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BOCHNER PRODUCT INTEGRATION 

ŠTEFAN SCHWABIK,* Praha 

(Received July 30, 1993) 

Summary. A new definition of the product integral is given. The definition is based 
on a procedure which is analogous to the sum definition of the Bochner integral given 
by J. Kurzweil and E.J. McShane. The new definition is shown to be equivalent to the 
seemingly very different one given by J.D. Dollard and CN . JRriedman in [1] and [2]. 

Keywords: Bochner integral, Bochner product integral 

A MS classification: 28B05 

The concept of product integration goes back to V. Volterra [18]. In 1931 
L. Schlesinger published the paper [14] where the case of product integration based 
on exponential factors of the form eAW dt with an n x n matrix A(t) with Lebesgue 
integrable entries is extensively studied. The case of Bochner integrable operator 
valued functions instead Schlesinger's matrix case is treated in the paper [15] of 
G. Schmidt and also in the known monograph [1] of J. D. Dollard and C. N. Fried
man. The product integral for this case is defined via the Ll -approximations of 
a Bochner integrable bounded operator valued function by step-functions. Here 
we give an alternative definition using the concept of gauge integration which was 
created by J. Kurzweil, R. Henstock and E. J. McShaae for the case of ordinary 
integrals. We show that this concept is equivalent to the concept given in [1]. In [1] 
also an excellent bibliography on the problem is given. 

*This paper was supported by the grant No. 11928 of the GA of the Academy of Sciences 
of the Czech Republic 
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THE BOCHNER INTEGRAL 

Let an interval [a, b] C R, — oo < a < b < +00 be given. A pair (r, J) of a point 
r € R and a compact interval J C R is called a tagged interval, r is the tag of J. 

A finite collection {(r,-, J,), j = 1 , . . . , A;} of tagged intervals is called an L-partition 
of [a, 6] if 

Int(Jt) fl Int(J,) = 0 for i ^ j 

and 
A: 

\Jjj = [a,b). 
3=1 

(Int(J) denotes the interior of an interval J.) 
An L-partition {(r,, Jj), j = 1 , . . . , k} for which 

Tj t Jj, j = I , . . . , K 

is called a P-partition of [a, 6]. 
Clearly every P-partition of [a, b] is also an L-partition of [arb]. 
Sometimes it is useful to denote 

Ji = [at-i ,at], z = l , . . . , fc 

for a given L-partition of [a, 6], where 

a = a0 < ai < . . . < afc = 6. 

In other words we will assume in the sequel that the partition {(r», Jt), i = 1 , . . . , k} 
is ordered in such a way that 

supJt = inf Ji+i, i = 1,. ..,fc — 1. 

Given a positive function 5: [a, 6] -» (0, +00) called a gauge on [a, 6], a tagged interval 
(r, J) with r £ [a, 6] is said to be 8-fine if 

JC[r-(J(r),r + tf(r)]. 

Using this concept we can speak about S-fine L-partitions and S-fine P-partitions 
{(r,-, Jj), J = 1 , . . . , k} of the interval [a, b] whenever (r,-, Jj) is tf-fine for every j = 
1 , . . . , * . 

It is a well-known fact that given a gauge 6: [a, b] -> (0, -f 00) there exists a (J-fine 
P-partition of [a, 6]. 

This result is called Cousin's lemma, see e.g. [11, Theorem on p. 119]. 
Assume that Y is a real Banach space with the norm || • ||y = || • ||. 
Let us consider a function / : [a, b] -> Y and assume that /i is the Lebesgue measure 

on the real line. 
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Definition 1. Denote by L([a, b]; Y) the set of functions / : [a, b] .-• Y for which 
to every € > 0 there is a gauge S on [a, 6] such that 

k i 

(i) £ £ ll/(t.) - f(8,)\\үџ(Ji П Lj) < e 
t = l i = l 

for every <5-fine L-partitions {(ti,Ji),i = 1,...,A;} and {(sj,Lj),j = 1,...,/} of 

[a, 6]. 

The set L([o, 6]; y) is introduced in [10, Chap. 14]. The notation in [10] is different 
from ours. 

Proposition 2. To every f £ L([a,b];y) there is an element 5/ G Y such that 
for every e > 0 there exists a gauge 6 on [a, b] such that 

(2) t^f(ti)џ(Ji)-Sf 
ť = l 

<є 

for every 6-Gne L-partition {(£*, Ji), i = 1,..., k} of [a, 6]. 

Proof . Let / e L([a,b];Y), for a given e > 0 let £ be the gauge which corre
sponds to | > 0 by Definition 1. Then by this definition we have 

k i 

Y,f(uMJi)~Y,f(s3ML3) 
3=1 

k l 

£ £ f(U)џ(Ji П Lj) - 53 £ f(sjЫJi П Lt) 
k l 

i=l j=l 

(3) 

t = l j = l 

k l 

< EEИ/W-/(вi)H^(Jr*nLi)<5. 
t = i j = i 

for any two S-hne partitions {(<,-,7.), i = l,...,k} and {(sj,£j), j = 1,..-.'} of 
[a, 6]. 

