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ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SECOND ORDER 

QUASILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF 

NEUTRAL TYPE 

TAKASI KUSANO, Fukuoka, PAVOL MARUSIAK, Zilina 

(Received .February 13, 1998) 

Abstract. This paper establishes existence of nonoscillatory solutions with specific asymp
totic behaviors of second order quasiiinear functional differential equations of neutral type. 
Then sufficient, sufficient and necessary conditions are proved under which every solution 
of the equation is either oscillatory or tends to zero as t —> oo. 

Key-words: quasiiinear differential equations of neutral type, oscillatory, non-oscillatory 
solutions, Schauder-Tychonoff fixed point theorem 
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1. INTRODUCTION 

We consider quasiiinear differential equations of neutral type in the form 

(E) (L*x(t))'+f(t,x(g(t))) = 0, t>a>0, 

where a > 0 is a constant and Lf is a differential operator defined by 

(1.1) L0x(t) = x(t)-p(t)x(h(t)), 

(1.2) L^x(t)=r(t)\L'0x(t)\a~lL'0x(t). 

The conditions we always assume for (E) are listed below: 

(Ci) r: [a, oo) -+ (0,oo) is continuous and 

/ ( r ( t ) ) ^ d t < o o ; 
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(C2) p: [a,oo) ->• [0,A] is continuous, 0 < A < 1; 
(C3) h: [a,oo) -+ R is continuous and strictly increasing, h(t) < t for t ^ a and 

Um h(t) = oo; 
(C4) g: [a, oo) -* R is continuous and lim g(t) = oo; 
(Cs) / : [a, oo) x R ->• R is continuous, f(t,x) is nondecreasing in x and satisfies 

xf(t, x)>0 for all x # 0 and t ^ o. 
Let (i > a be such that 

(1.3) t0 = min {h(tt), inf g(t)} >- o. 

By a proper solution of (E) we mean a continuous function x: [to, oo) —> R which 
has the property that Lox(t) and Lfx'(t) are continuously differentiable on [ti,oo), 
and satisfies the equation (E) at every point of [ti,oo). The solutions which vanish 
for all large t will be excluded from our consideration. A proper solution of (E) is 
said to be oscillatory if it has infinite sequences of zeros tending to infinity; otherwise 
a proper solution is said to be nonooscillatory. 

In this paper we shall study the oscillatory and nonoscillatory behavior of proper 
solutions of the equation (E). More specifically we first classify the set of nonoscilla
tory solutions of (E) according to their asymptotic behavior as t -* oo and present 
conditions for the existence of three types of nonoscillatory solutions of (E) with 
specified asymptotic behavior. We then establish criteria for oscillation of all proper 
solutions of the equation (E). 

Equations of the form (E) include as special cases the neutral equations of the 
type 

(Ei) (r(t)(x(t)~p(t)x(h(t))')' + f(t,x(g(t)))=Q, t^a 

and the non-neutral equations of the type 

(E2) (r(t)\x'(t)rlx'(t))' + f(t,x(g(t))) =0 , t > a, 

both of which have been objects of intensive investigation in recent years. We re
fer to the papers [3-5,7,16] and to [1,2,8-15,17,19,20] for typical oscillation and 
nonoscillation results regarding (Ex) and (E2), respectively. 

The oscillatory behavior of equations of the form (E) was first studied in the pa
per [6] under the hypothesis that the function r(t) defining the operator Lf satisfies 
XT>(r(s))^r ds = °o- The purpose of this paper is to turn our attention to the equa
tion (E) with r(t) satisfying the condition (Ci): J™(r(s))~ ds < oo and develop an 
oscillation theory for it in the same spirit as in [6]. 



Extensive use will be made of the function Qa(t) defined by 

(1.4) ea(t) = f (r(s))^ds, t>a. 

Note that ga(t) -» 0 as t —>• oo by (Ci). 

The following notation will be needed in the sequel: 

(1.5) hP](t) = i, h^(t) = h(h^1](t)), k = l,2,..., 
fc-i 

(1.6) Po(i) = l, Pk(t) = J{p(h^(t)), k = l,2,..., 
i=0 

(1.7) 7(t) = sup {s >. a;g(s) ^ t}, jh(t) = sup{s > a; h(s) < t}. 

