Mathematic Bohemia

Elena Wisztová
 On a Hamiltonian cycle of the fourth power of a connected graph

Mathematic Bohemica, Vol. 116 (1991), No. 4, 385-390

Persistent URL: http://dml.cz/dmlcz/126033

Terms of use:

(C) Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A HAMILTONIAN CYCLE OF THE FOURTH POWER OF A CONNECTED GRAPH

Elena Wisztová, Žilina

(Received November 21, 1989)

Summary. In this paper the following theorem is proved: Let G be a connected graph of order $p \geqq 4$ and let M be a matching in G. Then there exists a hamiltonian cycle C of G^{4} such that $E(C) \bigcap M=\emptyset$.

Keywords: Powers of graphs, hamiltonian cycles, matchings in graphs.
AMS Classification: 05C.

By a graph we will mean a finite undirected graph with no loops or multiple edges (a graph in the sense of [1] and [2]). If G is a graph, then we denote by $V(G), E(G)$, and $\Delta(G)$ the vertex set, the edge set, and the maximum degree of G, respectively. The number $|V(G)|$ is called the order of G. If $u, v, w \in V(G)$, then the degree of u in G and the distance between v and w in G will be denoted by $\operatorname{deg}_{G} u$ and $d_{G}(v, w)$, respectively.

If G is a graph and n is a positive integer, then the n-th power G^{n} of G is the graph defined as follows: $V\left(G^{n}\right)=V(G)$ and $E\left(G^{n}\right)=\left\{u v ; u, v \in V(G)\right.$ and $1 \leqq d_{G}(u, v) \leqq$ $\leqq n\}$.

We say that a graph F is a 1 -factor of a graph G if F is a regular graph of degree one, and at the same time a spanning subgraph of G. A set $M \subseteq E(G)$ is called a matching in G if no two edges in M are incident with the same vertex.

We now mention some results concerning regular factors and hamiltonian properties of the fourth power of a connected graph.

Theorem \mathbf{A} [3]. If G is a connected graph of even order $\geqq 4$, then G^{4} has a 3-factor F such that each component of F is a copy of K_{4} or $K_{3} \times K_{2}$.

Theorem B [4]. For every connected graph G of even order $\geqq 4, G^{4}$ has three . mutually edge-disjoint 1-factors.

Theorem C [7]. Let G be a connected graph of even order $\geqq 4$. Then there exist a hamiltonian cycle C of G^{3} and a 1-factor F of G^{4} such that C and F are edgedisjoint.

Theorem $\mathbf{D}[5]$. Let G be a connected graph of even order $\geqq 4$, and let H be
a triangle-free subgraph of G^{3} with $\Delta(H) \leqq 2$. Then there exists a 1-factor F of G^{4} such that $E(F) \cap E(H)=\emptyset$.

The following theorem is the main result of this note:
Theorem 1. Let G be a connected graph of order $p \geqq 4$ and let M be a matching in G. Then there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$.

To prove Theorem 1 we shall use five lemmas and two remarks. We say that an ordered pair $\left(T^{\prime}, r^{\prime}\right)$ is a rooted tree if T^{\prime} is a tree and $r^{\prime} \in V\left(T^{\prime}\right)$. We say that rooted trees $\left(T^{\prime}, r^{\prime}\right)$ and $\left(T^{\prime \prime}, r^{\prime \prime}\right)$ are isomorphic if T^{\prime} and $T^{\prime \prime}$ are isomorphic and there exists an isomorphism T^{\prime} onto $T^{\prime \prime}$ which maps r^{\prime} onto $r^{\prime \prime}$. Let T be a tree. Similarly as in [7], by a terminal subtree of T we mean a rooted tree $\left(T^{\prime}, r^{\prime}\right)$ with the properties that T^{\prime} is a subtree of T and for each $v \in V\left(T^{\prime}-r^{\prime}\right), \operatorname{deg}_{T^{\prime}} v=\operatorname{deg}_{T} v$.