Denote by S(e) C Y the set of all integral sums 

S(/, 0 ) - = £ / ( * . ) / . ( J«)€Y 
t = l 

where J9 = {(ti, J{), i = 1,. . . , A:} is an arbitrary 5-fine L-partition of [a, &]> ie* 

5(e) = {£(/, -O) € y ; D is a 5-fine L-partition of [a, b]}. 
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Since by Cousin's Lemma the set of rf-fine L-partitions of [a, b] is nonempty, we have 
S(e) ^ 0 and clearly also S(TJ) C S(S) provided 77 < e. By (3) we get diamS(£r) < §, 
diamM being the diameter of a set M C Y. Therefore the intersection f[ S(e) of 

£>0 

the closures S(e) of all sets S(e) consists of one point 

Sf=ftS(ejeY 
€>0 

because Y is complete and therefore 

k 

J2f(tMJi)-sf 4 
Y ů 

i.e. (2) is satisfied. Prom (3) it is also clear that there is exactly one 5/ € Y 
satisfying (2). Q 

Definition 3. The element Sf € Y given by Proposition 2 for a given function 
/ € L([a,6];F) is called the S-integral of / over [a, b] and we use the notation 
Sf = (S)fb

af(t)dt. 

In [10, 14.7] the following interesting result is shown. 

Theorem 4. A function f: [a, 6] -» Y is Bochner integrable if and only if f e 
L([ay b]\ Y) and in this case we have 

(B) f f(t)dt=(S) f f(t)dt, 
Ja Jo 

where (B) Ja f(t) dt denotes the Bochner integral off over [a, 6]. 

In the sequel we use the notation Ja f(t)dt instead of (S) Ja f(t)dt. For the 
notion of the Bochner integral see e.g. [3], [7], [20]. 

Theorem 4 shows that the set L([a, 6]; Y) of y-valued functions defined on [a, b] 
coincides with the set of Bochner integrable functions and Proposition 2 yields the 
fact that if the Bochner integral (B) Ja f(t) dt exists, then it can be approximated 
by Riemann type integral sums of the form 

k 

£/(*.)M4)-
1=1 

Remark 5, It is well-known that in the case Y = R the Bochner integral of a 
function / : [afH\ ~> R coincides with the Lebesgue integral. Therefore Definition 1 
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and Theorem 4 give also a characterization of Lebesgue integrable real functions. 
More precisely g: [a, b] -> R is Lebesgue integrable over [a, b] if and only if for every 
e > 0, there is a gauge S on [a, 6] such that 

k i 

J2 Z) M*<> - s(*i>IM4 n Li) < e 
t=l i = l 

for every £-fine L-partitions {(£i,Ji), i = 1,...,&} and {(sj,L})yj = l , . . . , f} of 
[a,b]. See again [10] for more details. 

Proposition 6. If f £ L([a,b];Y) then \\f\\: [a,6] -* R is Lebesgue integrable 
and 

(4) 1/ л*)d*|U / ил*)iи*. 
Ja ït Ja 

Proof , Let to a given e > 0 the gauge ($ be given by Definition 1. Given 5-fine 
L-partitions {(U, J-.), i = 1, . . . , fc} and {(SJ,Lj), j =s 1, . . . , 1} of [a,6] we have 

|lt/(*i)l|-H/(Si)ll|^lt/(*i)-/(Si)ll 

for every i = 1, . . . , k, j = 1, . . . , I. Hence 

EElll/WII-ll/^JIIlM^nLj) 
t=-l i = l 

< EEIW«)-H»i)M*nl i )<e 
i = l i = i 

and by Theorem 4 this inequality immediately yields the Lebesgue integrability of 
||/(*)||over[o,6]. 

To show the inequality (4) assume that e > 0 is arbitrary. Let S be a gauge on 
[a, b] such that—by Proposition 2— 

JtfьмJi)- ҐfWát 
. = 1 j а 

<є 

and 

E HI(*i)M J«)-/'»/(*)»* < e 
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for every <5-fine L-partition {(U, J%), i = 1,..., k} of [a, 6]. 
Then we have 

[ f(t)át < [ f(t)dt-f^f(tMJi) + é/foM-*) 

<e + ^\\f(tł)\\џШ 
t = l 

fc 

ŚЄ + 

<2e + 

ElI/WIKIí)- / Il/Wlldí + / ||/(ť)||dt 
i = l Ja I Jo 

/'ll/WHdí 
JO 

and therefore (4) holds because e > 0 can be taken arbitrarily small. D 

R e m a r k . The result given in Proposition 6 is well known for the Bochner 
integral (see e.g. [7, Theorem 3.7.6]). 

THE BOCHNER PRODUCT INTEGRAL 

Assume now that A" is a real Banach space. Denote by B(X) the Banach space of 
bounded linear operators on X with the usual operator norm given by 

\\M = ||i4||*(x) = sup \\Ax\\x 
| | s | | = i 

for A e B(X). The identity operator in B(X) will be denoted by I. 
Let 3 be the set of all compact subintervals in [a, 6]. Assume that a Z3(K)-valued 

point-interval function V: [a, b] x 3 -> B(X) is given. 
For a given L-partition D = {(U, j»), i = 1,..., k} of [a, b] define 

P(V,D) = V(Tk,Jk)V(Tk-l,Jk-l)...V(TUJ1) 

the ordered product of elements of B(X). 

Definition 7. A function V: [a, 6] x 3 -» .B(K) is called Bochner product in
tegrate if there exists Q € 0(.K) such that for every e > 0 there is a gauge 5: 
[a, 6] —> (0, +oo) on [a, 6] such that 

(5) \\P(V,D)-Q\\<e 

for every 5-fine L-partition D = {(*,, •/.), i = 1,..., k] of [a, 6]. 
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Q € B(X) is called the Bochner product integral of V over [a, b] and we use the 

notation Q = rl V~(*, d*) e BOC). 
a 

R e m a r k 8. A similar concept of product integration was introduced by 
J. Jarnik and J. Kurzweil in [9] (see also [16], [17]) for the case of n x ra-matrix 
valued point-interval functions V when instead of L-partitions in the Definition 
7 P-partitions are used. The corresponding product integral is called the Perron 
product integral in [9]. 

