Mathematic Bohemia

Ján Borsík

Sums of quasicontinuous functions

Mathematica Bohemica, Vol. 118 (1993), No. 3, 313-319

Persistent URL: http://dml.cz/dmlcz/125925

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SUMS OF QUASICONTINUOUS FUNCTIONS

Jín Borsík,* Kosice

(Received June 22, 1992)

Summary. It is proved that every real cliquish function defined on a separable metrizable space is the sum of three quasicontinuous functions.

Keywords: Quasicontinuous function, cliquish function
AMS classification: 54C30

In this paper I show that every cliquish function $f: X \rightarrow R$, where X is a separable metrizable space, is the sum of three quasicontinuous functions.

In what follows X denotes a topological space. For a subset A of a topological space denote by $\mathrm{Cl} A$ and $\operatorname{Int} A$ the closure and the interior of A, respectively. The letters \mathbf{N}, \mathbf{Q} and \mathbf{R} stand for the set of natural, rational and real numbers, respectively. C_{f} denotes the set of all continuity points of $f: X \rightarrow \mathbf{R}$. The terminology concerning topology comes from [3].

Recall (e.g. [4]) that a function $f: X \rightarrow R$ is cliquish at a point $x \in X$ if for each $\varepsilon>0$ and each neighbourhood U of x there is a nonempty open set $G \subset U$ such that $|f(y)-f(z)|<\varepsilon$ for each $y, z \in G$. A function $f: X \rightarrow R$ is said to be cliquish if it is cliquish at each point $x \in X$.

A function $f: X \rightarrow R$ is quasicontinuous at a point $x \in X$ if for each neighbourhood U of x and each neighbourhood V of $f(x)$ there is a nonempty open set $G \subset U$ such that $f(G) \subset V$. Denote by Q_{f} the set of all points at which f is quasicontinuous. If $Q_{f}=X$, then f is said to be quasicontinuous.

It is easy to see that if $f, g: X \rightarrow R$ are cliquish, then $f+g$ is cliquish ([6]).
In [2] it is shown that every cliquish function $f: R \rightarrow R$ is the sum of four quasicontinuous functions. In [5] it is proved that every cliquish function $f: \mathbf{R}^{\boldsymbol{m}} \rightarrow \mathbf{R}$ is the

[^0]sum of six quasicontinuous functions. And in [6] it is shown that every cliquish function $f: X \rightarrow \mathbf{R}$ is the sum of four quasicontinuous functions provided X is a Baire separable metrizable space without isolated points. In this paper I show that such a function is the sum of three quasicontinuous functions. Moreover, the assumption " X is Baire without isolated points" may be omitted.

Lemma 1. ([6; Theorem 3]) Let X be a Baire separable metrizable space without isolated points. Let $w: X \rightarrow \mathbf{R}$ be a cliquish function such that $w^{-1}(0)$ is dense in X. Then there exist quasicontinuous functions $s, t: X \rightarrow \mathbf{R}$ such that $w=s+t$.

Lemma 2. Let X be a Baire separable metrizable space without isolated points. Then every cliquish function $f: X \rightarrow \mathbf{R}$ is the sum of three quasicontinuous functions.

Proof. Denote $A=\left\{x \in X: \omega_{f}(x) \geqslant 1\right\}\left(\omega_{j}\right.$ is the oscillation of f). The cliquishness of f yields that A is nowhere dense. Since C_{f} is dense ($[1]$) in X we may define $g: X \rightarrow \mathbf{R}$ as

$$
g(x)= \begin{cases}\limsup _{u \rightarrow x, u \in C_{f}} f(u), & \text { for } x \in X-A \\ f(x) & \text { for } x \in A\end{cases}
$$

Evidently

$$
\begin{equation*}
f(x)=g(x) \quad \text { for each } x \in C_{f} \tag{1}
\end{equation*}
$$

Let $x \in X-A$. Let U be a neighbourhood of x and $\varepsilon>0$. Then there is $u \in C_{f} \cap U$ such that $|f(u)-g(x)|<\frac{\epsilon}{2}$. There is an open neighbourhood $G \subset U$ of u such that $|f(u)-f(y)|<\frac{c}{2}$ for each $y \in G$. Hence for each $y \in G$ we have $|f(u)-g(y)| \leqslant \frac{c}{2}$ and therefore $|g(x)-g(y)| \leqslant|g(x)-f(u)|+|f(u)-g(y)|<\varepsilon$. This yields $X-A \subset Q_{g}$ and

$$
\begin{equation*}
X-Q_{g} \text { is nowhere dense. } \tag{2}
\end{equation*}
$$

Since $X-Q$, is nowhere dense, C_{g} is dense and hence g is cliquish ([1]). Then $h=f-g$ is cliquish and by (1) the set $h^{-1}(0)$ is dense in X. According to Lemma 1 there are quasicontinuous functions $s, t: X \rightarrow R$ such that $h=s+t$.