Let $m \geqq 0$ and $n \geqq 1$ be integers, and let $u_{0}, \ldots, u_{m}, w_{1}, \ldots, w_{n}$ be mutually distinct vertices. We denote by A_{n} the path with

$$
V\left(A_{n}\right)=\left\{w_{1}, \ldots, w_{n}\right\} \quad \text { and } \quad E\left(A_{n}\right)=\left\{w_{i} w_{i+1} ; 1 \leqq i \leqq n-1\right\} .
$$

Similarly, we denote by $B_{m n}$ the path with

$$
\begin{aligned}
& V\left(B_{m n}\right)=\left\{u_{m}, \ldots, u_{0}, w_{1}, \ldots, w_{n}\right\} \text { and } \\
& E\left(B_{m n}\right)=\left\{u_{j} u_{j-1} ; m \geqq j>0\right\} \cup\left\{u_{0} w_{1}\right\} \cup\left\{w_{k} w_{k+1} ; 1 \leqq k \leqq n-1\right\}
\end{aligned}
$$

Finally, we define the following rooted tree:

$$
D_{m n}=\left(B_{m n}, u_{0}\right)
$$

Denote

$$
\begin{aligned}
& \mathscr{D}=\left\{D_{11}, D_{14}, D_{21}, D_{22}, D_{23}, D_{24}, D_{31}, D_{33}, D_{34}, D_{44}, D_{05}\right\}, \\
& \mathscr{D}^{\prime}=\mathscr{D}-\left\{D_{05}\right\} .
\end{aligned}
$$

Lemma 1. Let T be a tree of order $p \geqq 6$. Then there exists a terminal subtree of T which is isomorphic to one of the elements of \mathscr{D}.

Proof. Let δ denote the diameter of T. Obviously, there exists a terminal subtree (T_{0}, r_{0}) of T such that

$$
\begin{aligned}
& d_{T_{0}}\left(r_{0}, v\right) \leqq 5 \text { for every } v \in V\left(T_{0}\right) \text { and } \\
& d_{T_{0}}\left(r_{0}, v^{\prime}\right)=\min (5, \delta) \text { for at least one } v^{\prime} \in V\left(T_{0}\right) .
\end{aligned}
$$

It is easy to see that there exists a terminal subtree $\left(T^{\prime}, r^{\prime}\right)$ of T such that $V\left(T^{\prime}\right) \subseteq$ $\subseteq V\left(T_{0}\right)$, and $\left(T^{\prime}, r^{\prime}\right)$ is isomorphic to one of the elements of \mathscr{D}.

If G is a graph, then we denote by $\mathscr{H}(G), \overline{\mathscr{H}}(G)$ and $\mathscr{M}(G)$ the set of hamiltonian cycles of G, the set of hamiltonian paths of G and the set of matchings in G, respectively.

Lemma 2. Let $n \geqq 5$, and let M be a matching in A_{n}. Then there exists a hamiltonian $w_{1}-w_{2}$ path P of $\left(A_{n}\right)^{3}$ such that $E(P) \cap M=\emptyset$.

Proof. If $n=5$, then for a $i \in\{1,2,3\}$ matching $M_{i} \in \mathscr{M}\left(A_{5}\right)$ we determine $E\left(P_{i}\right)$:

$$
\begin{array}{ll}
M_{1}=\left\{w_{1} w_{2}, w_{3} w_{4}\right\}, & E\left(P_{1}\right)=\left\{w_{1} w_{3}, w_{3} w_{5}, w_{5} w_{4}, w_{4} w_{2}\right\} . \\
M_{2}=\left\{w_{1} w_{2}, w_{4} w_{5}\right\}, & E\left(P_{2}\right)=\left\{w_{1} w_{4}, w_{4} w_{3}, w_{3} w_{5}, w_{5} w_{2}\right\} . \\
M_{3}=\left\{w_{2} w_{3}, w_{4} w_{5}\right\}, & E\left(P_{3}\right)=\left\{w_{1} w_{4}, w_{4} w_{3}, w_{3} w_{5}, w_{5} w_{2}\right\} .
\end{array}
$$

The path $P_{i}, i \in\{1,2,3\}$ has the desired properties. For every matching $M^{\prime} \in \mathscr{M}\left(A_{5}\right)$ there exists $i \in\{1,2,3\}$ such that $M^{\prime} \subseteq M_{i}$.