2. CLASSIFICATION OF PROPER NONOSCILLATORY SOLUTIONS 

We begin by classifying the set of possible nonoscillatory solutions of the equation 
(E) according to their asymptotic behavior as t —y oo. 

Let N denote the set of all nonoscillatory solutions of (E). If x e N then it follows 
from (E) and the assumptions (Ci)-(C5) that the function 

(2.1) L0x(t) = x(t) - p(t)x(h(t)) 

has to be eventually of constant sign, so that either 

(2.2) x(t)L0x(t) > 0 

or 

(2.3) x(t)L0x(t) < 0 

for all sufficiently large t. 
We use the notation 

N+ = {x(t) 6 N: x(t)L0x(t) > 0 for all large t}, 

N~ = {x(t) € N: x(t)L0x(t) < 0 for all large t}. 

IfxeN- then by Remark 2.1 in [18] Mm x(t) = 0. Now in view of (C2), (Cs), 
lim L0x(t) = 0. From this we obtain 
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R e m a r k 2.1. If x(t) e N~, then lim x(t) = 0, lira L0x(t) ^ 0 

Let x(t) 6 N+ for t>-t\. Then from (2.1) we have 

(2.4) x(t) = L0x(t)+p(t)L0x(h(t))+P2(t)x(hW(t)), t^t2>. 7fc(.i). 

From (2.4) in view of (C2) we get 

(2.5) \x(t)\ >- \L0x(t)\, t>-t\. 

Repeating the application of (2.1) and (2.4) we obtain 

n ( t ) - l 

(2.6) x(t)= J2 Pk(t)L0x(hM(t)) + Pn{t)x(hW\t)), *^ .„ ( t )>7k(*«(0-i)). 
* = 0 

where n(t) denotes the least positive integer such that h(t\) < /iN<)] ^ t\-

Let Kx be a constant such that \x(t)\ ^ Kx for t e [h(t\),h\. If L0x(t) is nonde-

creasing on [ti,oo), then (2.6) in view of (C2) and (1,6) yields 

(2.7) \xit)\^\^EM + K^ tZtiZh-

L e m m a 2 . 1 . Letx(t) be a nonoscillatory solution of (E) on [t0,oo). Ifx(t) G N+, 

then there exist positive constants cl:c2 and T ^ t0 such that 

(2.8) . C\Qa(t) <. \L0x(t)\ <_ c2 for t >. T. 

P r o o f . Let x e N+. Without loss of generality we may suppose that x(t) > 0 

and L0x(t) > 0 for t >- t0. In view of the assumptions (C!)-(C5) the equation (E) 

implies that 

(2.9) L«x(t)=r(t)\L'0x(t)\a~1L'0x(t) 

is decreasing for t >- t\ ^ 7(*o)- Hence in view of (Ci) either L'0x(t) > 0 for t ^ i\ 

or there exists i2 > h such that L'0x(t) < 0 for t >. t2. 

i) Suppose that L'0x(t) > 0 on [*i,oo). Then with regard to (2.9) there exists a 

constant K\ > 0 such that Lax(t) = r(t)(L'0x(t))a ^ K" for t > h- From the last 

inequality we obtain L0x(t) - L0x(h) =S K\Qa(t\), which implies that 

(2.10) L0x(t)<_c2, t ^ h , 
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where c2 = L0x(h) + KiQa(ti). 

ii) Suppose that L'0x(t) < 0 on [i2>oo). Since Lfx(i) = -r(t)(-L'0x(t))a is de

creasing for t ^ t2 we have 

(2.11) -L'0x(t)>(r(t2))i\L'0x(t2)\(r(t))^, t^t2, . 

from which via integration over [t, oo), t > t2, it follows that 

(2.12) L0x(t)^ciea(t), t^t2, 

where Ci = (r(i2))« ll-c^fe)!- Let T = m a x { i i , i 2 } . The desired inequality (2.8) 

follows from (2.12) and (2.10). 