Let \mathscr{X} be a countable base in X. Put $\mathscr{A}=\left\{B \in \mathscr{S}: \mathrm{Cl} B \subset\right.$ Int $\left.Q_{g}\right\}$. Then $\mathscr{A}=\left\{A_{1}, A_{2}, \ldots\right\}$. Let $W \subset X-\operatorname{Int} Q_{\text {, }}$ be a countable dense subset of $X-\operatorname{Int} Q_{g}$. Then $W=\left\{w_{i}\right\}_{i \in M}$, where $w_{i} \neq w_{j}$ for $i \neq j$ and $M=0$ or $M=\{1,2, \ldots, n\}$ or $M=\mathbf{N}$.

Since s and g are cliquish, the set $C_{s} \cap C_{g}$ is dense in X and by virtue of (2) also Int $Q_{g} \cap C_{g} \cap C_{g}$ is dense in X.

Let $i \in M$. Since $X-\bigcup_{k=1}^{i} \mathrm{Cl} A_{k}$ is an open neighbourhood of w_{i}, there is a sequence $\left(v_{j}^{i}\right)_{j}$ of points such that $v_{j}^{i} \in\left(\operatorname{lnt} Q_{g} \cap C_{z} \cap C_{g}\right)-\bigcup_{k=1}^{i} \operatorname{Cl} A_{k}$ and $\left(v_{j}^{i}\right)_{j}$ converges to w_{i}. Put

$$
E=\left\{v_{j}^{i}: i \in M, j \in N\right\}
$$

Since $E \cap A_{k}$ is finite for each $k \in N, E \subset \bigcup_{k=1}^{\infty} A_{k}$ and X is Hausdorff, the set E is discrete. Let $E=\left\{a_{1}, a_{2}, \ldots\right\}$ (where $a_{r} \neq a_{s}$ for $r \neq s$).

Let $\left(D_{n}\right)_{n}$ be a sequence of open sets in X such that $\mathrm{Cl} E=\bigcap_{n=1}^{\infty} D_{n}$ and $\mathrm{Cl} D_{n+1} C$ D_{n} for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Since E is discrete, there is an open neighbourhood V_{n} of a_{n} such that $V_{n} \cap E=\left\{a_{n}\right\}$. Then also $V_{n} \cap \mathrm{Cl} E=\left\{a_{n}\right\}$. (Indeed, if $d \in V_{n} \cap \mathrm{Cl} E$ and $d \neq a_{n}$, then $V_{n}-\left\{a_{n}\right\}$ is a neighbourhood of d and hence $\left(V_{n}-\left\{a_{n}\right\}\right) \cap E \neq 0$, a contradiction.) Let W_{n} be a neighbourhood of a_{n} such that $\mathrm{Cl} W_{n} \subset V_{n} \cap D_{n}$. Then $H_{n}=W_{n}-\bigcup_{j=1}^{n-1} \mathrm{Cl} W_{j}$ is a neighbourhood of a_{n}.

Denote $G_{n}=H_{n}-\left\{a_{n}\right\}$. Then $G_{n}=H_{n}-\mathrm{Cl} E$. There is a one-to-one sequence $\left(b_{k}^{n}\right)_{k}$ of points in G_{n} converging to a_{n}. Denote

$$
F=\left\{b_{k}^{n}: n, k \in \mathbf{N}\right\} .
$$

It is easy to see that $b_{k}^{n} \neq b_{s}^{r}$ for $(n, k) \neq(r, s)$ and that F is discrete. We shall show that