Let $n \geqq 6$. Assume that for every tree A_{m}, where $5 \leqq m<n$, it is proved that for any matching $M^{*} \in \mathscr{M}\left(A_{m}\right)$ there exists a $w_{1}-w_{2}$ path $P^{*} \in \overline{\mathscr{H}}\left(\left(A_{m}\right)^{3}\right)$ such that $E\left(P^{*}\right) \cap M^{*}=\emptyset$.

Denote

$$
\begin{aligned}
& T_{0}=T-w_{1}, \quad M_{0}=M, \quad \text { if } \quad w_{1} w_{2} \notin M \text { and } \\
& M_{0}=M-\left\{w_{1} w_{2}\right\}, \quad \text { if } \quad w_{1} w_{2} \in M
\end{aligned}
$$

Then $5 \leqq\left|V\left(T_{0}\right)\right|<n, T_{0}$ is isomorphic to A_{n-1} and $M_{0} \in \mathscr{M}\left(T_{0}\right)$. It follows from the induction hypothesis that there exists a $w_{2}-w_{3}$ path $P_{0} \in \mathscr{\mathscr { H }}\left(\left(T_{0}\right)^{3}\right)$ such that $E\left(P_{0}\right) \cap M_{0}=\emptyset$. We define

$$
P=P_{0}+w_{1} w_{3} .
$$

Then $P \in \overline{\mathscr{H}}\left(\left(A_{n}\right)^{3}\right)$ has the desired properties.
Remark 1. Let M be a matching in A_{4}. Then there exists a hamiltonian $w_{1}-w_{3}$ path P of $\left(A_{4}\right)^{3}$ such that $E(P) \cap M=\emptyset$.

Lemma 3. Let $n \geqq 4$, and let M be a matching in A_{n}. Then there exists $C \in$ $\in \mathscr{H}\left(\left(A_{n}\right)^{4}\right)$ such that $E(C) \cap M=\emptyset$.

Proof. Now we distinguish two cases and several subcases.

1. Assume that $n=4$. From Remark 1 it follows that there exists a $w_{1}-w_{3}$ path $P \in \overline{\mathscr{H}}\left(\left(A_{4}\right)^{3}\right)$ such that $E(P) \cap M=\emptyset$. We put

$$
C=P+w_{1} w_{3} .
$$

2. Assume that $n \geqq 5$. It follows from Lemma 2 that there exists a $w_{1}-w_{2}$ path $P \in \mathscr{H}\left(\left(A_{n}\right)^{3}\right)$ such that $E(P) \cap M=\emptyset$.
2.1. Let $w_{1} w_{2} \notin M$. Then we put

$$
C=P+w_{1} w_{2} .
$$

2.2. $w_{1} w_{2} \in M$.
2.2.1. Assume that $n \in\{5,6\}$. For a matching $M_{i} \in \mathscr{M}\left(A_{n}\right)$ with $w_{1} w_{2} \in M_{i}$ we will determine $E\left(C_{i}\right)$ for $i \in\{1,2\}$. If $n=5$, then

$$
\begin{array}{ll}
M_{1}=\left\{w_{1} w_{2}, w_{3} w_{4}\right\}, & E\left(C_{1}\right)=\left\{w_{1} w_{4}, w_{4} w_{5}, w_{5} w_{2}, w_{2} w_{3}, w_{3} w_{1}\right\} \\
M_{2}=\left\{w_{1} w_{2}, w_{4} w_{5}\right\}, & E\left(C_{2}\right)=\left\{w_{1} w_{4}, w_{4} w_{2}, w_{2} w_{5}, w_{5} w_{3}, w_{3} w_{1}\right\}
\end{array}
$$

If $n=6$, then

$$
\begin{aligned}
& M_{1}=\left\{w_{1} w_{2}, w_{3} w_{4}, w_{5} w_{6}\right\} \\
& E\left(C_{1}\right)=\left\{w_{1} w_{3}, w_{3} w_{6}, w_{6} w_{2}, w_{2} w_{5}, w_{5} w_{4}, w_{4} w_{1}\right\} \\
& M_{2}=\left\{w_{1} w_{2}, w_{4} w_{5}\right\} \\
& E\left(C_{2}\right)=\left\{w_{1} w_{3}, w_{3} w_{2}, w_{2} w_{5}, w_{5} w_{6}, w_{6} w_{4}, w_{4} w_{1}\right\} .
\end{aligned}
$$

For every matching $M^{\prime} \in \mathscr{M}\left(A_{n}\right)$ with $w_{1} w_{2} \in M^{\prime}$ there exists $i \in\{1,2\}$ such that $M^{\prime} \subseteq M_{i}$.

