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Summary. The dynamics of singular Lagrangean systems is described by a distribution 
the rank of which is greater than one and may be non-constant. Consequently, these 
systems possess two kinds of conserved functions, namely, functions which are constant 
along extremals (constants of the motion), and functions which are constant on integral 
manifolds of the corresponding distribution (first integrals). It is known that with the help 
of the (First) Noether theorem one gets constants of the motion. In this paper it is shown 
that every constant of the motion obtained from the Noether theorem is a first integral; thus, 
Noether theorem can be used for an effective integration of the corresponding distribution. 
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l. INTRODUCTION 

The theory of symmetries and first integrals becomes more complicated if, in

stead of classical Lagrangean systems, one considers constrained systems, i.e., La

grangean systems coming from singular Lagrangians (cf. [1], [2], [3], [11], and refer

ences therein). 

According to [8], every mechanical Lagrangean system can be represented by a 

certain closed two-form, called the Lepagean two-form, and the corresponding dy

namics is described by the characteristic distribution of the Lepagean two-form. For 

regular Lagrangean systems this distribution is of rank one, i.e., locally spanned by 

one vector field (Hamilton vector field), and the integral sections of this vector field 
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are in one-to-one correspondence with the extremals. For constrained systems, how

ever, this distribution is of rank greater than one, or even of a non-constant rank. 

Moreover, the correspondence between extremals and integral sections of the distri

bution is no more one-to-one. Consequently, constrained systems possess two kinds 

of conserved functions: functions which are constant along extremals, called con

stants of the motion, and functions which are constant on integral manifolds of the 

characteristic distribution, called first integrals [10]. While for Lagrangean systems 

of classical mechanics first integrals and constants of the motion coincide, constrained 

systems may possess constants of the motion which are not first integrals. 

The aim of this paper is to complete the results of [10], where symmetries and 

conserved functions for constrained systems in higher-order mechanics were studied. 

In particular, it is well-known that from the First Theorem of E. Noether one gets 

constants of the motion. Here we shall show that every constant of the motion 

obtained in this way is a first integral. In the light of recently developed geometric 

integration methods for constrained Lagrangean systems based on first integrals [9], 

this result increases the applicability of the Noether Theorem for practical integration 

of constrained systems. 

2. LAGRANGEAN SYSTEMS 

Throughout this paper, we denote by d the Lie derivative, i the contraction, 

* the pull-back, and Jr the r-jet prolongation. We consider a fibered manifold 7r: 

Y -» X, dim X = 1, d i m Y = m+ 1, and its jet prolongations 7rr : J
rY -> X, r > 1. 

Local fibered coordinates on Y (resp. associated coordinates on JrY) are denoted 

by (li<7°j (resp. (t,qa ,q^,... ,qT)). Recall that the projection nrfi: JrY -4 Y is a 

fibered manifold. A section S of the fibered manifold TT,. is called regular if 5 = J r 7 

for a section 7 of TT. A form Q on JrY is called horizontal (with respect to the 

projection 7rr) if i^g = 0 for every ny-vertical vector field on JrY, and is called 

contact if Jry*Q = 0 for every (local) section 7 of 7r. The ideal of contact forms on 

JrY is generated by the contact one-forms 

w f = dgf — gf+1 dt, 0 ^ i ^ r — 1. 

A contact form Q is called one-contact (resp. two-contact) if for every vertical vec

tor field £ the form i^g is horizontal (resp. one-contact). Notice that every one-

contact (resp. two-contact) two-form g is expressed in fibered coordinates by g = 
r - 1 r - 1 
J2 Ql

a^i A dt (resp. g = $Z Q^w? Aw£). We use the notation h, p, pi, and pi 
i=0 i,k=0 

for the horizontal, contact, one-contact, and two-contact part of forms, respectively. 
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Every one-form (resp. two-form) Q on JTY admits a unique decomposition into a 

sum of a horizontal and a contact form (resp. a one-contact and a two-contact form), 

namely 

K+\,Te = he + PQ, resP- K+\,r-e = P\Q + Pis-

For more details on the calculus of horizontal and contact forms on fibered manifolds 

we refer to [7]. 

Horizontal one-forms on JTY are called Lagrangians of order r. One-contact two-

forms on JTY, horizontal with respect to the projection 7rr,oi a r e called dynamical 

forms of order r. A closed two-form a on JTY, r ^ 0, is called a Lepagean two-form 

of order r if p\a is a dynamical form. If a is a Lepagean two-form then every (local) 

one-form 6 such that a = d9 is called a Cartan form (or a Lepagean one-form). 

