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Summary. The existence of bounded solutions for equations xf = A(t)x + f(t,x) in 
Banach spaces is proved. We assume that the linear part is trichotomic and the perturbation 
/ satisfies some conditions expressed in terms of measures of noncompactness. 
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1. INTRODUCTION 

The purpose of this paper is to prove a theorem concerned with the existence of 
bounded solutions of the nonlinear differential equation 

x' = A(t)x + f(t,x) 

on the whole real line R. 
This problem was intensively studied by many authors ([2], [4], [5], [6], [8], [9], 

[11], [13], for instance) and this paper is a continuation of the results mentioned. 
In comparision to previous results of this type we assume a more general growth 

condition (see [3], [5], [11], for example), a more general continuity assumption ([5], 
[6], [11], [13]) and in our compactness condition a measure of noncompactness is 
chosen arbitrarily from a class of measures which contains the well-known classical 
measures (cf. [5], [11], [13]). Let us remark that our compactness-type assumption 
is more general than the condition (12)-(13) in [11]. 

We begin by introducing the indispensable notions. Throughout the paper (25, ||-||) 
will denote a real Banach space and B(ayr) = {y G E: \\y - a\\ ̂  r}. By L(E) we 
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will denote the algebra of continuous linear operators from E into itself with induced 

standard norm | • |. 

Moreover, by C(R, E) we will denote the Frechet space of all continuous functions 

from R into E, endowed with the topology of almost uniform convergence on R. 

Let A: R -* L(E) be strongly measurable and Bochner integrable on every finite 

subinterval of R. 

Consider the equation 

(1) x'(t) = A(t)x(t). 

By-U(t) we denote the fundamental solution of U'(t) = A(t)U(t) with U(0) = Id. 

Following Elaydi and Hajek we introduce 

Definition 1. [6] A linear equation (1) is said to have a trichotomy on R if there 

exist linear projections P, Q such that 

(2) PQ = QP, P + Q-PQ = Id 

and constants a ^ 1, a > 0 such that 

\U(t)PU-x(s)\ ^ ae-^l-s) for 0 < s ^ t, 

(3) \U(t)(Id-P)U-x(s)\ ^ ae-^s-l) for t^s,s> 0, 

\U(t)QU-l(s)\^az-^s-l) for t < s ^ 0, 

| U ( t ) ( I d - Q ) U - H s ) K a e - * ( t - s > for s ^ t , s < 0 . 

It is necessary to remark that if (1) has a trichotomy on R, then it has an exponential 

dichotomy on R+ and an exponential dichotomy on R_ (see [4], [5], [6], Lemma 1.2). 

The converse is not true. 

Define the integral kernel G(t, s) = U(t)L(t, s)U _ 1 (s), where 

L(tђ s) = < 

r Id -<Ҙ for 0 < s ^ max(ż, 0), 

•— Q for max(£,0) < s, 

P for s ^ min(£,0), 

, P - Id for min(ż, 0) < s ^ 0. 

Then |G(t ,s) | ^ ae"'*'*-*1 for t,s G R ([7], Lemma 7). More information about this 
can be found in [6] or [7]. 
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2. MEASURES OF NONCOMPACTNESS 

The notion of measure of noncompactness was introduced by K. Kuratowski in 

1930. It is a very important notion, for example in the theory of fixed points or in the 

theory of differential equations. An axiomatic theory of such measures can be found 

in [1], for instance. For such problems as the theory of linear differential equations 

it is worth while to introduce a special class of measures of noncompactness /i with 

the property 

i*(KA) ^ \K\ti(A), 

where K G L(E) and A is a bounded subset of E. 

The Kuratowski measure of noncompactness and the Hausdorff measure of non-
compactness have this property ([5]), but unfortunately we must assume additionally 
this property in the case of axiomatic approach to the above mentioned problems, 
see [11]. However, each of the so-called («0*,^,p)-measures of noncompactness have 
this property ([3]), so they are useful in this case and especially in this paper. For 
the convenience of the reader we repeat without proofs the relevant material from 
[3], thus making our exposition self-contained. 