2.2.2. Let $n \geqq 7$. Denote

$$
T_{0}=T-w_{1}-w_{2} \quad \text { and } \quad M_{0}=M-\left\{w_{1} w_{2}\right\}
$$

Then $5 \leqq\left|V\left(T_{0}\right)\right|=n-2, T_{0}$ is isomorphic to A_{n-2} and $M_{0} \in \mathscr{M}\left(T_{0}\right)$. It follows from Lemma 2 that there exists a $w_{3}-w_{4}$ path $P_{0} \in \overline{\mathscr{H}}\left(\left(T_{0}\right)^{3}\right)$ such that $E\left(P_{0}\right) \cap$ $\cap M_{0}=\emptyset$. There exists $x \in\left\{w_{5}, w_{6}\right\}$ such that $w_{3} x \in E\left(P_{0}\right)$. We define

$$
\dot{C}=P_{0}-w_{3} x+x w_{2}+w_{2} w_{3}+w_{3} w_{1}+w_{1} w_{4} .
$$

In each case $C \in \mathscr{H}\left(\left(A_{n}\right)^{4}\right)$ has the desired properties.
Remark 2. Let $M=\left\{w_{1} w_{2}, w_{2} w_{4}, w_{5} w_{6}\right\}$ be the matching in A_{6}. It is easy to show that there exists no hamiltonian cycle C of $\left(A_{6}\right)^{3}$ such that $E(C) \cap M=\emptyset$. This means that value 4 of the power in Lemma 3 is the best possible.

Lemma 4. Let T be a tree of order $p \geqq 4$ and let M be a matching in T. Then there exists a hamiltonian cycle C of T^{4} such that $E^{\prime}(C) \cap M=\emptyset$.

Proof. If $p \in\{4,5\}$, then T is isomorphic to one of the 5 trees presented in the list in [2], p. 233. It is easy to show that the statement of the lemma is correct.

Let $p \geqq 6$. Assume that for every tree T^{*} of order p^{*}, where $5 \leqq p^{*}<p$, it is proved that for any matching $M^{*} \in \mathscr{M}\left(T^{*}\right)$ there exists a hamiltonian cycle $C^{*} \in$ $\in \mathscr{H}\left(\left(T^{*}\right)^{4}\right)$ such that $E\left(C^{*}\right) \cap M^{*}=\emptyset$.

If T is isomorphic to A_{p} then the result follows from Lemma 3. We shall assume that T is not isomorphic to A_{p}. It follows from Lemma 1 that T has a terminal subtree isomorphic to one of the elements of \mathscr{D}. Now we shall distinguish two cases and several subcases.

1. Assume that T has a terminal subtree isomorphic to one of the elements of \mathscr{D}^{\prime}. Consider such a terminal subtree $\left(T_{1}, r_{1}\right)$ that $\left(T_{1}, r_{1}\right)$ is isomorphic to one of the elements of \mathscr{D}^{\prime} and that for every terminal subtree $\left(T^{\prime}, r^{\prime}\right)$ of T which is isomorphic to one of the elements of $\mathscr{D}^{\prime},\left|V\left(T_{1}\right)\right| \leqq\left|V\left(T^{\prime}\right)\right|$. For the sake of simplicity we will assume that $\left(T_{1}, r_{1}\right) \in \mathscr{D}^{\prime}$. Then $r_{1}=u_{0}$ and there exist $m \geqq 1$ and $n \geqq 1$ such that $V\left(T_{1}\right)=\left\{u_{m}, \ldots, u_{0}, w_{1}, \ldots, w_{n}\right\}$. Denote

$$
M_{1}=M \cap\left(\left\{u_{0} w_{1}\right\} \cup\left\{w_{k} w_{k+1}, 1 \leqq k \leqq n-1\right\}\right)
$$