This terminology originates in the well known fact that a real function g: [a, 6] -» R 
is Perron integrable to the value Ja g(t) dt G R if and only if to every e > 0 there is 
a gauge S on [a, 6] such that 

J>( . . )MJ.) - / 9(*)dt 
t= i Ja 

<є 

for every 5-fine P-partition D = {(U, J*), i = 1,..., k} of [a, 6]. 

Proposition 9. Let V: [a, 6] x 3 -> B(X) be given. Then V is Bochner product 
integrable if and only if for every e > 0 there is a gauge S on [a, 6] such that 

(6) l l P ^ o O - P W . ^ H ^ e 

for every S-Rne L-partitions D\, Di of [a, 6]. 

Proof . If V is Bochner product integrable then the condition (6) is clearly 
satisfied (see (5) in Definition 7). .. . • 

Assume that (6) holds. Let Sn: [a,6] —r (0, +oo) be the gauge on [a,6] which 
corresponds to e = £, n = 1,2,... by (6) and assume that <Sn+i(£) ^ 6n(t) for every 
£ G [a, 6] and n = 1,2,.... 

Denote 
Pn = {P(V,D) e B(X); D is an $n-fine ^partition}. 

Clearly Pn+i C Pn for every n by the choice of Sn and also 

diamPn = sup{||-4 -B\\\AtBe Pn} ^ - . 
n 

oo 

Since the space B(X) is complete, the intersection f| Pn consists of exactly one 
n=l 

point Q e B(X) (Pn is the closure of the set Pn in B(X)) and ||P(Vi D) - Q|| < i • 
for every <Sn-fine L-partition Z> of [a, 6]. This proves the statement. D 
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The following result holds. 

Theorem 10. Let V: [a, b] x 3 -* B(X) be Bochner product integrable over [a, 6], 
b 

let Yl V(t, dt) = Q € B(X) where Q E B(X) be an invertible operator. Assume that 
a 

V satisfies the following 
Condition (Co). There exist B < oo and a gauge S: [a, fc] —> (0, +oo) such that 

V(t, J) € B(X) is invertible for every <S-fine tagged interval (t, J) and 

(7) max(|jV(ť,J)| |, | |(V(ť,J)Г1i |K.B. 

Then for every s € [a,6] the Bochner product integrals ]\V(t,dt), ]jV(t,dt) 
a s 

exist,' the equality 

b s b 

(8) T[v(t,dt)T[v(t,dt) = T[v(t,dt) 
s a a 

holds and there exists a constant M > 0 such that 

f[V(t,dt) ^M, l(nn'.cU)) |UM, 
a " ^ a / 11 

JJV(t,dt) ^M, (IJ^'^)) N M 

s " ^ s / 11 

for all s € [a, 6]. 

R e m a r k . Let us introduce the following condition concerning the point-interval 
function V: [a,b] x 3 -» S(.X). 

Condition (C). Let tftere eajtsts r € (0,1) suc/i that for every t € [a, 6] one can 
find a = <r(t) > 0 such that 

(9) ||V(ť,J)-Лl<r 

for any interval J C [a, b] H (t - a, t -f- a). 

If the condition (C) is satisfied for V: [a,b] x 3 -» -3(X) then the condition (Co) 
holds for V. 

Indeed, let S be a gauge on [a,6] such that J C (t - a(t),t + <?(t)) for all iS-fins 
tagged intervals (t, J) . 
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If the tagged interval (r, J) is <S-fine then by (9) the inverse [V(r, J)]"""1 exists and 

\\[V(T,J))-l\\ = ,£(I-V(тtJ)ү 
/c=0 

oo 

< 5 3 | | 7 - V(T, J)\\k < £ r f c = - i - < oo. 
Jfc=0 fc=0 

Moreover 
IW(T,J)IKIIv(T,J)-J | | + | | J | | < l + r. 

Typical cases of V satisfying condition (C) are for example 

Vl(t,J) = I + A(t)n(J) 

or 

where .4: [a, 6] -» S(K'), /i being any non-atomic Borel measure on [a, 6] (e.g. the 
Lebesgue measure on [a, b].) 

P r o o f of T h e o r e m 10. Let So: [a,b] -r (0,oo) be a gauge on [a,b] such 
that 

(io) IIW^-QIKIIKT1..-1 

holds for every i5o-fine L-partition D of the interval [a, b]. Assume further that SQ ^ S 
on [a, 6], <$ being the gauge from the condition (Co). 

The proof of the theorem will be divided into several steps. First we prove the 
following assertion. 

For every r £ [a,b] there is a KI(T) > 0 such that if s € (r - SO(T),T] D [a,fr] 
and D\ is a So-fine L-partition of[a,s] then 

(11) max{\\P(V,D1)\\,\\(P(V,D1))-
1\\} < Kt(T), 

and 
if s e (T,T + S0(T)] n [a, b] and Da is a 50-fine L-partition of [s, b] then 

(12) maxfliPW.T^II.IKPW,/?,))-1!!} < KX(T). 
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In order to prove e.g. the estimate (11) let D3 be an arbitrary fixed <5o-fine L-
partition of the interval [T, b]. Let 

Di = {a 0 ,Ti ,a i , . . . ,a /^i ,T/ ,a /} = {(Tj,[aj^i,aj])J = 1, . . . , /} 

be a <5o-fine L-partition of [a, s] and let £>3 has the form 

D 3 = {a/+i,T/+2,o:/-i-2,...,Q;fe-i^ib?QJ.-c} = { ( ^ [ a j - i > a i l ) > i = * + 2,.. .fc}. 