Let & be a family of relatively compact subsets of E such that 

(Pi) x e&^xe&, 
(P2) x e&,Y^9,YcX^Ye&, 
(P3) X G 0* =->conv X G &, 

(P4) the subfamily of all closed sets in & is closed in the family of all nonempty, 
bounded and closed subsets of E with respect to the Hausdorff topology. 

As in [1], a function fi: M —> [0,oo) is said to be a measure of noncompactness 
with the kernel g? if it is subject to the following conditions: 

(Mi) »(X)=0&Xe&, 
(M2) /i(convX) = / i (X ) , 

(M3) XcY^ fi(X) ^ /x(F), X, Y G Jt, 

where Jt denotes the family of all nonempty, bounded subsets of E. Denote by 3$ a 

basis of neighbourhoods of zero composed of closed, convex and balanced sets. Let 

Sf =-= {rB: B G 3B, r > 0}. Assume that a function p: SB' -j> [0,oo) satisfies the 

following conditions: 

(C\) p(V) > 0 whenever V & &, 

(C2) for each e > 0 there exists V € 3§' such that p(V) ^ e, 

(C3) UcV^p(U)^p(V), 

(C4) p(convV)=p(V), 

where U,V G SB'. 

Such a function is said to be a p-function. 
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And now we can introduce our notion of a (9, ^,p)-measure of noncompactness 

(f3lV a function a: -^ -+ [°> °° ) i s sai(* to be a (<^, « ,̂ p)-measure of noncompactness 

[(0>,08,p)-mnc)\& 

^(W) = inf{e > 0: there exist H G & and V G ^ ' 

such that W C # + V, p(V) ^ e} 

for each W G ^#. 
The Kuratowski measure of noncompactness and the Hausdorff measure of non-

compactness are, in fact, (^,^,p)-measures of noncompactness (see [3]). More 
information about these measures can be found in [3] and [1]. 

In the sequel, we will assume that 
(i) 9 is a family of all relatively compact subsets of E, 

(ii) p(k • V) = k • p(V), k>0,V6@', 

(iii) u,ve&^>u + ve&. 
Under the above assumptions we have the following lemmas: 

Lemma 1. ([3]) Every (&,38,p)-mnc \i has the following properties: 
(LO rtA + B)^fi(A) + ii(B), 
(Lt) ACB^ fji(A) < n(B), 
(LZ) n(k-A) = k-VL(A), 
(LA) /x(convi4) = p,(A), 
(Lb) fJL(Au{x0}) = fx(A), 
(Le) fJ^(A) = 0 iff A is relatively compact in E, 

for each A,B e Jt,x0£ E and k > 0. 

Lemma 2. ([3]) If K is a continuous mapping from a compact interval I of R to 
L(E) and W is a bounded subset of E then 

J\jK(t)w)šsut>\K(t)\-»(W). 

The assertion of the above lemma is very important. As claimed, in the case 
of purely axiomatic theory of such measures of noncompactness, it is necessary to 
assume this fact (see [11])! See also [5] . 

For 
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Lemma 3. ([5]) Let W be a bounded, almost equicontinuous subset ofC(R,E). 
>r any subset XofW put 

{(X)=supM*(t)). 



Then the index f has the properties (Li)-(Ls) listed in Lemma 1 and if £(x) = 0 
then x is relatively compact in C(R, E). 

3. MAIN RESULT 

We introduce the following assumptions: 
(1°) A: R -+ L(E) is strongly measurable and Bochner integrable on every finite 

subinterval of R. Moreover suppose that the linear equation 

(1) x'(t) = A(t)x(t) 

has a trichotomy with constants a ^ 1 and a > 0. 
(2°) Let / : R x E -+ E be a function with the following properties: 

(i) for each t € R /(£, •) is continuous, 
(ii) for each x € E /(-,#) is measurable, 

(iii) there exist real nonnegative functions a and 6 locally integrable on R such 
that 

||/(*,x)Ka(0 + 6(.)-.Ml 

for each t G R and x € E. Assume in addition that 

r-+i /•t-t-i 

(A) sup / a(s) 
řЄR Jt 

rt+1 

(B) sup / b(s) ds ^ M 2 , 
tЄR Jt 

ds ^ Mi, 

í + i 

l - e " where 0 < Mi < oo and 0 < M2 < —j*—• 
(3°) Let y: R+ -> R+ be continuous and let h: R+ -> R+ be a nondecreasing func

tion. Assume 

(C) >i(f (I xX))^ supg(t)-h(»(X)) 
t€l 

for each compact subinterval / of R and each bounded subset X of E. 
(4°) Put 

L = sup I / \G(t,s)\g(s) ds : f e R >. 