Moreover, we denote

$$
\begin{aligned}
& T_{0}=T-w_{1}-\ldots-w_{n}, \quad M_{0}=M-M_{1} \\
& \text { if }\left(T_{1}, u_{0}\right) \in \mathscr{D}^{\prime}-\left\{D_{22}\right\}, \\
& T_{0}=T-w_{2}, \quad M_{0}=M-\left\{w_{1} w_{2}\right\}, \text { if }\left(T_{1}, u_{0}\right)=D_{22} .
\end{aligned}
$$

Then $5 \leqq\left|V\left(T_{0}\right)\right|<p$ and $M_{0} \in \mathscr{M}\left(T_{0}\right)$. It follows from the induction hypothesis that there exists $C_{0} \in \mathscr{H}\left(\left(T_{0}\right)^{4}\right)$ such that $E\left(C_{0}\right) \cap M_{0}=\emptyset$.
1.1. Let $\left(T_{1}, u_{0}\right) \in\left\{D_{11}, D_{21}, D_{31}\right\}$. There exists $x \in V\left(T_{0}\right)$ such that $x \neq u_{0}$ and $x u_{1} \in E\left(C_{0}\right)$. Then $d_{T}\left(x, w_{1}\right) \leqq 4$. We define

$$
C=C_{0}-u_{1} x+u_{1} w_{1}+w_{1} x
$$

1.2. Let $\left(T_{1}, u_{0}\right) \in\left\{D_{14}, D_{24}, D_{34}, D_{44}\right\}$. Then $T-V\left(T_{0}\right)=A_{4}$. It follows from Remark 1 that there exists a $w_{1}-w_{3}$ path $P \in \overline{\mathscr{H}}\left(\left(A_{4}\right)^{3}\right)$ such that $E(P) \cap M=\emptyset$. There exists $x \in V\left(T_{0}\right)$ such that $x u_{1} \in E\left(C_{0}\right)$, and if $\left(T_{1}, u_{0}\right)=D_{44}$, then $x \neq u_{4}$. Hence $d_{T}\left(x, w_{1}\right) \leqq 4$. We define

$$
\begin{array}{lll}
C=\left(C_{0}-u_{1} x+u_{1} w_{3}+x w_{1}\right) \cup P & \text { if } & x \neq u_{0} \quad \text { and } \\
C=\left(C_{0}-u_{1} x+u_{1} w_{1}+x w_{3}\right) \cup P & \text { if } & x=u_{0}
\end{array}
$$

1.3. Let $\left(T_{1}, u_{0}\right) \in\left\{D_{23}, D_{33}\right\}$. There exist $x, y \in V\left(T_{0}\right)$ such that $u_{1} x, u_{2} y \in$ $\in E\left(C_{0}\right), u_{1} x \neq u_{2} y$, and if $\left(T_{1}, u_{0}\right)=D_{33}$, then $y \neq u_{3}$. Then $d_{T}\left(w_{1} x\right) \leqq 4$ and $d_{T}\left(w_{2} y\right) \leqq 4$. We define

$$
\begin{aligned}
& C=C_{0}-u_{1} x-u_{2} y+u_{1} w_{3}+w_{3} w_{1}+w_{1} x+u_{2} w_{2}+y w_{2} \\
& \text { if } x \neq u_{0} \text { and } \\
& C=C_{0}-u_{1} x-u_{2} y+u_{1} w_{1}+w_{1} w_{3}+w_{3} x+u_{2} w_{2}+y w_{2} \\
& \text { if } x=u_{0}
\end{aligned}
$$

1.4. Let $\left(T_{1}, u_{0}\right)=D_{22}$. There exists $x \in V\left(T_{0}\right)$ such that $u_{2} x \in E\left(C_{0}\right)$ and $x \neq w_{1}$. Then $d_{T}\left(w_{2}, x\right) \leqq 4$. We define

$$
C=C_{0}-u_{2} x+u_{2} w_{2}+x w_{2}
$$

We can see that in each subcase C has the desired properties.
2. Assume that T contains no terminal subtree isomorphic to an element of \mathscr{D}^{\prime}. It follows from Lemma 1 that there exists $n \geqq 5$ and a terminal subtree (T_{2}, r_{2}) of T such that $\left(T_{2}, r_{2}\right)$ is isomorphic to $D_{0_{n}}$ and $\operatorname{deg}_{T} r_{2} \geqq 3$. For the sake of simplicity we will assume that $\left(T_{2}, r_{2}\right)=D_{0 n}$, thus $r_{2}=u_{0}$ and $V\left(T_{2}\right)=\left\{u_{0}, w_{1}, w_{2}, \ldots, w_{n}\right\}$. Denote