Set 

-D = {ao ,Ti ,a i , . . . ,a i - i ,T/ ,a / = S,TJ+I = aj+i = T,Tj+2,ai+2.. ..,afc-i)Tjt,afc} 

= { ( r J a i - l l a i ] ) , i = l , . . . , O u ( r J s l r ] ) U { ( r J a i - i , a i ] ) , j = 

We use the notation D = D\ o (r, [5, T]) O L>3 for this construction of a partition 
of the interval [a, b]. It is evident that D is a <5o-fine partition of [a, b] and that 
V(T*, [at-i,at]) € B(.K) is invertible for every i = 1 , . . . , fc. Therefore 

P(F,D!) = V ( T ^ [ a < _ ^ 

and 

P(V,D3) = V f a j a f c - i - a * ] ) ^ 

are invertible and also the inequality (10) holds where by definition we have 

P(V, D) = P(V, D3)V(T, [S, T})P(V, £>0 

and by (10), (Co) we obtain 

||P(V £>i) - (V(T , [S, T]))" 1 (P(V D ^ Q I I 

= | | ( V ( T , [ 5 , T ] ) ) - 1 ( P ( V , P 3 ) ) - 1 [ P ( V P 3 ) V ( T , [ S , T ] ) P ( V , P 1 ) - Q ] | | 

<B\\(P(VM)-i\\.l-\\Q-i\\-K 

Consequently, using again (C0)
 w e 6 e t 

||P(V,Px)|| < \\P(V,D1)-(V(T,[S,T}))-1(P(V,D3))-
1Q\\ 

+ I I ( V ( T , [ S , T ] ) ) - 1 ( P ( V , P 3 ) ) - 1 Q | | 

< f IIQ-^r'IKP^Ps))-1!! + IKVfoM))-1!! ||(P(V,P3))-1II IIQII 

(13) ^ (|IIQ-Ml-' + silQI^IKPW.Pa))-1!^^^). 
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On the other hand, we have 

|KP(V,D..))-- _ Q~ip(V,D3)V(T,[s,T])W 

= llO-1[o-P(V,o3)V(T,[s,r])P(V,P1)](P(V,^)hi|| 

<II<?-1IIIIQ-P(V>.0)||||(P(V,A))-1II 

^ IIQ"1!! • \ IIQ-1!!-1!!^^,!?!))-1!! = \ll(I>^'Z)l))~1|| 

and by (Co) also 

IKPW.A))"1!! ^ \\(P(V,D1))-
1-Q-1P(V,D3)V(T'U,T])\\ 

+ IIQ-1|ll|P(Vo3)lll|V(T,[S,T])|| 

<\\\(P(V,Dl))-
1\\ + B\\Q-1\\\\P(V,D3)\\ 

i.e. we obtain the inequality 

(14) | | (P(VA))- 1 | | ^ 2B||o-1 | | ||P(Vo3)H = K°(r) > 0. 

Taking K-(T) = miat.(Ko(T),K0(T)) > 0 we conclude by (13) and (14) t h a t 

maxdlPW^OIUKPW.P,))-1!!} < K-(r) 

holds. Analogously we can show also that if s E [r,r + $o(r)) ^ [a, b] and D<i is a 
Jo-fine L-partition of the interval [s,6] then 

max{||P(VfI?2)||f IKP^Da))-1!!} ^ K+(T) 

where K+(T) > 0. Putting KX(T) = max(.K_(r),K+(T)) we obtain (11) and (12). 
Now we show that the following holds. 

For every r € [a, b] there is a ̂ (T) > 0 such that 

(15) maXi\\P(V,D1)\\,\\(P(V,D1))-
1\\,\\P(V,D2)\\,\\(P(V,D2))-

1\\} < K2(T) 

ifse (T - S0(T),T + S0(T)) D [a, 6] and DX) D2 are arbitrary So-fine L-partitions of 
[a,s], [s,b], respectively. 

Let us take for example S£[T,T + S0(T)) and set D = D\oD2. Then evidently 

P(V,D) = P(V,D2)P(V,Di) 
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and P(V, -Di), P(V, D2) E B(X) are invertible because every factor in these products 
is invertible. Since (7) is assumed we get 

\\P(V,D2)P(V,D1)-Q\\<±\\Q-1\\-1 

and 

\\P(V,D1) - (PWM^QW = \\(P(V,D2))-
1(P(V,D2)P(V,D1)-Q)\\ 

^\\\(P(V,D2))-
XWWQ-X\\-X. 

Hence 

\\P(V,D1)\\ 4 \\P(V,Dx) - (PQTM^QW + W(P(V,D2))-
1\\ \\Q\\ 

(16) ^ | | ( .P(v,u a))-- | | ( | HQ-1!!-1 + IIQIl)-

On the other hand, we have 

||(P(V, Dx))-1 -Q~lP(V, D2)\\ = \\Q-1(Q-P(V,D2)P(V,D1))(P(V,D1))-
X\\ 

< \\Q-1W\\Q-P(V,D2)P(V,D1)WW(P(V,D1))-
X\\ < i l K W o o m . 