Using Lemma 2.1, (2.5) and (2.7) we obtain 

0 $J liminf |ir(£)[, limsup|a;(i)| < oo. 
£—>oo f -+oo 

Then in view of the monotonicity of Lox(t) there exists a limit lim \L0x(t)\ = 

bo < oo. Let liminf \x(t)\ = 0. Then by Lemma 1 and Lemma 2 [16] we have 

lim \L0x(t)\ = 0 and lim \x(t)\ = 0. 

Combining Lemma 2.1 with (2.6), (2.7), we conclude that the following three types 

of asymptotic behavior are possible for nonoscillatory solutions x(t) € N+ of (E): 

(I) 0<l iminf | a ; ( i ) | , limsup \x(t)\ < oo, 

\x(t) 
(II) lim x(t) = 0, limsup —-4- = oo, 

' *-•«> t-+oo ea(t) 

(III) 0 < lim inf M ^ i . lim sup M < oo. 
t-*oo £ a( i) t ^ Qa(t) 
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3. EXISTENCE OF PROPER NONOSCILLATORY SOLUTIONS 

In this section we establish criteria for the existence of nonoscillatory proper so
lutions of the equation (E) of type (I), (II) or (III) mentioned above. 

Theorem 3.1. The equation (E) has nonoscillatory solutions of type (I) if an 
only if 

(3.1) j r (^yj / (« , c ) ]ds ) °d*<oo , T£a 

for some constant c ^ 0. 

Proof. (The "only if" part.) Let x(t) be a nonoscillatory solution of (E) of 
type (I) on [to,co), t0 ~Z a. We may suppose that x(t) is eventually positive. Then 
there exist positive constants c, c\ and t\ ^ t0 such that 

(3.2) c «S x(g(t)) <. c\ for t ~£ t\. 

In view of (C4), (C5) and (3.2) we see from (E) that 

(3.3) (Lfx(t))' ^-f(t,c), t>h. 

The last inequality implies that Lfx(t) = r(t)\L'0x(t)\a~~1 L'0x(t) is decreasing on 
[ti,oo). Then in view of (C\), there exists a t2 "~z t\ such that L'0x(t) is either 
positive or negative for t ~z t2. 

i) Suppose that L'0x(t) > 0 on [t2, oo). Then, integrating (3.3) over [t2, t] we have 

[ f(s,c)ds^Lfx(t2), t~Zt2, 
Jt2 

which implies because of (C\) that 

~ y / ( S ) c)dsy*d .<oo. 

This shows that (3.1) is valid, 
ii) Suppose that L0x(t) < 0 on [t2,oo). Integration of (3.3) over [t2,t] gives 

r(t)\L'0x(t)\a > f f(s,c)< 
Jti 
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-i0x(t)>- ( - L t \f(S,C)\dSy, t >t2. 

Integrating the above inequality over [t2, co) and noting that x G N+ we see that 
(3.1) holds. 

(The "if" part.) Suppose that (3.1) holds for some constant c > 0. The case of 
a negative c can be treated similarly. Let 6 and d be positive constants such that 
0 < d < b\=± and f^f < c, where A is as in (C2). Take T^a such that 

(3.4) T0 = min{/i(T), inf g(t)} > a 

and 

(3.5) J™(^J*f(s,c)dsydt<l. 

Let C[TQ, co) be the locally convex space of all continuous functions defined on 
[To,oo) which are constant on [T0,T] with the topology of uniform convergence on 
any compact subinterval of [To, oo). 

Define a closed convex subset Y of C[Tb, oo) by 

Y = {y e C[T0, oo); b - d «C y(t) ^ b + d on [T, oo) 

&nd y(t)=y(T) on [T0,T]}. 

Using (2.5) we can associate to each y £ y the function y: [To, oo) —• R defined by 

•(?) 
-P(T)' 

y(t)= E ft(í)»(/.w(ť)) + p„(t)--f-^-, Í > T , 
(3.7) *=o P U ' 

where n(t) denotes the least positive integer such that To ̂  h^n^(t) ^ T. 
It is easy to verify that 

(3.8) y(t) = y(t)-p(t)y(h(t)), t>-T0, 

and 

(3.9) 6-d<j/(o^j?W<fr|. t ^ r -
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We now define an operator T: Y -> C[To, oo) by 

(Ty)(t) = b + jj (-L £ f(s,y(g(s))) d*) " dr, t > T, 

(Ty)(t) = (Ty)(T), To^t^T. 

