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SUMS OF QUASICONTINUOUS FUNCTIONS 
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Summary. It is proved that every real cliquish function defined on a separable metrizable 
space is the sum of three quasicontinuous functions. 
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In this paper I show that every cliquish function / : X —• R, where X is a separable 
metrizable space, is the sum of three quasicontinuous functions. 

In what follows X denotes a topological space. For a subset .4 of a topological space 
denote by CI A and Int A the closure and the interior of A, respectively. The letters 
N, Q and R stand for the set of natural, rational and real numbers, respectively. Cj 
denotes the set of all continuity points of / : X —• R. The terminology concerning 
topology comes from [3]. 

Recall (e.g. [4]) that a function / : X -+ R is cliquish at a point * 6 X if for each 
e > 0 and each neighbourhood U of x there is a nonempty open set G C U such that 
l/(y) - /(*)l < £ for each y, z € G. A function / : X -* R is said to be cliquish if it 
is cliquish at each point x € X. 

A function / : X —• R is quasicontinuous at a point x £ X if for each neighbour
hood U of x and each neighbourhood V of f(x) there is a nonempty open set G C U 

such that f(G) C V. Denote by Qj the set of all points at which / is quasicontinuous. 
If Qj = X, then / is said to be quasicontinuous. 

It is easy to see that if / , g: X -+ R are cliquish, then / + g is cliquish ([6]). 
In [2] it is shown that every cliquish function / : R —• R is the sum of four quasicon

tinuous functions. In [5] it is proved that every cliquish function / : Rm '—> R is the 
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sum of six quasicontinuous functions. And in [6] it is shown that every cliquish func
tion / : X —* R is the sum of four quasicontinuous functions provided X is a Baire 
separable metrizabie space without isolated points. In this paper I show that such 
a function is the sum of three quasicontinuous functions. Moreover, the assumption 
aX is Baire without isolated points" may be omitted. 

Lemma 1. ([6; Theorem 3]) Let X be a Baire separable metrizabie space without 
isolated points. Let w: X —• R be a cliquish function such that w~l(Q) is dense in 
X. Then there exist quasicontinuous functions *, t: X —> R such that w = s +1. 

Lemma 2. Let X be a Baire separable metrizabie space without isolated points. 
Then every cliquish function f: X —• R is the sum of three quasicontinuous functions. 

Proof. Denote A = {x e X: wj(x) ^ 1} (u>/ is the oscillation of /). The 
cliquishness of / yields that A is nowhere dense. Since Cj is dense ([1]) in X we may 
define g: X —• R as 

{ lim 

/(«) 

limsup /(ti), for x Є X — Л, 

for x Є A. 

Evidently 

(1) f(x) = g(x) for each x e Cj. 

Let £ € X-A. Let U be a neighbourhood of x and e> 0. Then there is u € CjC\U 
such that |/(u) - g(x)\ < §. There is an open neighbourhood G C U of u such that 
l/(«0-/(»)l < § for <»<* y € G. Hence for each yeGwe have |/(u)-^(y)| ^ § and 
therefore |$(*) - g(y)\ ^ \g(x) - f(u)\ + |/(ti) - $(y)| < e. This yields X - A c O , 
and 

(2) AT — Qt is nowhere dense. 

Since X - Qt is nowhere dense, Ct is dense and hence g is cliquish ([1]), Then 
h = f-gis cliquish and by (1) the set hrl(0) is dense in X. According to Lemma 
1 there are quasicontinuous functions *, t: X —• R such that fc = s + *. 

Let Jf be a countable base in X. Put .«/ = {B € # : Clfl C IntQ,}. Then 
i / = {AuM,...}. Let W C X - Int Qt be a countable dense subset of X - Int Qt. 
Then W = {^,},€A/, where u?< f ay for if jfc j and M = 9 or M = {1,2,. . . ,n} or 
M = N. 

Since s and $ are cliquish, the set C, O Ct is dense in X and by virtue of (2) also 
IntQt nC9f\Ctis dense in X. 

314 



t 

Let t 6 M. Since X— \J C\Ak is an open neighbourhood of if?{, there is a sequence 

i 
(v))j of points such that v) 6 (Int Q9C\Cg f)C9)- (J C1J4* and (vj)j converges to 

*=i 
Wi. Put 

£ = { t / } : t G M , j € N } . 

oo 

Since E f\ Ak is finite for each ib € N, E C (J Ak and X is Hausdorff, the set E is 
*=i 

discrete. Let E = {ai, a2» • • •} (where ar ^ a, for r ^ s). 
oo 

Let (Ai)n D e a sequence of open sets in X such that CI E = p| £>n and CI Dn+1 C 
n=l 

2Dn for each n G N. 
Let n € N. Since E is discrete, there is an open neighbourhood Vn of an such 

that Vn n E = {a n } . Then also Vn D CI F = {an}. (Indeed, if d € Vn D C\ E and 
d± an} then Vn - fan} is a neighbourhood of d and hence (Vn - {«n}) n F ^ 0, a 
contradiction.) Let Wn be a neighbourhood of an such that C\Wn C VnC\Dn. Then 

n - l 
/fn = Wn - U CI Wj is a neighbourhood of an. 