Hence 

\\(P(v,D1)r
1\\ < iRPCyA))-1 - Q-1P(V,D2)\\ + \\Q-X\\ \\P(V,D2)\\ 

<l\\(p(v,Dl)r
1w + \\Q-1\\\\p(v,D2)w 

and finally 

(17) \\(P(V,Dl))-
1\\ < 2HQ-1!! ||P(V,£>2)||. 

Since s e [T,T + 60(T)] we can use (12) for P(V,D2) and by (16) and (17) we 
obtain the estimate 

max{WP(V,D1)\\,W(P(V,Dl)r
x\\} 

< A-i(-r)[2||Q--|| + illQ-Ml"1 + IIQIl] = KL(r) > 0. 

If s < T then in a similar way it can be proved that 

max{||P(V..02)||,||(P(V,Z)a))-
1||} < KR(r) 
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where KR(T) > 0. Putting now K2(T) = max{ifL(r),.ftTrt(r)} we obtain (15). 
Intervals of the form (T — SO(T),T+SO(T)) with r G [a, b] represent an open covering 

of the compact interval [a, 6]. Therefore there is a finite set {£ i , . . . , U} C [a, b] such 
that 

i=i 

Define tf = max{l, K2(h), K2(t2), • . . , -M**)} where K2(T) is given by (15). Then 
the estimate (15) implies the following statement. 

There exists a constant K ^ 1 such that 

(18) max{||P(V>D1)| | , | |(P(V, .01))-1 |IKi-" 

if s G (a, 6] and Di is an arbitrary So-fine L-partition of[a,s] and 

(19) max{| |P(V,P3) | | , | | (P(V )P2))-1 | | }^i i-

if s G [a, 6) and D2, is an arbitrary So-fine L-partition of [s, b]. 
Now we prove the following statement. 

Assume that e > 0 is given and let S be a gauge on [a, b] such that S(T) ^ SQ(T) 
for T G [a, b] and 

| | P ( V , P ) - Q | | < e 

for every S-fine L-partition D o/[a,6]. 
7/s G (a, b] and D\, D3 are arbitrary S-fine L-partitions of[a,s], then 

(20) \\P(V,D1)-P(V,Dz)\\^2Ke. 

If s G [a, 6) and D2, D4 are arbitrary S-fine L-partitions of[s,b], then 

(21) \\P(V,D2)-P(V,D4)\\^2Ke. 

K is the constant from (18) and (19). 
Let us prove (21) only; the proof of (20) is similar. Assume that s G [a, b). Denote 

by Di an arbitrary 5-fine L-partition of the interval [a, s] and let us put D5 = D\oD2 

and D 6 = Di o D4 . Evidently D 5 and De are <5-fine L-partitions of the interval [a, b]. 
Hence 

||P(V z?2)P(v, DO - p(v, z?4)P(v, con 
^ ||P(VA>) - Q|| + ||P(VP6) - Qll < 2e 
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and 

\\P(V,D2) - P(V,£U)|| = \\[P(V,D2)P{VM - P(V,D,)P(V,D1)](P(V,D1)r
1\\ 

^ \\P(V1D2)P(V,D1)^P(V,DA)P(yD1)\\\\(P(V,D1))-
1\\^2Ke 

by (18). This yields (21). 
Using (20), (21) and Proposition 9 we have the following result. 

If s G (a, 6) then there exist Q~ ,Q* € B(X) such that for every e > 0 there is 
a gauge 8\: [a, b] —)• (0, +oo) on the interval [a, b] such that 

(22) | | P ( V , A ) - Q - | | < e 

for every 5\-fine L-partition D\ of [a, 5] and 

(23) | |P(V,D 2 ) -Q+| |<£ 

for every 8\~fine L-partition D2 of [5,6]. 
6 s 

This means that the product integrals ]~J ^(t, dt) = Q+, Tl^v^dt) = Q~ exist. 
s a 

By (18) and (19) it is easy to see that the estimates 

TJV(ť,dt) = IIQ+II ^ K î[V(t,dt) \\Q~\\^K 

hold. Now we are able to complete the proof of the theorem. 
Assume that s G (a, b) and that e > 0 is given. Let us choose a gauge S2 on [a, b] 

such that 62(r) ^ min(<5(T),<5i(T)), where for e the gauges <5, <5i are given as above 
for the estimates (20), (21) and (22), (23). 

By (18) and (19) we have for <$2-fine L-partitions D of [a, 6], D\ of [a, 5] and D2 

of [5, b] the inequality 

||P(V,D) - Q+Q-1| £. ||P(V,£>) - P(V,D2)P(V,D1)\\ 

+\\P(V,D2)P(V,D1)-Q
+Q-\\ < \\P(V,D)-P(V,D2)P(V,D1)\\ 

+\\P(V,D2)P(V,D1)-Q
+P(V,D1) + Q+(P(V,D1)-Q-)\\ 

< | |P(V,JD) - P(V,.Da)P(V.,D1)|| + ||P(VD2) - Q+|| ||P(V,Di)|| 

+| |Q+| | | |P(V,D1)-Q-| | 

^ ||P(V,D) - P(V,o2)P(V,D1)|| + 2Ke 

(24) = ||P(V,D) - P(V, D2 o Di)\\ + 2Ke <2e + 2Ke. 
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Because e > 0 can be chosen arbitrarily small we finally obtain 