Lepagean two-forms were introduced in [8] as forms generalizing symplectic, 

presymplectic, cosymplectic and precosymplectic forms to any Lagrangian, and to 

any finite order. Lepagean two-forms are global closed counterparts of variational 

equations, and they are equivalent with Euler-Lagrange equations in the following 

sense: If a is a Lepagean two-form (of order r) then the form pia is locally vari

ational, i.e., its fiber-chart components are Euler-Lagrange expressions (of order 

r + 1); conversely, to any Euler-Lagrange expressions Ea, 1 ^ a ^ m, of order r 

one can find a unique Lepagean two-form a of order 7* — 1 such that the E^'s are 

the components of pia. Moreover, regular integral sections of the characteristic 

distribution of a Lepagean two-form coincide with the solutions of the corresponding 

Euler-Lagrange equations (extremals). 

The above properties of Lepagean two-forms enable us to introduce the concept 

of a Lagrangean system of order r as a Lepagean two-form on JTY; the manifold Y 

is then called the configuration space, and JTY is called the phase space. Notice that 

in this setting, a Lagrangean system is a family of Lagrangians which generally are 

local and of different orders. 

Let s ^ 1, and let a be a Lagrangean system of order s — 1. Then on the phase 

space one has two distributions, the characteristic distribution V of a, spanned by the 

system of one-forms i^a where f runs over the set of all vector fields on JS~1Y, and 

the Euler-Lagrange distribution A, spanned by the system of one-forms i^a where 

£ runs over the set of TTS_I -vertical vector fields on JS~1Y. These distributions 

are generally different, and of a non-constant rank. Integral sections of the Euler-

Lagrange distribution are called Hamilton extremals. Regular Hamilton extremals 

are in one-to-one correspondence with extremals, and coincide with regular integral 

sections of the characteristic distribution. 
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3. P O I N T SYMMETRIES OF LAGRANGEAN SYSTEMS 

Let a be a Lepagean two-form (Lagrangean system) of order s— 1. A 7r-projectable 

vector field £ on an open subset of Y will be called a point symmetry of the Lagrangean 

system a if one of the following conditions is satisfied: 

(1) dj,-ica = 0, 

(2) dj.-^E = 0, where E is the locally variational form defined by E = pxa, 

(3) there exists an integer r and a (local) Lagrangian of order r for a such that 

OjrcX = 0, 

(4) there exists an integer r and a (local) Lepagean one-form 8 of order r for a 

such that dj.cd = 0. 

Recall that the equation dj.cX = 0 (resp. dj-(Ex = 0) is called the Noether 

equation (resp. the Noether-Bessel-Hagen equation). 

If A is a (possibly local) Lagrangian, denote by 9\ its Cartan form, and by E\ its 

Euler-Lagrange form. Let us recall a theorem relating various point symmetries of a 

Lagrangean system represented by a two-form a [10]. 

T h e o r e m 3 .1 . Let £ be a ix-protectable vector field on Y, let X be a Lagrangian 

for a. 

(1) If£ is a point symmetry of0\ then it is a point symmetry of X, and of a. 

(2) If£ is a point symmetry of a then it is a point symmetry of E\. 

(3) If£ is a point symmetry of X then it is a point symmetry of E\. 

It is known that if £ is a point symmetry of an Euler-Lagrange form E, and if A 

is a Lagrangian of E then £ need not be a point symmetry of A. Similarly, one can 

find examples showing that if £ is a point symmetry of a Lepagean two-form a, and 

if 6\ is a corresponding Lepagean one-form then £ need not be a point symmetry of 

9\. However, let us show that mechanical systems possess the following properties: 

T h e o r e m 3.2. Let £ be a n-projectable vector field on Y. Let a be a Lagrangean 

system, X a Lagrangian for a. 

(1) If £ is a point symmetry of X then it is a point symmetry of0\. 

(2) If £ is a point symmetry of E\ then it is a point symmetry of a. 

The proof is based on the following assertions. 

Propos i t i on 3 .1 . [6] Let £ be a rr-projectable vector field on Y. If 9 is a 

Lepagean one-form on JrY then dj<c9 is a Lepagean one-form and 

hdj,c9 = dj,+ich8. 
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Propos i t ion 3 .2 . Let f be a n-projectable vector field on Y. ffa is a Lepagean 

two-form on JS~1Y then dj.-i^a is a Lepagean two-form and 

Pidj.-i(a = 9 j . ? p i a . 