If y e Y, then using (3.9), (3.5) and (C5) we obtain 

which shows that the operator T maps Y into Y. It is a matter of routine calculation 
to verify that T is a continuous mapping and that T(Y) is relatively compact in 
the topology of C[T0,oo). Therefore, the Schauder-Tychonoff fixed point theorem 
ensures the existence of an element yo 6 Y such that Tyo = j/o and y0 satisfies the 
integral equation 

i \r(r)JT 
(3.10) y0(t) = b+ {—- f(s,ў0(g(s))) ás dr, tž T, 

where y0(t) = y0(t) - y0(h(t)),t ^ T. 
Differentiating (3.10) we obtain that y0(t) is a nonoscillatory solution of (E) of 

type (I). 
This completes the proof. D 

Theorem 3.2. The equation (E) has nonoscillatory solutions of type (III) if and 
only if 

(3.11) / \f(t,CQa(t))\&t <co, T^a. 

for some constant c ^ 0. 

Proof . (The "only if" part.) Let x(t) be a type (Ill)-solution of (E) on [*o,co), 
t0 ^ a. We may suppose that x(t) is eventually positive. Then there exist positive 
constants c, c% and t\ ^ t0 such that 

(3.12) cQa(t) sC x(g(t)) < cl8a(t) for t > tx. 

In view of (3.12), (C4) and (C5), the equation (E) yields 

(3.13) (L?x(t))' ^-f(t,c8a(t)), t^h. 
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The last inequality implies that Lfx(t) = r(t)\L'0x(t)\a"~1 L'0x(t) is decreasing on 

[t\, oo). Then in view of (Ci) there exists a t2 ^ h such that L'0x(t) is either positive 

or negative for t ̂  12 • 

i) If L'0x(t) > 0 on [£2, oo), then integrating (3.13) over [t2, oo) we have 

/ f(t,cßa(t))dt <. Lax(t2) < oo. 

ii) If L'0x(t) < 0 on [t2,oo), then, in view of the monotonicity of Lax(t) = 

-r(t)\L'0x(t)\a, we have 

-L'0x(s)^{^f\L'0x(t)\, s>t>t2. 

Integration of the last inequality over [t, oo) gives 

(3.14) L0x(t) ^ (r(t))«\L'0x(t)\ga(t), t ̂  t2 

which, combined with the inequality following from the integration of (3.13), yields 

(3.15) {^^-y^r(t)\L'0x(t)\a^£f(s,cea(s))ds. 

Combining (3.15) with (2.6) and (3.12) shows that (3.11) holds as desired. 

(The "if" part.) Suppose that (3.11) holds for some nonzero constant c. We may 

suppose that c is positive. Let b and d be such that 0 < d < b\~^2, n JA° < c, 

where A is as in (C2). Take T ̂  a such that (3.4) holds and 

(3.16) / f(s,c8ax(t))dt<d. 

We define Y to be the closed convex subset of C[T0, oo) as follows: 

(3.17) Y = {yeC[T,oo): (b-d)«ga(t) <.y(t) < (b + d)°ga(t) on[T,oo) 

and y(t) = c6a(T) on [T0,T]}. 

With each y 6 Y we associate the function y defined by (3.7), Then it can be 

shown that the operator T: Y -» C[T0, oo) defined by 

(Ty)(t) = £°(-L(b + £ /(-,»(-(-))) ds) °) dr, t > T, 



and 
(Ty)(t) = (Ty)(T), T0^t^T 

is a continuous mapping which sends Y into a relatively compact subset of Y. By the 
Schauder-Tychonoff fixed point theorem there exists an element y0 e Y such that 
Tyo = j/o- This function ?/o = yo(t) satisfies the integral equation 

(3.18) yo(t) = jy(7^)(b + yf(s,y0(9(s))dsyyr, t^T, 

where y0(t) = y0(t) - y0(h(t)),t > T. 
Differentiating (3.18) we conclude that y0(t) is a nonoscillatory solution of (E) of 

type (III). • D 

Let us turn to the solutions of type (II) of (E). Unlike the solutions of types (I) 
and (III) we have been unable to characterize the existence of this type of solutions. 