$$
\mathrm{Cl} F=F \cup \mathrm{Cl} E .
$$

Evidently $F \subset \mathrm{Cl} F, \mathrm{Cl} E \subset \mathrm{Cl} F$. Let $x \in \mathrm{Cl} F$. If $x \notin \mathrm{Cl} E$, then there is $n \in \mathbb{N}$ such that $x \notin \mathrm{Cl} D_{n+1}$. Then $X-\mathrm{Cl} D_{n+1}$ is a neighbourhood of x and there is a sequence $\left(x_{k}\right)_{k}$ in $F-\mathrm{Cl} D_{n+1}$ converging to x. Then, with respect to the construction of F, for each $k \in N$ there are $p(k), r(k) \in N$ such that $p(k)<n+1$ and $x_{k}=b_{r(k)}^{p(k)}$. Hence there is $p<n+1$ such that $x_{k}=b_{r(k)}^{p}$ for infinitely many k. Thus we obtain a sequence in $F \cap G_{p}$ converging to x. However, the set $F \cap G_{p}$ has a unique accumulation point $a_{p} \in E$ and $x \notin E$, hence this sequence is constant except for finitely many members. This yields $x \in F$ and $\mathrm{Cl} F=F \cup \mathrm{Cl} E$.

Hence we get $\mathrm{Cl} F \cap(X-\mathrm{Cl} E)=F \cap(X-\mathrm{Cl} E)$. Therefore the set F is closed in $X-\mathrm{Cl} E$. Let $\mathbf{Q}=\left\{q_{1}, q_{2}, \ldots\right\}$ (one-to-one sequence). Let $\pi: \mathbf{N} \rightarrow \mathbf{Q} \times \mathbf{N}$ be a bijection (i.e. $\left.\pi(n)=\left(q_{r}, s\right)\right)$ and let $\kappa: \mathbf{Q} \times N \rightarrow \mathbf{Q}, \kappa\left(q_{r}, s\right)=q_{r}$.

Define a function $\boldsymbol{p}: \boldsymbol{F} \rightarrow \mathbf{R}$ by:

$$
p\left(b_{k}^{n}\right)=\kappa(\pi(k)) .
$$

Since F is dicrete, p is continuous on F. Since F is closed in $X-\mathrm{Cl} E$, there is a continuous function $k: X-\mathrm{Cl} E \rightarrow \mathrm{R}$ such that $k(x)=p(x)$ for each $x \in F$.

Now define a function $m: X \rightarrow R$ by:

$$
m(x)= \begin{cases}k(x), & \text { if } x \in X-C l E, \\ 0, & \text { if } x \in C l E .\end{cases}
$$

Further, define functions $f_{1}, f_{2}, f_{3}: X \rightarrow R$ as:

$$
\begin{aligned}
& f_{1}=g-m, \\
& f_{2}=s+m, \\
& f_{3}=t .
\end{aligned}
$$

Then $f_{1}+f_{2}+f_{3}=f$. We shall show that $f_{i}(i=1,2,3)$ are quasicontinuous. Since m is continuous on $X-\mathrm{Cl} E$ and g is quasicontinuous on $X-\mathrm{Cl} E, f_{1}$ is quasicontinuous on $X-\mathrm{Cl} E$.

Let $x \in C l E$. Let U be a neighbourhood of x and let $\varepsilon>0$. Then there is $n \in N$ such that $a_{n} \in U$. Since $a_{n} \in C_{g}$, there is an open neighbourhood V of a_{n} such that $\left|g(t)-g\left(a_{n}\right)\right|<\frac{e}{4}$ for each $t \in V$. Let $j \in N$ be such that $\left|g\left(a_{n}\right)-g(x)-q_{j}\right|<\frac{c}{4}$. Then there is $k_{0} \in N$ such that $b_{k}^{n} \in V$ for each $k \geqslant k_{0}$.

Let $r>k_{0}$ be such that $\kappa(\pi(r))=q_{j}$. Since $b_{r}^{n} \in X-\mathrm{Cl} E$, there is an open neighbourhood $H \subset V$ of b_{r}^{n} such that $\left|m(t)-m\left(b_{r}^{n}\right)\right|<\frac{c}{4}$ for each $t \in H$. Therefore for each $\boldsymbol{t} \in \boldsymbol{H}$ we have

$$
\begin{aligned}
& \left|f_{1}(t)-f_{1}(x)\right|=|g(t)-m(t)-g(x)| \leqslant \\
& \quad\left|g(t)-g\left(a_{n}\right)\right|+\left|g\left(a_{n}\right)-g(x)-q_{j}\right|+\left|q_{j}-m\left(b_{r}^{n}\right)\right|+\left|m\left(b_{r}^{n}\right)-m(t)\right|<\varepsilon .
\end{aligned}
$$

Hence f_{1} is quasicontinuous at \boldsymbol{x}. Similarly we can prove that $f_{\mathbf{2}}$ is quasicontinuous.