P r o o f of the propositions. Obviously, to prove that dj> $0 is a Lepagean one-

form, and dj'^a is a Lepagean two-form, it is sufficient to show that for every 

7r-projectable vector field £ on Y, the form p\ d(ij,-i,;a) is dynamical. Expressing a 

in the form 
s - 1 

7T* ,_jQ = Eauj" A dt+ VJ Flk
v UJ" A _•£, 

computing pi d ( i j , - i j a ) , and using the identities 

^-24-F°t-F°*-1=0. i a < « - l , 
cV/£ dt 

^ - 2 E ° r 1 = o, 
3gJ 

4-F£ + Ei;''fc + Ei^1 =0. i < j,k ^ s -1, 
dt 

F*^ 1 ' * = 0, 1 < & < _ — 1, 

[8], and the prolongation formula 

_!___._,.-___, 
d< 7l d e ' 

for the components of f [5], we get the result. These computations also yield 

Pl d(ij—i^a) = ij-5 di? + dij^E, 

where E = P i a , proving that picfj.-i^a = dj,(pxa. 
The relation hdjv^9 = dj.+i^hO is the infinitesimal first variation formula [5]. • 
Using the above propositions and the relation 

dJ2riEX = £_,„.» 

[6], we immediately get 

Corollary. Let £ be a -n-projectable vector field on Y, A a Lagrangian on JTY. 

Then 

dJ2r-ii9x = 80l,Lx, djir-i^aEx = aa,ar '.B» = «E a , , . t i -

Now, we can easily prove Theorem 3.2. 
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P r o o f of Theorem 3.2. (1) If £ is a point symmetry of A then, by the above 

corollary, dJ2,-ii8\ = 9\0, where A0 = 0. However, 8\0 = 0, i.e., £ is a point 

symmetry of 8\. 

(2) If £ is a point symmetry of E\ then, by the above corollary, dj.-i^a is the Lep-

agean equivalent of the identically zero locally variational form, hence, dj,-\^a = 0. 

• 

4. P O I N T SYMMETRIES AND CONSTANTS O F T H E MOTION 

Let a be a Lagrangean system of order s — 1, s ^ 1. A function / is called a 

constant of the motion of the Lagrangean system a if for every extremal 7 

(4.1) / o J i - 1
7 = const. 

Notice that in the above definition, one requires / to be of order ^ s — 1. Only in 

this case the conservation law (4.1) is an ODE of order lower than the order of the 

Euler-Lagrange equations, and thus can have a practical significance for simplifying 

the original integration problem. 

Let us recall the famous First Noether Theorem and its generalization [12], [5]. 

N o e t h e r T h e o r e m . Let A Z;e a Lagrangian of order r, defined on an open subset 

W C JrY, let 6\ be its Lepagean equivalent. If a n-protectable vector field £ on Y 

is a point symmetry of A, then for every extremal 7 of A defined on irr(W) C A" we 

have 

ij2,-^8\ o J 2 ^ ^ = const. 

It is easy to see that for Lagrangians of order r ^ s the function ij2,— i^8\ is 

defined on the phase space; in other words, for such Lagrangians, it is a constant of 

the motion. Notice that knowing a symmetry of a Lagrangian of order greater than 

the order of the given variational equations, results in a higher-order conservation 

law which does not simplify the integration problem. 

General ized N o e t h e r T h e o r e m . Let E be a locally variational form of order 

s, let a n-projectable vector field £ on Y be a point symmetry of E. If X is a (local) 

Lagrangian of order r for E on an open set W, and Q is a closed one-form of order 

r — 1 such that dj,^\ = ho, and if 7 is an extremal of E defined on nr(W) C X, 

then 

(4.2) J2r~iY(diJ2,-ii8\-o) = 0. 
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This means that a point symmetry of a locally variational form E gives rise to 

conservation laws 

{ijir-H0x -g)o J2r~^ = const., 

where g is a function (defined on an appropriate open set) such that dg = Q. Since 

dj.jA = flQ, we have dJ2,-,idx = g, and we get 

di>>-i£0x - Q = - i / a . - i 4 d6»A. 

Independently of the order of the Lagrangian, this closed one-form is protectable 

onto an open subset of Js~lY. Consequently, knowing a point symmetry of E, the 

Generalized Noether Theorem provides us, for every Lagrangian, with a constant of 

the motion. 