Assume that 0 < L < oo and L • h(t) < t for t > 0. 
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Theorem. Under the above hypotheses there exists at least one bounded solu
tion of 

(4) x'(t)=A(t)x(t) + f(t,x(t)) 

on R. 

Proof . Let a ^ 1 and o > 0 be constants from Definition 1 (assumption (1°)), 
so|G(*,s)| <a-e-*l ' - | , l , t,seR. 

By H we denote the following set: 

H = LeC(RiE):\\x(t)\\^K, 

\\x(t) - X(T)\\ ^ K f \A(s)\ds + J a(s)ds +K f b(s)ds, T , * G R J , 

where K = 2aM1/(l - e~a - 2aM2). 
Note that K > 0. 
It is clear that H is nonempty, closed, bounded, almost equicontinuous and convex 

inC(R,£). 
For each x G H we define 

F(x)(t)= [ G(t,s)f(s,x(s))ds. 
JR 

Thus 

oo r i + m + l 

II Ѓ ° ° / » t + m + l 

/ G(t,8)f(8tx(*))às = E / G(t, *)/(*,*(«)) ds 
l ^ m=-oo' / í+™ 

ÖO л t + m + 1 

< £ / ae-<г|t-|||/(в,a;(в))||dв 

m = - o o ' *+™ 

oo л ť + m + 1 

^ ]Г / ae-^ť-s\(a(s) + Kb(s))ds. 
Л+m Similarly as in ([6], Lemma 5.1) we have the estimate 

i.n.xoK***.^-*--
Furthermore, since F(x) is a solution of 

y'(t) = A(t)y(t) + f(t,x(t)) 
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(see [6], Th. 5.2), for r ^ t (t, r € R) we have 

\\F(x)(t) - F(X)(T)\\ ^ J* \\A(s)F(x)(s) + f(sM*))\\ ds 

^K-f \A(s)\ ds + / (a(s) + K • 6(5)) ds. 

Finally, F(x) G H and F: H -> H. 
Now we are in a position to show that F is continuous. 

Let (:rn) be a sequence which converges to x in C(R, E) (xn, x G iif, n = 1,2,...) 
and let I be an arbitrary compact subset of R. 

Put Q\ = inf{£: t G /} and £2 = sup{£: t G / } . Fix an arbitrary £ G I. We have 

||FOn)(.) - F(x)(t)\\ ^ I \G(t,s)\ • ||/(s,*„(*)) - f(s,x(s))\\ds 
J—00 

+ J~ \G(t, S) | • ||/(s,xn(s)) - f(s,x(s))\\ ds 

^ f ae-^t-g)\\f(s,xn(s))-f(s,x(s))\\ds 
J —OO 

/
OO 

ae-^-^\\f(s,xn(s)) - f(s,x(s))\\ds 

= a e - " t / t e°°\\f(s,xn(s))-f(s,x(s))\\ds 
J—OO 

+ ae"< ̂ ° ° e—1|/(5, x(s)) - /(s,x(5))|| ds 

<j Iae-^i r ||/(5,xn(5))-/(5,a;(5))||d(e-) 
^ J-oo 

- \*<?** f ° ||/(5,a;n(5)) - /(5,x(5))| |d(e—). 

By the Lebesgue dominated convergence theorem we deduce that F is continuous 
from H into itself. 

Set f (Y) = sup{/x(F(0) : t € R } for each subset Y of H. By Lemma 3 this index 
£ satisfies our conditions (Li)-(L^) listed in Lemma 1. 

Choose arbitrary t e R,e > 0 and Y C H. 