Lemma 3. Let X be a Baire separable metrizable space. Then every cliquish f : $X \rightarrow \mathbf{R}$ is the sum of three quasicontinuous functions.

Proof. Let D be the set of all isolated points of X and let $B=X-\mathrm{Cl} D$. Then $g=f_{\mid B}$ is cliquish and according to Lemma 2 there are quasicontinuous functions $g_{1}, g_{2}, g_{3}: B \rightarrow R$ such that $g=g_{1}+g_{2}+g_{3}$. Let W CCl $D-D$ be a countable dense subset of $\mathrm{Cl} D-D$. Then $W=\left\{w_{i}: i \in M\right\}$, where $w_{r} \neq w_{s}$ for $r \neq s$ and $M \subset N$. For each $i \in M$ there is a sequence $\left(v_{j}^{i}\right)_{j}$ in D converging to w_{i} such that $v_{j}^{i} \neq v_{s}^{r}$ for $(i, j) \neq(r, s)$. Let $\mathbf{Q}=\left\{q_{1}, q_{2}, \ldots\right\}$ (one-to-one sequence) and $L=\{2,4,6, \ldots, 2 j, \ldots\}$.

Let $\pi: L \rightarrow \mathbf{Q} \times \mathbf{N}$ be a bijection (i.e. $\boldsymbol{\pi}(2 \boldsymbol{j})=\left(q_{r}, s\right)$) and let $\kappa: \mathbf{Q} \times \mathbf{N} \rightarrow \mathbf{Q}$, $\kappa\left(q_{r}, s\right)=q_{r}$. Define functions $f_{1}, f_{2}, f_{3}: X \rightarrow R$ by:

$$
\begin{gathered}
f_{1}(x)= \begin{cases}\kappa(\pi(2 j)), & \text { if } x=v_{2 j}^{i}, \\
g_{1}(x), & \text { if } x \in B, \\
f(x), & \text { otherwise, },\end{cases} \\
f_{2}(x)= \begin{cases}f(x)-\kappa(\pi(2 j)), & \text { if } x=v_{2 j}^{i}, \\
g_{2}(x), & \text { if } x \in B, \\
0, & \text { otherwise, }\end{cases} \\
f_{3}(x)= \begin{cases}g_{3}(x), & \text { if } x \in B, \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then $f=f_{1}+f_{2}+f_{3}$.
We shall show that $f_{i}(i=1,2,3)$ are quasicontinuous. It suffices to verify that f_{1} is quasicontinuous at $x \in \operatorname{Cl} D-D$, Let $x \in \operatorname{Cl} D-D$, let U be an open neighbourhood of x and $\varepsilon>0$. Then there is $m \in N$ such that $\left|q_{m}-f(x)\right|<\varepsilon$. Let $i \in M$ be such that $w_{i} \in U$ and $j \in N$ such that $v_{2 j}^{i} \in U$ and $\kappa(\pi(2 j))=q_{m}$. Then $\left\{v_{2 j}^{i}\right\}$ is a nonempty open subset of U and hence f_{1} is quasicontinuous at x.

Lemma 4. Let X be a topological space, let D be a dense subset of X. Let f : $D \rightarrow \mathbf{R}$ be a cliquish function. Then there is a cliquish function $g: X \rightarrow \mathbf{R}$ such that $g_{1 D}=f$.

$$
\text { Proof. Denote } A=\left\{x \in X: \limsup _{u \rightarrow x, u \in D} f(u) \in\{-\infty, \infty\}\right\} \text {. }
$$

Let B be an open nonempty set in X. Then there is $z \in B \cap D$ and the cliquishness of f at z yields that there is an open nonempty set G in X such that f is bounded on $G \cap D$. Then $G \cap A=0$ and A is nowhere dense.