5. P O I N T SYMMETRIES AND FIRST INTEGRALS 

The dynamics of a Lagrangean system a is geometrically described by means of 

its Euler-Lagrange distribution and the characteristic distribution of the closed two-

form a. This means that one can make use of first integrals of these distributions 

for getting an explicit solution of the Euler-Lagrange equations. 

Let a be a Lagrangean system of order s — 1, s ^ 1. Let / be a function defined on 

an open subset U of the phase space JS~1Y. Recall that / is said to be a first integral 

of the Lagrangean system a if / is a first integral of the characteristic distribution V 

of a, i.e., if 

df -V. 

R e m a r k . The characteristic distribution V is a subdistribution of the Euler-

Lagrange distribution A. Hence, the set of first integrals of the Euler-Lagrange 

distribution is a subset of the set of first integrals of the characteristic distribution. 

To see the motivation for the above definition, let us look at time-independent La

grangean systems. It is easy to see that in this case, the Hamiltonian H is a first 

integral of the characteristic distribution. On the other hand, dH £ A if and only if 

A = T>, i.e., there exist time-independent constrained systems for which H is not a 

first integral of the Euler-Lagrange distribution; as an example of such a Lagrangean 

system one can take Cawley's Lagrangian 

L = 91g3 + i (g 2 )V. 

A natural requirement that (similarly to the regular case) for time-independent con

strained systems H should be a first integral, leads us to the definition of a first 

integral of a Lagrangean system as a first integral of its characteristic distribution. 
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Propos i t ion . Every first integral of a Lagrangean system is a constant of the 

motion. 

If the Lagrangean system is regular then the set of first integrals coincides with 

the set of constants of the motion. 

P r o o f . Let a be a Lagrangean system of order s - 1, let / be a first integral 

of a. Since for every extremal 7 the J3~1-y is a Hamilton extremal, and it is an 

integral section of the characteristic distribution D of a, we have d ( J s _ 1 7 o / ) = 

j r - V d / = 0. 

Suppose that a is regular, and let / be a constant of the motion. Then V is 

locally spanned by one nowhere zero vector field C, such that the prolonged extremals 

coincide with the integral sections of (. Hence, i( d / = 0, proving that / E T>. D 

Since generally the set of integral mappings of the characteristic distribution does 

not coincide with the set of prolonged extremals, it is not surprising that one can 

find examples of constrained systems with constants of the motion which are not 

first integrals [4]. 

The following proposition follows immediately from the definition of the charac

teristic distribution. 

P r o p o s i t i o n . Let a be a Lagrangean system of order s — 1, s is 1. Let £ be a 

point symmetry of the Lepagean equivalent 8\ of a (local) Lagrangian A of a. IfO\ 

is of order s - 1 then ij,-i£0\ is a first integral of the Lagrangean system a. 

Now, using the above proposition and Theorem 3.2 we obtain a stronger form of 

the Noether Theorem: 

Theorem 5.1 . Let a be a Lagrangean system on JS~1Y, let X be a (local) 

Lagrangian of order r ^ s. If a n-projectable vector field £ on Y is a point symmetry 

of X then iJ2,-ii9\ is a first integral of the Lagrangean system a. 

Let a be a Lagrangean system of order s — 1, s ^ 1. Let £ be a 7r-projectable 

vector field on Y. If f is a point symmetry of a then, since a is closed, one has 

in a neighborhood of every point in Js~lY the relation ij,-i^a = d / , where / is 

a first integral of the characteristic distribution of a. This, together with Theorem 

3.2, leads to a stronger form of the Generalized Noether Theorem: 

Theorem 5.2. Let a be a Lagrangean system 011 JS~XY. Let E = pia, and 

let a 7t-protectable vector field £ on Y be a point symmetry of E. Then for every 

Lagrangian X of E, the function ij2,-\^9\ — g, where r is the order of X and g is 

given by dg = dj2,-i^9\, is a first integral of the Lagrangean system a. 
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R e m a r k . Let us mention a practical significance of the above theorems. Re

cently, methods have been developed for integration of (generally higher-order) con

strained Lagrangean systems, based on a generalization of the classical Liouville 

theorem and the Hamilton-Jacobi integration method [9]. To apply them, one needs 

to know a suitable set of first integrals. However, according to Theorems 5.1 and 

5.2, one can easily get first integrals with the help of symmetries of Lagrangians and 

Euler-Lagrange equations. 
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