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Summary. We study the relation between the Lusin-MenchofT property and the Fa-
"semiseparation" property of a fine topology in normal spaces. Three examples of normal 
topological spaces having the ^-"semiseparation" property without the Lusin-Menchoff 
property are given. A positive result is obtained in the countable compact space. 
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1. INTRODUCTION 

All topological spaces considered should be Hausdorff. Let (A', Q) be a topological 

space. Any topology r finer than Q is called a fine topology. We use the terms 

finely open, finely closed, . . . with respect to a fine topology (similarly for another 

topology). We say that A, B C X are finely separated if there are disjoint finely 

open sets GA and GB such that A C GA, B C Gn-

An important tool in the study of fine topologies is the Lusin-Menchoff property. 

We say that a fine topology r on (X, Q) has the Lusin-Menchoff property (with respect 

to Q) if for each pair of disjoint subsets F and T of X, F closed, T finely closed, 

there are disjoint subsets G and G of X, G open, G finely open, such that T C G, 

FCG ([2], p. 85). 

In [5] we proved the following 

T h e o r e m 1.1. Let a Rne topology have the Lusin-Menchoff property. Suppose 

a and b are finely closed sets. Suppose A and B are sets of type Fa with a C A, 

1 Research supported by the grant No. GAUK 186/96 of the Charles University. 

295 



b C B, A disjoint with b, and B disjoint, with a. Then there are disjoint finely open 

sets a and (3 such that a C a and b C 0. 

Let a C A C X and b C B C X where A and B are of type Fa, A is disjoint 

with b, and B is disjoint with a. In this situation we say that a and b are Fa-

"semiseparated". Theorem 1.1 says (assuming the Lusin-Menchoff property) that 

Fa- "semiseparated" finely closed sets are finely separated. 

We can formulate a simple corollary. 

Corollary 1 .2. Let a fine topology have the Lusin-Menchoff property and the 

Fa-"semiseparation" property (it means that any two finely closed sets can be Fa-

"semiseparated"). Then the fine topology is normal. 

A natural question arises: 

Q u e s t i o n 1.3. Let a fine topology be normal and have the Ea-"semisepa-

ration" property. Does this imply that the fine topology has the Lusin-Menchoff 

property? 

In the following examples we show that the answer is no, even with stronger 

assumptions (see Propositions 2.3, 3.4 and 4.3). A positive result is obtained in the 

countable compact space (see Proposition 5.1). 

2. T H E TRAIN TOPOLOGY 

Definition 2 .1 . Let X = R2. We define the train topology by the neighbour

hood basis of any point. The origin has the neighbourhood basis consisting of sets 

of the kind 

U = {(x,y) e R2:x2 +y2 <£2}U{(x,y)e R2 : \y\ < l,x > K} 

(the second set is the "long train") for any c, K > 0. Other points have the neigh

bourhood basis of Euclidean open sets. 

We can easily see the following 

O b s e r v a t i o n 2.2. The properties of the train topology: 

(i) the Euclidean topology is strongly finer than the train topology; 

(ii) the family of Gs sets in the train topology contains all Euclidean open sets; 

(iii) the train topology is not normal (the origin and {(x,y) G R2 : y = 1} are train 

closed sets which are not train separated). 
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P r o p o s i t i o n 2 .3 . There exists a fine topology which is normal, has the Fa-

"semiseparation" property and has not the Lusin-Menchoff property. 

P r o o f . Let the original topology on R2 be the train topology and let the fine 

topology be the Euclidean one. Then the ECT-"semiseparation" property of the fine 

topology follows from Observation 2.2 (ii). The set F =• {{x,y) e R2 : y = 1} is 

closed in the train topology, T = {(0,0)} is a Euclidean closed set and any train 

open cover of T meets any Euclidean open cover of F. The train topology has not 

the Lusin-Menchoff property with respect to the Euclidean topology on R2. D 

3. T H E CUCKOO T O P O L O G Y 

Def in i t ion 3 . 1 . Let en -4 0, cn —> oo be disjoint non zero points, X = R \ {e n } . 

We define the cuckoo topology by the neighbourhood basis of any point. The origin 

has the neighbourhood basis consisting of sets of the kind {x e X: \x\ < e}u{x e X: 

\x\ > K} for any e,K > 0. The points c„ (the cuckooes) have the neighbourhood 

basis of the form {x e X: \x - cn\ <e}u{x e X: \x - en\ < e} (the "home" united 

with the punctured "egg" given near the origin = "bird") for s > 0. Other points of 

X have the neighbourhood basis of all Euclidean open sets. 

