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Summary. A sharpening of a discrete case of Wirtinger's inequality is given. It is then 
used to sharpen the isoperimetric inequality for polygons. 
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Let us recall the sharpening of the continuous Wirtinger's inequality, which was 
established by Z. Nadenik [3]: 

Let f(x) denote a function with period 2K, /' E Li and JQ* f(x)dx = 0. Then 

2it 2w 

(1) Jax)*dx>jfHx)dx + l(f(0) + f(n))\ 
0 0 

with the equality holding only for 

f(x) = Acosx + Bsinx + 'C( |sina?|J, A,B,C = const. 

We will give a sharpening of a discrete case of Wirtinger's inequality, which is 
analogous to (1). See also J. Novotna [4]. The main result is as follows: 

Theorem 1. Let si/ = Ao, Ax, ..., An-\ be a closed n-gon in RN with its centroid 
at the origin of the coordinate system, let n be even, i.e. n = 2m. Then for all p = 0, 
l , 2 , . . . , n - l 

(2) £ [A,+i -Ay\*> 4sin2 £ Y, \A¥\
7 + nain2 £ \AP + Ap+m\\ 

v—0 »s*0 
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Equality in (2) is attained if and only if 

2n n . 2n _r2 A K I . , .2*1, 
;4„ = i4cosi/ h-Bsmi/ hC -cotan sm(i/-p)— , 

n n In n I n M 

1/ = 0, 1, ..., n — 1, A, B, C = const. 

To prove Theorem 1 we need the following lemma: 

Lemma. Let n = 2m. Then 

m - l 
V-Г "2i 1 n I . 2лi 
r sиť 2s - s ш

2 £ sm2 £ sm -j* I n I 
J = l ^ n n n n 

wiiere u/* = a*"* = exp(ii/Jb • 2rc/n). 

Proof . It suffices to prove 

(3) sinis 
2n| 1 . 2n ^- ! COS2.H/2S 

= -Sin > -7-5- . ; . . . 
ni n n ^ srn2 i - sin2 j f 

One proves (3) expressing sin 1/ ^ in terms of complex trigonometric polynomials 
in the same way as |sinx| is expressed by a Fourier series. D 

Proof of Theorem 1. We see that it suffices to prove it for the case N = 2. 
To simplify the proof, we may suppose p = 0. 

We shall express vertices Ao, A\%..., An-\ of the n-gon j - / in the form of complex 
trigonometric polynomials (I. J. Schoenberg [5] called them Fourier polynomials). 

n - l 
There exist numbers #o, î> • • •> #n-i such that A¥ = £ f̂ĉ ** 1/ = 0, 1, ..., n — 1. 

*=o 
A discrete analog of ParsevaPs relation of completeness gives 

n - l n - l n - l n - l 

£ И„|s = n £ |^|2, £ И„+1 - л,|2 = n £ |* t|v -1|2, 
*=o * = 0 *=o *=o 

Иo + Лnp = 4 

we may wгite 

m - l 

* = 0 

n - l 

. The condition J2 A¥ = 0 implies t?o = 0. Instead of (2) 
i/=0 

n - l 

£ M* («in2 * I - sin2 I ) > sin2 J j rf2t 
£ = 1 K = l 

m - 1 
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We will show t h a t even 

m - l 2R - ' - 1 

*=1 n • * - ! 
(4) £ Һ M 2 ( s i n 2 * £ - s i n 2 £ ) > * ŕ î | 2 > * 

holds. 

In order to prove (4) we start with the inequality 

(5) j^^-^S^y-S^nl^O, 

where 
_ . 2 2K . 2 n 5 r = sin r sm —. n n 

In view of the equality 
m ~ 1 1 1 

(5) implies the inequality (4). 
The sign of equality occurs in (2) if and only if #* = 0 for k = 3, 5, ..., n — 3 and, 

according to (5), 
sin2 7? — sin2 5- « 

sin' ib ~ - sm' £ 
n fi 

By vir tue of the l emma we have 

s i n ' 
« 1/ .v n n ( S m T ? - 8 m «) [2 x K I . 2K I! 

.A„ = t?iwf +tfn-iwn.-i + tf2— T-i= ai. - c o t a n - - sini/— . 
sin— In n I nU 

Separating the real and imaginary parts of the complex numbers we get our state
ment. D 

R e m a r k . By the Mean Value Theorem it is easy to show that (2) is a discrete * 
analog of (1). See K. Fan, O. Taussky, J. Todd [2]. 

Now we will establish a sharpening of the isoperimetric inequality for polygons. 
We will prove 

Theorem 2. Let &/ = Ao, A\, ..., An„i denote a plane closed n-gon of area F 
and perimeter L, let n = 2m. Then for all p = 0, 1, ..., n - 1, 

(6) ^l^+i-^l'-itan^F^ltan'^ylp + ̂ +ml2, 
i»s=0 
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with the equality holding only for the regular n-gon. 

P r o o f . Denote Av = [x„,y„], v = 0, 1, . . . , n — 1. We may suppose that 
n - l n - l 
£ >4„ = 0 and 4.F = £ [(*"+i + xv)(v»+i ~ V*) " (**+i - *v){Vv+\ + V»)]- In 
ysO „=0 
virtue of (2) we have 

n - l - n - l ____f I f o 

53 î *+- - ^ i 2 - 4 tan £ F == 2 53[(**+i+**) tan £ - (lfr+i - **)] 
fsO „s0 

+ 2 .!> [(^+1 + »*)tan ~ + (*"+1 "" **)] 
„=o 

1 n~ 1r 
+ 2 5 3 [(**+i ~ *")2 - (a?^+i+*")2 fcan2 £] 

vsO 
- n - l 

+ 2 53 [(^+i - ^ ) 2 - (y^1+y»)2 fcan2 J] > ? t a n 2 1\AP+^P+ml2-
„=0 

It is easy to prove that the sign of equality occurs in (6) only for the regular n-gon. 
D 

Corollary. Let s/ =- AQ, A\, . . . , .An-i denote a plane equilateral closed n-gon of 
area F and perimeter L. Let n = 2m. Let us denote by d,- the distance of the center 
ofAiAi+m and the centroid ofs/. Then 

(7) L2 - 4n tan - F £ 2n2 tan2 -e/? 
N ' n n 
with the equality holding only for the regular n-gon. 

R e m a r k . The continuous case of inequality (7) was investigated by L. Botek [1]. 
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