Theorem 3.3. The equation (E) has nonoscillatory solutions of type (II) if 

1 (3.19) / Í-L r\f(s,c)\ds) dí<oo, 

for some constant c ^ 0 and 

(3.20) lX\f(t,k0a(t))\dt = X, 

for any k^Q. 

Proof . Suppose that (3.19) holds for some constant c > 0 . A parallel argument 
holds for the case of negative c. Let T be so large and d be such that 0 < dga (T) < c 
and 

(3.21) jy(^(dga(T) + jy f(s,c)ds^J " ) dr < d8a(T). 

We define a closed convex subset Y of C[T0,co) and a mapping T: y -* PO,OG) as 
follows: 

Y = {y e C[T0, oo); dga(t) s= y(t) <_ c on [T,oo) 

and y(t) = y(T) on [T0,T}}, 

(Ty)(t) = ^ (~^ (dga(T) + £ f(s, y(g(s))) da) " ) dr, t >- T, 

(Ty)(t) = (Ty)(T), To^t^T, 
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where y(t) denotes the function associated with y(t) via (3.7). Observe that 

for t >- T. It is a matter of routine calculation to verify that J7 is a continuous 

mapping and T(Y) is relatively compact in the topology of C[T0, oo). Therefore by 

the Schauder-Tychonoff fixed point theorem there exists a fixed element y0 £ Y such 

that Tyo = J/o and j/o satisfies the integral equation 

(3.22) yo(t)= JJ°(^(dea(T) + JT f(s,y0(g(s)))dsy')dr, t>-T, 

where y0(t) = y0(t) - y0(h(t)),t >. T. From (3.22) and (3.20) it follows that y0(t) is 

a nonoscillatory solution of (E) of type (II). O 

4. OSCILLATION OF PROPER SOLUTIONS 

In this section we give criteria for (E) to be almost oscillatory in the sense that 

N — N~ or equivalently every solution of (E) is either oscillatory or tends to zero 

as t --)• oo. In order to obtain such criteria we need stronger hypotheses on the 

nonlinearity of the function f(t,x) in (E) with respect to x. 

Defini t ion 4 . 1 . 

(i) The equation (E) is said to be strongly superlinear if there exists a constant 

/3 > a such that \x\~l3\f(t, x)\ is nondecreasing in \x\ for each fixed t >• a. 

(ii) The equation (E) is said to be strongly sublinear if there exists a constant 

0 < 7 < a such that \x\~~~'lf(t,x)\ is nonincreasing in \x\ for each fixed t J; a. 

T h e o r e m 4 . 1 . het the equation (E) be strongly superlinear. Suppose that 

(4.1) g(t) < t for t>-a. 

If 

(4.2) J \f(t,CQa(t))\dt = 00 

for all constants c # 0 then every proper solution of (E) is either oscillatory or tends 

to zero as t -+ oo. 



Proof . Let x(t) be a nonoscillatory solution of (E). Without loss of generality 
We suppose that x(g(t)) > 0 for t ^ t0. Then the equation (E) in view of (Ci)-
(C5) implies that the function y(t) = L0(t) is eventually of constant sign, i.e. either 
x e N+ or x e N~. 

I. Let x e N+. Then (2.5) and (2.8) hold and so the function y(t) = L0x(t) satisfies 

(4.3) x(t) >• y(t), t >. h 

and 

(4.4) ciea(t)^y(t)<.c2, t>h 

for some positive constants c1,c2 and t\ >• t0. 

Using the assumption (C5) and (4.3), we obtain from (E) 

(4.5) (L?x(t))'<-f(t,y(g(t))), t >-t2 = <y(h). 