We can easily see the following 

O b s e r v a t i o n 3.2. The properties of the cuckoo topology: 

(i) the Euclidean topology is strongly finer than the cuckoo topology; 

(ii) the family of Gg sets in the cuckoo topology contains all Euclidean open sets; 

(iii) the cuckoo topology is compact ( near infinity and near "eggs" en the situation 

is simple, due to the definition of the cuckoo topology); 

(iv) the Euclidean topology on X is normal. 

P r o p o s i t i o n 3 .3 . The cuckoo topology on X is normal. 

P r o o f . Let F, G be disjoint cuckoo closed sets. Then 

(i) near the origin and finitely many en the cuckoo topology is topologically like 

the Euclidean topology near infinity; 

(ii) if c„ £ F, then some neighbourhood of c„ (containing an "egg" near e„) is 

disjoint with G; 

(iii) if 0 € F, then some cuckoo neighbourhood of the origin is disjoint with G. 

In all situations we can easily find the cuckoo open sets separating F and G. D 
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P r o p o s i t i o n 3 .4 . There exists a normal fine topology having the Fa-"semisep-

aration" property with respect to a normal and compact original topology such that 

the fine topology has not the Lusin-Menchoff property with respect to the original 

topology. 

P r o o f . Let the fine and the original topologies be the Euclidean and the cuckoo 

topology on X (Definition 3.1), respectively. Then due to Observation 3.2 and 

Proposition 3.3 it is enough to show that the Lusin-Menchoff property does not 

hold. We take a cuckoo closed set F = {0} and a Euclidean closed set T = {cn}%Lv 

Any Euclidean open cover of F meets some "egg" in any cuckqo cover of T. The 

Lusin-Menchoff property does not hold. • 

4. T H E J U M P T O P O L O G Y 

Def in i t ion 4 .1 . Let an —>• 0 be nonzero points of A' = [0,1]. We define the jump 

topology on X by the jump metric )ump(x,y) = d(ip(x),tp(y)), where tp: X -> R2, 

ip(an) = (an, 1), ip(x) = (x,0) elsewhere ( a t an the function <p "jumps" to 1) and d 

is the Euclidean metric in R2. 

We can easily see the following 

O b s e r v a t i o n 4.2. The properties of the jump topology: 

(i) the jump topology is finer than the Euclidean topology; 

(ii) the jump topology is metric; 

(iii) the jump closed sets are Fa sets in the Euclidean topology; 

(iv) the jump topology has the FCT-"semiseparation" property. 

P r o p o s i t i o n 4 . 3 . There exists a metric fine tdpology having the Fa-"semisepa-

ration" property with respect to a compact metric original topology such that the fine 

topology has not the Lusin-Menchoff property with respect to the original topology. 

P r o o f . Let the fine and the original topologies be the jump and the Euclidean 

topology on X (Definition 4.1), respectively. Then due to Observation 4.2 it is enough 

to show that the Lusin-Menchoff property does not hold. We take a jump closed set 

f — {an}5£=i a n d a Euclidean closed set F = {0}. Any Euclidean open cover of T 

meets any jump cover of F. The Lusin-Menchoff property does not hold. • 



5. T H E COUNTABLE COMPACT TOPOLOGY 

We see that for a compact fine topology both topologies coincide. Hence we weaken 

the compactness to the following notion. We say that a topological space is countable 

compact if from any countable open cover we can select a finite subcover. We can 

easily prove 

P r o p o s i t i o n 5 . 1 . Let a Bnc topology be countable compact and have the Fa-

"semiseparation " property with respect to a normal original topology. Then the fine 

topology has the Lusin-Menchoff property. 

P r o o f . Let F be a closed set disjoint with a finely closed T. Due to the Fa-

"semiseparation" property we find {Fn} such that T C \JFn, Fn disjoint with F. 

Due to normality of the original topology, for any couple F, Fn we find a disjoint 

couple of open sets Gn and Hn such that Fn C Gn and F C Hn. Due to the 

countable compactness of the fine topology we find m such that T C G = [j Fn. 
n = l 

The set G = f\ Hn is an open cover of F, the set G is an open cover of T. The sets 
71 = 1 

G and G show that the Lusin-Menchoff property holds. • 

R e m a r k 5.2. Other material on this subject can be found in [1], [2], [3], [4], 

[5], [6], 
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