(25) Q = Q+Q~, 

i.e. the equality 
6 s 6 

nvr(*,d«)ijvr(*fd«)=iivr(t,d*) 
s a a 

given in the statement of the theorem holds. Since Q G B(X) is invertible, we have 
by (25) the identity 

Q~lQ+Q- = / 

and this means that Q~lQ* G B(X) is the inverse to Q~. Similarly it can be also 
shown that Q+ G B(X) is also invertible with (Q+ ) ~ l = Q~Q~l. 

s b 
Hence the product integrals ~\V(t,dt) = Q~, HV(t,dt) = Q+ G B(X) are 

a s 

invertible operators. 
Further by (18) we have 

Š.-ІПKГ1.! (f[v(t,dt)\ ||= (nYo.do) nv(t,d* 
^ a / II ^ a ' s 

and similarly by (19) also 

KnvMt)) I < KiQ-% 
II \ $ / II 

Setting M = max(.K',.K'||Q~'1||) we obtain the statement of the final part of the 

theorem. D 

SOME AUXILIARY STATEMENTS 

Lemma 11. Assume that A^Bi G B(X), i = 1,2,..., m. Then 

, t - i 

(26) 

and 

(27) 

n^-n^=E(n^)^-^(n^) 
t=i t=i t=i S*=t+i -' v i = i 7 

TU m m s m \ s t—1 v 

n^-n^=E( n ^)^-^(n^). 
t = i t = i t=i x j = t + i 7 x j = i y 
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where all the products axe ordered according to descending indices, i.e. J\ Ai = 
i = l 

AmAm-i ...A\ etc. and where the convention Y[ Aj = I forp > q is used. 
J=P 

Proof . The equality (26) evidently holds for m = 1. We prove it in general by 
induction. Assume that (26) holds for m. Then 

II Ai "" II Bi = A™+lT[Ai - Brn+1 JJ B* 
t = l i = l i = l i = l 

m m 77i m 

= Am+1 Y[Ai- Am+1 Y[Bi + Am+1 J[Bi- Bm+1 [JBi 
i = l t = l t = l t = l 

* m m \ m 

= Am+1 ( JI Ai - [J Bi) + (Am+i - Bm+1) Y[ Bi 
M = l t = l ' i = l 

vn. J Tn s. * i—1 \ T7i 

= Am+1 £ ( FT Aj ) [Ai - Bi) ( [ J Bj ) + (Am+1 - Z?m+1) [ J B{ 
i=l ^j=i+l ' ^j=l ' i=l 

m /• m \ • i—1 \ 771 

= W A m + 1 n A i)[Ai- JB i](n^i)+(^+i-Bm + 1)nsi 
i=l \ J=i+1 ' S '= l ' i=l 

m • m + 1 v • i—1 v m 

= E ( II AjjlAi-BMllBjj+iA^-B^llBi 
i=i ^j=i+i ' ^ i= i ' i=i 

m + l • m + 1 v J**""1 \ 

= E(n^j^-^(riBij-
i=i v j=t+i 7 v i = i 7 

This shows that (26) is true for m + 1 and the formula (26) is proved. 
The equality (27) can be proved analogously. 

R e m a r k . Lemma 11 can be found e.g. in [1] or [4]. 

Corollary 12. If A,B e B(X), then 

m - l 

(28) Am-Bm= ^ ^ - ^ [ . A - . B l . B * 
*=o 

and 

m - l 

(29) Am - Bm = ] P B™-*-1 [A - B]Ak. 
fc=0 
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Proof . Using (26) we have 

m s tt% v /1—1 \ 

Ar»-B>« = J2( II A)lA-B](lIB) 
t=i S*=-+i ' S*=i ' 

m m—1 

= ^ Am-'(/i - BjB*-1 = ^ A"1-*"1^ - £?]£?* 
1 = 1 fc=0 

and (28) is proved. The equality (29) can be shown similarly from (27). 

Lemma 13. If A,B e B(X)X then 

(30) ||eA - eB | | ^ \\A - B\\em^A^B^ <$ \\A - B||e«A|l+l|BB. 

Proof . We have 

Hence by (28) we get 

и_es = f;ì(л'-ß'). 
q=l 

q-1 

ЦeЛ " e s | | < £ ҺW ~ BЦ = Ë І E A"-k~l[A - _ ] _ * 
9 = 1 ^* 9 = 1 * = 0 

oo . 9 - 1 

(зi) ^llл-ßii^L^иr^Цßf. 
_-__ ^ __—/ 
9 = 1 * Jfc=0 

Clearly 

g - l 9 - 1 

£ ЦAЦ^- l ß f < 5 > a x ( И | , Ц-ЦГ1 = gmaxdИЦ,ЦBЦГ1 

fc=0 fc=0 

and by (31) 

||e* - e s | K 11-4. - - | | £ ^ 4 i ) ! m a x (" A " ' HB-) ,_1 = II-* - BHe' 

a 

,max(||A||,||ß||) 

D 
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THE CASE OF THE EXPONENTIAL PRODUCT INTEGRAL 

Theorem 14. Assume that A: [a,b] -» B(X) is Bochner integrable, i.e. A e 
L([a,b];B(X)). Let us set V(t, J) = eA(t)'x(J) for a tagged interval (t, J) where » is 
the Lebesgue measure on [a, b]. Then the Bochner product integral 

b b 

Y[eA^dt =Y[V(t,dt)eB(X) 
a a 

exists and is an invertible operator in B(X). 

R e m a r k . It should be mentioned that the result given in Theorem 14 holds 
also for the case when /i is an arbitrary non-atomic measure on [a, b]. 