$$
M_{2}=M \cap E\left(T_{2}\right)
$$

Then $M_{2} \in \mathscr{M}\left(T_{2}\right)$. As follows from Lemma 2, there exists a hamiltonian $w_{1}-w_{2}$ path $P \in \overline{\mathscr{H}}\left(\left(T_{2}-u_{0}\right)^{3}\right)$ such that $E(P) \cap M_{2}=\emptyset$. Further, we denote

$$
T_{0}=T-w_{1}-\ldots-w_{n} \quad \text { and } \quad M_{0}=M-M_{2}
$$

Then $M_{0} \in \mathscr{M}\left(T_{0}\right)$. Since T is isomorphic to no A_{p} and T contains no terminal subtree isomorphic to an element of \mathscr{D}^{\prime}, we have $5<\left|V\left(T_{0}\right)\right|<p$. It follows from the induction hypothesis that there exists $C_{0} \in \mathscr{H}\left(\left(T_{0}\right)^{4}\right)$ such that $E\left(C_{0}\right) \cap M_{0}=\emptyset$. Since $\operatorname{deg}_{T_{0}} u_{0} \geqq 2$, there exist $x, y \in\left(V\left(T_{0}\right)-\left\{u_{0}\right\}\right)$ such that $x y \in E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, x\right)+d_{T}\left(u_{0}, y\right) \leqq 4$. Without loss of generality we may assume that $d_{T}\left(u_{0}, x\right) \leqq$ $\leqq d_{T}\left(u_{0}, y\right)$. We define

$$
C=\left(C_{0}-x y+x w_{2}+y w_{1}\right) \cup P
$$

then $C \in \mathscr{H}\left(T^{4}\right)$ and $E(C) \cap M=\emptyset$.
Thus the proof of Lemma 4 is complete.
Lemma 5. ([6] p. 63.) Let G be a connected graph and let L be a subgraph of G which contains no cycle. Then there exists a spanning tree T of G such that L is a subgraph of T.

Proof of Theorem 1. Let G be a graph satisfying the conditions of Theorem 1 and let M be.an arbitrary matching in G. As follows from Lemma 5, there exists a spanning tree T of G such that M is a matching in T. According to Lemma $4, T^{4}$ has a hamiltonian cycle C such that $E(C) \cap M=\emptyset$. Thus G^{4} also has a hamiltonian cycle C such that $E(C) \cap M=\emptyset$.

References

[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs \& Digraphs. Prindle. Weber \& Schmidt, Boston 1979.
[2] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass., 1969.
[3] L. Nebeský: On the existence of a 3 -factor in the fourth power of a graph. Čas. pěst. mat. 105 (1980), 204-207.
[4] L. Nebeský: Edge-disjoint 1-factors in powers of connected graphs. Czech. Math. J. 34 (109) (1984), 499-505.
[5] L. Nebeský: On a 1 -factor of the fourth power of a connected graph. Čas. pěst. mat. 113 (1988), 415-420.
[6] J. Sedlả̌ek: Introduction into the Graph Theory (Czech). Academia nakl. ČSAV, Praha 1981.
[7] E. Wisztová: A hamiltonian cycle and a 1 -factor in the fourth power of a graph. Čas. pěst. mat. 110 (1985), 403-412.

Súhrn

O HAMILTONOVSKEJ KRUŽNICI V ŠTVRTEJ MOCNINE SÚVISLÉHO GRAFU

Elena Wisztová

V ̌̌lánku je dokázaná nasledovná veta: Nech G je súvislý graf s p vrcholmi, kde $p \geqq 4$ a nech M je párenie v grafe G. Potom $\vee G^{4}$ existuje hamiltonovská kružnica C taká, že $E(C) \cap M=\emptyset$.

Author's address: Vysoká Skola dopravy a spojov, Hurbanova 15, 01026 Žilina.

