same. The 
same holds also for the number of vertices of even degrees. This implies the following 
assertion. 

Theorem 6. Let G\, G2 be two locally finite countable graphs such that 

(G\,G2) € CR. Then the numbers of vertices of odd degrees in G\ and G2 are 
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either both infinite, or both finite and congruent modulo 2, and the same assertion 

holds for the numbers of vertices of even degrees. 

R e m a r k 3. There exist countable graphs Gi, G2 such that (Gi ,G2) G £T and 

(G\,G2)£eR. 

The vertex set of the graph Gi consists of the vertices u, for all non-negative 

integers i and of the vertices v, for all positive integers i. The edges of Gi are UtU.+i 

for all non-negative integers i and «,v, for all positive integers 1. The graph G2 is 

obtained, from Gi by deleting the vertex v\ and the edge u\V\. Both G\, G2 are 

trees and evidently (Gi , G2) € €T> All vertices of Gi have odd degrees, while G2 has 

exactly one vertex, namely u\, of an even degree. According to Theorem 6 we have 

(GuG2)$SR. 
At the end we state an evident assertion on edge shifts. 

T h e o r e m 7. Let G\, G2 be two connected countable graphs and let (G\,G2) £ 

€R. Then G\ can be transformed into a graph isomorphic to G2 by a finite number 

of edge shifts. 

References 

[1] Bald2, V. - Koca, J. - Kvasnicka, V. - Sekanina, M.: A metric for graphs, Casop. pest. 
mat. Ill (1986), 431-433. 

[2] Chartrand, G. - Saba, F. - Zou, H.-B.: Edge rotation and distances between graphs, 
Casop. pest. mat. II0(1985), 87-91. 

[3] Johnson, M.: An ordering of some metrics defined on the space of graphs, Czech. Math. 
J. 57(1987), 75-85. 

[4] Zelinka, B.: On a certain distance between isomorphism classes of graphs, Casop. pest. 
mat. 100(1975), 371-373. 

[5] Zelinka, B.: A distance between isomorphism classes of trees, Czech. Math. J. 55(1983), 
126-130. 

S o u h r n 

EKVIVALENCE MEZI TŘÍDAMI ISOMORFISMŮ 

U NEKONEČNÝCH GRAFŮ 

BOHDAN ZELINKA 

Článek se zabývá třídami ekvivalence mezi třídami isomorfismu spočetných grafů, kte
ré v jistém smyslu odpovídají různým vzdálenostem mezi třídami isomorfismu konečných 
grafů. 
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