The function Lfx(t) = r(t)\y'(t)\"~ly'(t) is decreasing on [t2,oo). Therefore there 
exists a T ^ t2 such that y'(t) is either positive or negative on [T, 00). 

i) Suppose that y'(t) > 0 on [T, 00). Integrating (4.5) from T to 00 and using (4.4) 
we have 

00 > г •(Т)(у'(Т)Т> Г 1(г,с1ва(д(1)))<И> Г}\1,с1ва(1))<И, 
Эт ^т 

which contradicts (4.2). 

ii) Suppose that y'(t) < 0 on [T, 00). If fi > a is the exponent of superlinearity of 
(E), then in view of (4.4) and the monotonicity of y(t) we have 

(ciQa(t)r0f(t,ciea(t)) > (y(g(t))^f(t,y(g(t))), t 2 T 

(4.6) f(t,y(g(t))) > (^ | | ) )"/(*><*&*(*)) . t > T-

On the other hand, since y'(t) < 0 on [T, 00) we have (3.14), i.e. 

(4.7) (-JrhT > ^ar(t)W(t)\a, t>Tx>-T. 

Integrating (4.5) from T\ to t, we get 

(4.8) -Lfx(t) > -L?x(t) +L^x(T1) >- [ f(s,y(g(s)))ds, t>Tx. 
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Noting that Lf (t) = ~r(t)W(t)\a < 0 and using (4.6)-(4.8) we obtain 

( y(0 r - . , 
•*-CiQa(t)< 

}(s,y(g(s)))ås 

_« t (_»W )ßf(s,ciea(s))ás, tžTi-
JTjCißa(s)/ 

Denote by z(t) the last integral in the above inequalities. We then have 

z'(t) - ^(—ffiYW'Watt)) > cr(z(t))rj(t,ciea(t)), t > Ti. 

We divide the above inequality by z(t)° and integrate it from T) to oo, obtaining 

<ha r f(t,ciea(t))dt^-^-Z(Tl)^ <O0, 
JTl p-a 

which contradicts (4.2). 
II. Let x e N~. Then Mm x(t) = 0 by Remark 2.1. 
The proof of Theorem 4.1 is complete. D 

Theorem 4.2. Let the equation (E) be strongly sublinear. Suppose that (4.1) 
holds. Every proper solution of (E) is either oscillatory or tends to 0 as t ->• oo if 
and only if 

(4.9) j T ^ - L j f | /( s ,c) | da) "dt = oo 

for all constants c ^ 0. 

Proof . The "only if" part follows from Theorem 3.1. 
To prove the "if" part we assume for a contradiction that (E) has a nonoscillatory 

solution x(t) such that lim inf \x(t)\ > 0 . Without loss of generality we may suppose 
that x(g(t)) > 0 for t >. t0. Then the equation (E) in view of (Ci)-(C5) implies that 
the function Lo(t) is eventually of constant sign, i.e. either x € N+ or x e N~. 

I. Let x e JV+. Then the function y(t) = L0x(t) satisfies (4.3) and (4.4). 
i) Suppose that y'(t) > 0 on |fi,oo). Then there exist K > 0 and t2 ^ h such 

that y(g(t)) > if for t ^ <2- It follows from (4.5) in view of (C5) that 

(L$x(t))'^-f(t,K), t>t2. 



Integrating this inequality from i2 to t yields 

(4.10) / f(s, K) ds ^ L?x(t2) - Lfx(t) sC Lfx(t2) < oo, 

which, in view of the assumption (Ci), implies 

r(4£ /(s^)ds)'di<°°-
This contradicts (4,9). 

ii) Suppose that y'(t) < 0 on [<i,oo). Using the sublinearity of (E) and (4.4) we 
find ' . 

(y(g(t))ry(t,y(g(t))) > cpf(t,c2), t > 7^) = t2, 

where 7 € (0,a) is the exponent of sublinearity. Combining (4.5) with (4.11) shows 
that 

(4.12) ~(L?x(t))' > cr(y(g(t))ry(t, 02), t > T2. 

Integrating (4.12) from T2 to t and using the decreasing nature of y and (4.1), we 
obtain 

r(t)\y'(t)\a > c2~'(y(t)r~> j ~ f(s,c2)ds, 

which is equivalent to 

(4.13) \y'(t)\(y(t))~i > c j " (j^jT f{s,c2)ds^ °,t> T2. 

Integrating (4.13) from T2 to 00 we conclude that 

which contradicts (4.9). 
II. Let x e N-. Then lim x(t) = 0 by Remark 2.1. 

This completes the proof of Theorem 4.2. • 
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