Proof . Assume that to a e > 0 the gauge 6 is given such that (by the Defini
tion 1) we have 

A: . 
£ £ \\A(ti) - Aisj^x^UiDLj) < e 
i= i j = i 

for every <$-fine L-partitions D\ = {(U,Ji), i = l,...,fc} and D2 = {(SJ,LJ), j = 
1,...,/} of [a, b] and that 

ť=i J a 

< i 

and consequently also 

k 

EllA(ť')IUx)M(*Ii)<l+ / ||.4(t)||dt 

for every (5-fine L-partition Dx = {(*», Ji), * = 1, -.., fc}. Then for V(r, J) = e
AlT)rtJ) 

we have 
k k I 

P(V,Di) = TTeMtiMJi) = IT TT e
A ( t i ) M ( J i n L ^ 

t=i t=i j = i 

because clearly 

eA(u)p(Ji) - TteAliiMJiOLj) 

i = i 

and similarly also 
/ k 

P(V,D2) = J ] \[*A{8iMJinLi)• 
i = i issi 
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Assume that Kq, q -= 1,.. . ,ra is the ordered system of intervals which consists of 
k groups of ordered systems of intervals 

Jx n Lj, J2 n Lh . . . , Jk n Lj, j = l , . . . , l 

where the ordering of intervals in each of these groups is induced by the ordering in 
the sy stem L i , L 2 , . . . , £ / . Denote further rq = U for q = 1 , . . . , ra when Kq = JiDLj. 

It is easy to see that {(rq, Kq), q = 1,. . . ,ra} is a <$-fine L-partition of [a, 6] since the 
L-partition JDI = {(U, Ji), i = 1 , . . . , k} is assumed to be 6-fine. Then we have 

m 
P(V,£>!) = JJe*

(T*)MK9). 

9=1 

Using the same procedure for I groups of ordered systems of intervals 

J ^ n l / i , J ; n L 2 , . . . , Jif\Li, i = i , . . . , fc 

where the ordering of intervals in each of these groups is induced by the ordering in 
the system Ji, J 2 , . . . , Jk we get the same ordered system of intervals Kq as before. 
Taking oq = Sj for q = 1 , . . . , m when Kq = J{ D Lj, we obtain a (5-fine L-partition 
{(orq, Kq), q = 1, . . . , ra} of [a, b] since the L-partition D2 = {(SJ, Lj), j = 1 , . . . , 1} is 
assumed to be 5-fine and 

m 

P(V,jD2) = J J e ^ ' X * ' ) . 
g = l 

Using these relations we obtain by Lemma 11 

II m m II 

j j eA(rqHKq) _ JJeAKMKq) 

I q = l q = l II 

I, m y m x / 9 _ 1 \ II 

\Y1 ( I I eA(r-)^(K') J [e
A(r<XK*) - e^KM-*,,)] j JJ eM*,MK*) \ 

I 9=1 V = 9 + l ' V = l ' II 
9=1 H r=9+l II I' r= l » 

Further we have 

J JJ eA(rr)(.(Kr)| ^ JJ ||eA(rr)^r) | | 

II r=9+l II r=9+l 
m 

< J J eWMrr)\\n(Kr) ^ eE,"„,+1 ||A(rr)||f.(Kr) 

r=9+l 

^ eS™=» ll^r)«M(lfr) ^ el+L ' U(t)\\ <" _ K 
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and similarly also 

g - l 

[ J eA("'MK')\\ < e1+-"-*"*<*>-«** = K. 
Г = l 

Using the estimate from Lemrna 13 we have 

and therefore (because clearly e^»*(tWT«)fl>llAK)NMtfg) ^ ei+J« IMWII*-* = #) w e 

obtain 

k i 

||P(Vf-Di) - P(V,D2)| | < l f 3 £ £ ||ii(t,) - -4(5 i)Ibw / i(J, n ^ ) < K*e 
<=-:! j = l 

for every rf-fine L-partitions 2>! = {(**,,-/*), « = l,...,fc} and D2 = {(sj,Lj), j = 
1,...,{} of [a, *]. Using Proposition 9 we conclude that the Bochner product integral 
HeA(t)dt e B(x) exists. 
a 

Recall again that the Lebesgue integral Jo
6 ||;4(s)|| ds = 5 G R exists and that 

£lИ(..)IИJ.)-s 
1 = 1 

< 1 

for every <S-fine L-partition D = {(U, J,), i = 1,..., A;}. 

Prom the existence of the Bochner product integral Y\eA^dt e B(X) we obtain 
a 

that there is a gauge S\ on [o, b] such that <$i(J) < 6(t) for all t G [a, 6] such that 

6 

(32) P(У,D)-Ţ[e A{t) dt < e-<5+1> 

for every <$i-fine L -partition D = {(**, Ji), i = 1,..., fe}. 
It is evident that P(Vy D) is invertible with 

[P(VtD)) - 1 --- Є~A(*1 M J l ) p--4(tfc)/i(Л) 
...e 

and 

ť = ł 
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Hence 
- (S+l ) < 1 

^ \\[P(VD)}-*\\ 

and by (32) we obtain 
b 

P(V,D)-Y[eA^dt 

\\[P(V,D)]-*\\ 

b 

for a given (5i-fine L-partition D. Therefore the Bochner product integral Jl fc*(')d* e 
a 

B(X) is an invertible operator (see Lemma VII.6.1 in [3]). Q 

ALTERNATIVE DESCRIPTIONS OF THE EXPONENTIAL 

BOCHNER PRODUCT INTEGRAL 

In the monograph [1] alternative descriptions for the product integrals of the form 
b 

Yl QA^dt are mentioned for continuous n x n-matrix valued functions A (see in 
a 

[1, p. 51]). These definitions give alternative Bochner product integrals for the case 
A €L([ayb];B(X)), too. 

