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Summary. Necessary and sufficient conditions for a graph G that its power Gl, i ^ 2, is 
magic graph and one consequence are given. 
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1. INTRODUCTION 

In the paper only finite, undirected connected graphs are considered. By a magic 

valuation of a graph G we mean such an assignment of the edges of G by pairwise 

different positive numbers that the sum of assignments of edges meeting the same 

vertex is constant. A graph is called magic if it allows a magic valuation. This 

notion was introduced by J. Sedlacek in [C]. Now, the i-th power G ' , i ^ 2, of a 

graph G is the graph with the same vertex set as G and such that two vertices of 

G* are adjacent if and only if the distance between these vertices in G is at most i. 

Various properties of G* have been studied, such as hamiltonicity, existence of 

some factors, etc. Some results can be found in [1] and [2] and [5], 

Two different characterizations of magic graphs were published in [3] and [4]. 

Since, except of the complete graph K-2 of order 2, no graph with less than 5 vertices 

is magic we confine ourselves to graphs of order n ^ 5. 

By an I-graph we mean a graph G with a 1-factor F whose every edge is incident 

with an end-vertex (a vertex of degree 1) of G. The symbol P5 denotes a path of 

length 5. 

The aim of this paper is the following theorem. 
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T h e o r e m . Let a graph G have order n >- 5. The graph G 2 is magic if and onl_^ 

if G is not an I-graph and it is different from the path P 5 . The graph Gl is magi « 

for all i > 3. 

2. P R O O F OF T H E THEOREM 

First we shall formulate several necessary definitions. We say that a graph G i s 

of type A if it has two edges e, / such that G — e — / is a balanced bipartite graph 

with the partition V, V2, and the edge e joins two vertices of V\ and / joins two 

vertices of V2. A graph G is of type B if it has two edges e%, e% such that G — ej — e2 

is a graph with two components G i and G 2 such that G\ is a balanced bipartite 

graph with partition V, V2 and G 2 is a non-bipartite graph, and e; joins a vertex of 

Vi with a vertex of V'(G2). As usual, T(S) denotes the set of vertices adjacent to a 

vertex in the set S. 

The proof of Theorem is an immediate consequence of the following five Lemmas 

and Theorem 1. 

T h e o r e m 1. (Jeurissen [3].) A non-bipartite graph G is magic if and only if 

G is neither of type A nor of type B, and |T(S)| > \S\ for every independent subset 

S # 0 o f V ( G ) . 

L e m m a 1. If G is an I-graph or it is a path P r , , then G2 is not a magic graph. 

P r o o f . Every /-graph of order 2n has n end-vertices which form an independent 

subset S such that |T(S)| = \S\. Let P 5 be a path viv2v3V4V5v6. By omitting the 

edges v2v3 and v4v5 from P§ we obtain a bipartite graph which is a graph of type A. 

• 

L e m m a 2. If G + e is a graph which arises by adding an arbitrary edge c to a 

non-bipartite magic graph G, then G + c. is a magic graph. 

The proof follows from Theorem 1 because by omitting an arbitrary edge of a 

graph of type A or B we do not obtain a magic graph. 

Let T be a spanning tree of a graph G. Lemma 2 implies that if the square of 

T is magic, then G1 , for all n >. 2, is magic. Therefore, in the next part we shall 

confine ourselves to graphs which are trees. 

L e m m a 3. If T is a tree then \T(S)\ >. \S\ for every non-empty independent 

subset S of V ( T 2 ) . 
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P r o o f. Let S be an independent subset of V(T 2 ) . Then the distance d(u, v) >. 3 

in T for vertices u,v e S, i.e. no vertex of the induced subgraph H on V(T) - S is 

joined with two vertices of S. We choose one internalvertex w e V(H) and define 

a mapping / from the set S into T(S) in the following way: The image f(v) of a 

vertex v is the vertex such that d(v,w) - 1 = d(f(v),w). The proof follows from the 

fact that / is an injective mapping. • 

L e m m a 4. If V'(T2) contains an independent subset S such that \F(S)\ = \S\ = 

n > 0, then T is an I-graph of order 2n. 

P r o o f . If v is an internalvertex of T and v e S then there exists a vertex 

z e T(v) with d(z,w) = d(v,w) + 1 (the internalvertex w is chosen in the same way 

as in the proof of Lemma 3). The vertex z is not an image of any vertex u e S in the 

mapping / because in T 2 the vertex v is joined by an edge with all vertices which 

in T have the distance 2. This fact together with the proof of Lemma 3 yield that 

then | r ( S ) | > \S\. 

If an arbitrary end-vertex t ^ S, then t is not the image of any vertex of S and so 

\T(S)\ > \S\. 

Every vertex of S is joined to at least two vertices of T - S and so it follows 

from the assumption |T(S)| = \S\ that every internal vertex is uniquely assigned to 

a vertex of S. D 

L e m m a 5. No graph T 2 , different from P§ , is a graph of type A or B. 

P r o o f . First we show that T 2 different from P§ cannot be a graph of type 

A. We suppose that the order of T is at least 6, because any graph of type A has 

an even order. If T has a vertex of degree at least 4, then T 2 has, as a subgraph, 

the complete graph Kg. By omitting an arbitrary pair of edges from K 5 we obtain 

a graph with chromatic number 3, i.e. a non-bipartite graph. If T has a vertex of 

degree 3, then T contains a subgraph isomorphic to one of the graphs which are 

depicted in Fig. 1. In both cases, by omitting two edges we obtain a subgraph with 

at least one triangle. If T is a path P „ , n >- 6, then T 2 has at least 3 edge-disjoint 

triangles. 

Fig. 1 

123 



Every graph of type B is 2-edge-connected. From T 2 we obtain a d i s c o n n e c t e d 
graph only if we omit a pair of edges incident with an end-vertex of T and so t h e 
non-bipartite part consists of one vertex while the other part is not a bipartite g r a p h . 

• 

3. A CONSEQUENCE OF THE THEOREM 

A spanning subgraph F of the graph G is called a (l-2)-/acior of G if each o f 
its components is an isolated edge or a circuit. We say that a (l-2)-factor separates 

edges e and / , if at least one of them belongs to F and neither the edge part nor t h e 
circuit part contains both of them. In [4] the following theorem is proved. 

T h e o r e m 2. (Jezny, Trenkler) A graph G is magic if and only if every edge 

belongs to a (l-2)-factor, and every pair of edges e,f is separated by a (l-2)-factor. 

From Lemma 3 and Theorem 2 we get the following 

C o r o l l a r y . Let G be a graph of order ^ 5 and e its arbitrary edge. The graph 

G \ i ^ 2, has a (l-2)-factor which contains the edge e if and only if e is not an 

internaledge of an I-graph and i = 2. 

P r o o f . No pair of end-vertices of an /-graph G is joined by an edge in G 2 

because every (l-2)-factor of G 2 is a 1-factor. The internaledge of an /-graph does 
not belong to the same (l-2)-factor. Evidently, every edge of P 2 belongs to a 2-factor. 
The sufficient condition follows from Theorem 2. • 
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