Denote Gn = / / n — {«n}- Then Gn = i /n — CI F. There is a one-to-one sequence 
(fcjj)jt of points in Gn converging to an. Denote 

F = { 6 £ : n , * e N } . 

It is easy to see that fcj* ̂  br
s for (n, it) 9-: (r, 5) and that F is discrete. We shall show 

that 
C1F = FUC1F. 

Evidently F C CI F, CI E C CI F. Let x € CI F. If x £ CI F, then there is n G N such 
that ar ^ CI -Dn+i • Then X—CI A1+1 *s a neighbourhood of ar and there is a sequence 
(xk)k in F - CIA1+1 converging to x. Then, with respect to the construction of F, 
for each Jb € N there are p(k),r(k) € N such that p(k) < n + 1 and ar* = i ( ^ . 
Hence there is p < n + 1 such that a;* = IP,^ for infinitely many ib. Thus we 
obtain a sequence in F n Gp converging to x. However, the set FClGp has a unique 
accumulation point ap £ E and x $ F, hence this sequence is constant except for 
finitely many members. This yields * € F and CI F = F U CI E. 

Hence we get CI F C\ (X - CI E) = F n (X - CI E). Therefore the set F in closed 
in X - CIE. Let Q = {g1} g2,. -.} (one-to-one sequence). Let *r: N —> Q x N be a 
bijection (i.e. *(n) = far,*)) and let K: Q X N -> Q, ic(gr,s) = gr. 

Define a function p: F —• R by: 

PM) = «(*(*)). 

315 



Since F is dicrete, p is continuous on F. Since F is closed in X - CI E, there is a 
continuous function k: X - CI E - • R such that k(x) = p(-e) for each x € .F. 

Now define a function ro: X —> R by: 

- C 7 £ , 
m( v 10, ІfxЄC/fľ. 

Further, define functions f\, /a, /3: X —• R as: 

/i = 9 -• w»t 

/2 = 5 + ro, 

/3 = <. 

Then /i + /a + /* = /. We shall show that /, (i = 1,2,3) are quasicontinuous. 
Since m is continuous on X — CI E and £ is quasicontinuous on X — Clf, / i is 
quasicontinuous on X — CI E. 

Let x € CI E. Let [/ be a neighbourhood of x and let £ > 0. Then there is n € N 
such that an € U. Since an € Cg1 there is an open neighbourhood V of an such that 
WO - 0(«n)| < | for each t € V. Let i € N be such that W«n) - g(x) - qj\ < f. 
Then there is *r0 € N such that 6J € V for each * ^ Jb0. 

Let r > to be such that *(ir(r)) = gj. Since tjf € .K — CI 2?, there is an open 
neighbourhood H C V of 6? such that |ro(0 - m(6?)| < f for each teH. Therefore 
for each t € H we have 

| / i (0 - / i(«) | « WO - m(0 - < 

WO - * K ) I + W««) - 9(*) - « | + |« - m(*;)| + |m(t?) - m(0l < e. 

Hence / i is quasicontinuous at x. Similarly we can prove that fa is quasicontinuous. 
D 

Lemma 3. Let X be a Baire separable metrizable space. Then every cliquish f: 
X —• R is the sum of three quasicontinuous functions. 

P r o o f . Let D be the set of all isolated points of X and let B = X - CI D. Then 
9 « f[B is cliquish and according to Lemma 2 there are quasicontinuous functions 
9i,g2i93> B —• R such that g = g% + £2 + 03- Let W G Cl-D - D be a countable 
dense subset of CID - D. Then W = {ti;,-: t € Jtf}, where wr £ w, for r ^ $ 
and M C N. For each i € M there is a sequence (trj); in D converging to w,* such 
that t>j jfc vj for (t,j) ^ (*•,*)• Let Q = {gi,g2>---} (one-to-one sequence) and 
I = {2,4,6,. . . , 2 ; , . . . } . 
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Let »: L — Q x N be a bijectioii (>e. .r(2j) .= (?,.,«)) and let K: Q X N 
K(9->*) = ?-• Define functions f\,hth'- X -+R by: 

/-(«) 

*(*(2І)), І fäГ S t ł ^ , 

( » ) = < fi(-0> if x € ß , 

. / (*) , otherwise, 

Í / ( * ) - « ( * ( - . . ) ) , if.ç = t4J-, 

= { 92І*)> if x Є B, 

lo, otherwise, 

/зW = 
ffз(ж), if x Є B, 

otherwise. 