Note that F is almost equicontinuous as a subset of H. By the definition of \i for 
each e > 0 there exists V G ̂ ?' such that p(V) -̂  e. Let us denote by 5 a positive 
constant such that -B(0, £) CV. Let q > 0 be such that if • e"*9 < 26. 
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f t"q 1 
Thus, if we denote by Ai the set < f G(t, s)f(s,y(s)) ds : y € Y >, then /i(Ai) ^ 

— oo ' 

p(V) ^ e, because 

«- '<«-> (a{» + Kb(s)) ds < -^-— < S, 
-oo -̂  

soAiC{0} + B(0,*)c{0} + V. 

Analogously AM { / <-*(£,s)/(s,2/(s))ds : j / G Y>) ^ e (cf. [11], assumption (e)). 

In the sequel, with no loss of generality, we will assume that 0 £• (t — g, t + q). 
For an arbitrary €i > 0 there exists a Si > 0 such that |si — s2| < Si with Si, s2 € 

[t-q,t] or si ,s2 € [t,t + q] implies |G(t,si) -G(£,s2)| < Ei and |p(si) ~p(s2)| < e\. 
Let fo = ^ ~ Q < h < ... < tk = t < ... < t2k = t + q be & partition of [t — q, t + q] 
with U - £t-_i < S\ for each z = 1,2,..., 2k. 

The interval [£t-i,*i] will be denoted by U. 
By continuity of g and G(t,-) (except G(t,t)) there exist points n,Si G /{ such 

that 

|G(t,s,)|=sup{|G(f,s)|:sG/a, 
^(n) = sup{#(s): s G / i}. 

Let 

ci = sup{|G(£, s)\\t-q^s^t + q), 

c2 = sup{p(s) \t-q^s^t + q). 

For simplicity, we will denote the set [Y(s): t - q ^ s ^t + q} by Z. Obviously 

fji(Z) = sup{n(Y (s)) :t-q^8^t + q}^ £(Y). 

By the mean value theorem we get 

C £(«« - *i-i) čoňv ( IJ G(ř, »)/(/< x Z)). 
ť=l ^«€J. ' 

So, by Lemma 2 (see also [3]) 

J | J <?(.,«)/(/< x z)) < sup |G(í,«)|,u(/(J« x Z)) 
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and consequently, by our assumptions 

rt+q 

-q 

^ Y,(U - U-i) • sup \G(t,s)\ • n(f(Ii x Y)) 

1 ( { [-" G{t'S)f{S'У{S)) dS Г V Є Y}) 

ť = l 

2* 

< V > - *._!) • |G(M.)| • suP5(s) • h(n(Y)) 
£f «6/. 

2k 

= h(»(Y)) • J > - U-i) • \G(t,Si)\.g(Ti) 
1 = 1 

2k 

ţ h(џ(Y)) - £ / (|G(t, 8І) - G(ťf 5)| - 9(TІ) 
ľľT JL 

+ |G(í,<)| • \g(n) - g(s)\ + \G(t,s)\ • g(s)) ds 

ft+q 

-9 

ft+q 
h(џ(Z)) • [2g(ci +c2)£i + / |G(t,5)| -ffWdв]. 

. Jt-q 

Since £i is arbitrarily small, we get 

</.(/*(-*))• [\G{t,a)\-g{8)da. 
JR 

Thus 

A.(F(Y)(j)) < £ + /.(/-(-*)) • / \G(t, «)| • <?(*) ds + e i 

^ 2e + L • h(n(Z)) ^2e + L- h(£(Y)), 

so n(F(Y)(t)) < L • h(£(Y)) and consequently 

t(F(Y))<L-h(ttY)). 

By (4°) and Sadovskii's fixed point theorem ([12]) F has a fixed point in # , which 
is a bounded solution of (4) (cf. [7], Lemma 7). The proof is complete. • 

As claimed in Introduction, this theorem is an extension of previous results: in 
the case of trichotomy of (1) it generalizes a famous result of Elaydi and Hajek ([6], 
Th. 5.4) and in the case of exponential dichotomy of (1) other mentioned results ([2], 
[5], [8], [11], [13], for example). 
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