Define $g: X \rightarrow R$ by:

$$
g(x)= \begin{cases}\limsup _{u \rightarrow x, u \in D} f(u), & \text { for } x \in(X-A)-D, \\ f(x), & \text { for } x \in D, \\ 0, & \text { for } x \in A-D .\end{cases}
$$

Then $g_{\mid D}=f$. We shall show that g is cliquish. Let $x \in X-A$, let U be an open neighbourhood of x and $\varepsilon>0$. Then there is $z \in U \cap D$ and the cliquishness of f at z implies that there is an open nonempty set H such that $H \subset U$ and $|f(t)-f(s)|<\frac{c}{3}$ for each $s, t \in H \cap D$. Thus there is $a \in R$ such that $f(t) \in\left(a-\frac{f}{3}, a+\frac{9}{3}\right)$ for each
$t \in H \cap D$. Then $\limsup _{t \rightarrow y, t \in D} f(t) \in\left[a-\frac{c}{3}, a+\frac{c}{3}\right]$ for each $y \in H$ and hence $|g(y)-a| \leqslant \frac{c}{3}$ for each $y \in H-D$. Evidently $|g(y)-a| \leqslant \frac{e}{3}$ also for $y \in D \cap H$.

Let $s, t \in H$. Then $|g(s)-g(t)| \leqslant|g(s)-a|+|g(t)-a|<\varepsilon$. Hence g is cliquish at x. Since A is nowhere dense and the set of all cliquishness points of g is closed ([4]), g is cliquish on X.

Remark 1. If X is a Baire separable metrizable space and $f: X \rightarrow \mathbf{R}$ is a cliquish function in the Baire class α, then it is the sum of three quasicontinuous functions in the Baire class α.

Proof. If f is a cliquish function in the Baire class α, then by [6; Corollary 1] the functions s, t in Lemma 1 are in the Baire class α. Since the function g is in the Baire class α as well, the functions f_{1}, f_{2}, f_{3} in Lemma 2 are in the Baire class α. It is easy to see that then also the functions f_{1}, f_{2}, f_{3} in Lemma 3 are in the Baire class α.

Theorem. Let X be a separable metrizable ($=T_{3}$ second countable) space. Then every cliquish $f: X \rightarrow \mathbf{R}$ is the sum of three quasicontinuous functions.

Proof. Let d be a metric which metrizes the space X and let (\tilde{X}, \tilde{d}) be the completion of (X, d). Then \tilde{X} is a Baire separable metrizable space. According to Lemma 4 there is a cliquish function $g: \tilde{X} \rightarrow \mathbf{R}$ such that $g_{\mid X}=f$. According to Lemma 3 there are quasicontinuous functions $g_{1}, g_{2}, g_{3}: \tilde{X} \rightarrow \mathbf{R}$ such that $g=g_{1}+g_{2}+g_{3}$. Denote $f_{i}=\left(g_{i}\right)_{\mid X}(i=1,2,3)$. Since the restriction of a quasicontinuous function on a dense subset is quasicontinuous, f_{i} are quasicontinuous functions. Evidently $f=f_{1}+f_{2}+f_{3}$.

Remark 2. The assumption " X is T_{3} second countable" cannot be replaced by " X is normal second countable". The space $X=\mathbf{R}$ with the topology \mathscr{T}, where $A \in \mathscr{T}$ iff $A=0$ or $A=(a, \infty)$ (where $a \in R$) is normal second countable, every quasicontinuous function on X is constant, however there are nonconstant cliquish functions.

Problem. Is every cliquish function $f: X \rightarrow R(X$ as in Theorem) the sum of two quasicontinuous functions?

References

[1] Dobos̀, J. and Šalát, T.: Cliquish functions, Riemann integrable functions and quasiuniform convergence, Acta Math. Univ. Comen. 40-41 (1982), 219-223.
[2] Grande, Z.: Sur les fonctions cliquish, Časopis pést. mat. 110 (1985), 225-236.
[3] Kelley, J. L.: General Topology, New York, 1955.
[4] Lipinski, J.S. and Salát, T.: On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21 (1971), 484-489.
[5] Stronska, E.: L'espace linéaire des fonctions cliquées sur $\boldsymbol{R}^{\boldsymbol{n}}$ est généré par les fonctions quasi-continues, Math. Slovaca 39 (1989), 155-164.
[6] Stronska, E.: On the group generated by quasicontinuous functions, Real Analysis Exchange 17 (1991-92), 579-589.

Súhrn

SƯČTY KVÁZISPOJITY̛CH FUNKCII

JÁn Borsík

V práci je dokázané, že každá reálna klukatá funkcia definovaná na separabilnom metrizovatefnom priestore je súčtom troch kvázispojitých funkcií.

Author's address: Matematický ústav SAV, Gres̉åkova 6, 04001 Košice, Slovakia.

[^0]: * Supported by Grant GA-SAV 367/91