Then/=/1+/2 + /3. 
We shall show that /,- (i = 1,2,3) are quasicontinuous. It suffices to verify that 

/i is quasicontinuous at x € C1D - D. Let x € CI D - D, let 1/ be an open 
neighbourhood of x and £ > 0. Then there is m € N such that |</m — f(x)\ < t. Let 
i € A# be such that Wi € 1/ and j € N such that v^ 6 1/ and K(IT(2J)) = qm. Then 
{vjy} is a nonempty open subset of U and hence f\ is quasicontinuous at x. Q 

Lemma 4. Let X be a topological space, let D be a dense subset of X. Let f: 
D —* R be a cliquish function. Then there is a cliquish function g: X —• R such that 
9\D = /• 

Proof . Denote A = {x € X: limsup /(ti) € {—oo,oo}}. 
t4-*.r,t4GD 

Let B be an open nonempty set in X. Then there is z € BOZJ and the cliquishness 
of / at z yields that there is an open nonempty set G in .X such that / is bounded 
on G O D. Then G O A = 0 and .4 is nowhere dense. 

Define g: X *-* R by: 

{ limsup /(ti), for a? € (X — A) — /?, 
u—r,ti€D 

/(*), for a: € A 
0, fora?€-4-.D. 

Then g\o = / . We shall show that g is cliquish . Let x 6 X — .4, let U be an open 
neighbourhood of a: and e > 0. Then there is z 6 UC\D and the cliquishness of f at z 
implies that there is an open nonempty set H such that H CU and |/(0~~/(*)l < § 
for each * , < € / / O Z>. Thus there is a 6 R such that f(t) € (a - §,a + §) for each 
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t € HC\D. Then limsup/(0 € [a-§,a+§]for each j/€ // and hence \g(y)-a\ ^ § 

for each y € H - £>. Evidently |^(y) - a| < § also for y 6 -D H # . 
Let a, < € H. Then |̂ («) - g(t)\ ^ |p(«) - «| + MO - al < €- H e n c e 9 » cliquish at 

a?. Since J4 is nowhere dense and the set of all cliquishness points of g is closed ([4]), 
g is cliquish on X. • 

Remark 1. If X is a Baire separable metrizable space and / : X —• R is a 
cliquish function in the Baire class a, then it is the sum of three quasicontinuous 
functions in the Baire class a. 

Proof . I f / i s a cliquish function in the Baire class o, then by [6; Corollary 1] 
the functions *, t in Lemma 1 are in the Baire class a. Since the function g is in the 
Baire class <* as well, the functions / i , f2f fz in Lemma 2 are in the Baire class a. 
It is easy to see that then also the functions f\, f2i h in Lemma 3 are ih the Baire 
class a. D 

Theorem. Let X be a separable metrizable (= T3 second countable) space. Then 
every cliquish f:X—>His the sum of three quasicontinuous functions. 

Proof. Let d be a metric which metrizes the space X and let (.K,d) be the 
completion of (X,d). Then X is a Baire separable metrizable space. According 
to Lemma 4 there is a cliquish function g: X —• R such that g\x = / . Accord
ing to Lemma 3 there are quasicontinuous functions £1,02103: X —• R such that 
g = gx + g2 + £3. Denote /,- = (gi)\x (• = 1,2,3). Since the restriction of a qua
sicontinuous function on a dense subset is quasicontinuous, /,• are quasicontinuous 
functions. Evidently / = f\ + h + h- • 

Remark 2. The assumption "X is T3 second countable" cannot be replaced 
by UX is normal second countable". The space X = R with the topology ^ , where 
j 4 € ^ i f f j 4 = 0orj4 = (a, 00) (where a 6 R) is normal second countable, every 
quasicontinuous function on X is constant, however there are nonconstant cliquish 
functions. 

Problem. Is every cliquish function / : X —• R (X as in Theorem) the sum of 
two quasicontinuous functions? 
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Súhrn 

SÚCTY KVÁZISPOJITÝCH FUNKCIÍ 

JAN BORSÍK 

V práci je dokázané, že každá reálna kfukatá funkci a definovaná na separabilnom met-
rizovatefnom priestore je súčtom troch kvázispojitých funkcií. 

Author's address: Matematický ústav SAV, Gresakova 6, 04001 Košice, Slovakia. 
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