The following definition is presented in [1, p. 51}. 

Definition 15. Let / be a complex-valued function defined on an open disc 

DQ = {z e C; \z\ < £}, for Q > 0 

in C. / is called a P-function if 
(i) / is analytic in the disc De, Q > 0, 

(ii) 
/(0) = /'(0) = l. 

A P-function / has a series expansion of the form 

oo 

f(z) = l+z + J^cnz
n, 

n = 2 

convergent for \z\ < Q. 
If B G B(X) and ||J5|| < Q then we define 

/(B) = / + в + 53<;n-5Я-
n = 2 
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Assume that \\B\\ < r0 < Q. Then 

/(B)-/ = S + £cnJB« = JB(/ + f;Cn+lBn] 
n=2 \ n = 1 / 

and 

ll/(-5)-/||^||І?|| I + £cn+1B« ^ ||B|| li + g |Cn+l) î Hn̂  

ll5ll(l + £K+1 |r?)=||B||^ 
V n=l / 

where we denote 1V = 1 + J2 \cn+1\r^. 
n = l 

Assume that operators .5, flm € B(X) are given such that ||IU| < r0 for 
j = l , . . . ,m. Then 

ll/(-?i)IU ll/(-?j) - / | | + 1 < 1 + N\\Bj\\ 

and 

m m m m 

i=- .7=1 i=i i = 1 

Using this inequality we get by Lemma 11 

|| m m j. m , m v i_1 

n«*-n/<*«) = £( n ^W-w n/w) 
" i = 1 *=i " i=i vi=*+i / \ " / 

m || m U t l _ 1 

<£ i n ^1^-/(^)11 n/(5i)|| 
*=1 I' j-r-t+l II II j = 1 || 

m / m v £_-_ 

< £ ( n iieBMi),iie*-/(Bi)ii(nii/(Bi)iO 
*=i \j=*+i / \£=i / 

< £ ( IIel|fl'») 1^-/^)11(1111/(^)11) 
.=i S=M-I / VjL* / 
m yf . 

< £ ( e - ^ + 1 ll^ll) ||e5' - /("OH (e"£; - »Bill) 

m 
^ e»««(i./r) Er-, ll*,ll £ (|eB.. _ / ( B i ) | | 

І=I 
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Further we clearly have 

| |eB '-/(fl,)| |<V|i.-c„|rr3 ll-».H 
* I n.! ' 

and therefore 

(33) 

n = 2 

i = i i = l t = l 

where 
0 0 i 1 

м = EVï-c« n = 2 

, n - 2 

Now we are in the position to prove the following result. 

Theorem 16. Assume that A £ L([a, 6]; B(X)). Let f bean arbitrary P-fumtion. 
Then to every € > 0 there is a gauge S on [a, b] such that 

XiHAitмJiЂ-E^ ât 

i = l 
<є 

provided D = {(U) J{); i = 1,..., fc} is a <5-fine L-partition of [a, 6]. 

R e m a r k . The statement given in Theorem 16 leads really to alternative de-
6 

scriptions of the Bochner product integral f[e A ( t ) d < because if / is an arbitrary 
a 

P-function and if we set V(t, J) = f(A(t)fi(J)) for a tagged interval (£, J) then 
b b 

[] V(t,dt) = Y[eA^dt • Since evidently f(z) = 1 -f z is a P-function, we have the 
a a 

special formula 

Y[(I + A(t)dt) = f[eMt)*t 

for every A G L([a,6];S(X)). Thecaseof product integrals of the form f\(I+A(t)dt) 

was extensively studied e.g. in [4]. Theorem 16 shows that even in the Bochner case 
b 

these product integrals are the same as the exponential product integrals fj eA^ dt • 
a 

6 
P r o o f of T h e o r e m 16. The existence of n e A ^ d t was shown in..Theorem 

: a • , .' 

14. Assume that e > 0 is given. By the definition of the Bochner product integral 
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there is a gauge S on [a, b] such that 

ТТ еМи)$*ш _ ТТ еА(±) <и < 

ť = i 

for every J-fine L-partition {(U, J*); i = l , . . . , k} of [a, 6]. 
Fix VQ < Q (Q is given by the Definition 15 of the P-function /) . Then for any 

given f] < TQ we can assume that the gauge 6 satisfies 

* ( * ) < 2(||Л(t)|| + l) 

and that 

£nA(u)MJi)ši+t \\A(t)\\dt 
»=i Ja 

for every <J-fine L-partition {(£», Ji); i = 1, . . . , &} of [a, 6]. 
If the tagged interval (t, J) is (Mine, then /x(J) < | | ^ j i + 1 because 

Jc(t-6(t),t + 6(t)) and \\A(t)\\KJ) < | ^ f f + 1 < »•• 

The result given in (33) can be used for the following inequality. 

t= i t=i 

^ emax(l,iV) E^x IW*i)MJi) M ] T WMWtfM Jj))* 
i= l 

k 

i= i 

(34) ^ ^ ^ I ^ K I + J ; ii Aim dt) (x + | 6 „A w | |d«), 

whereM= £ Ii--C n |<;r j"2 and-V = 1+ £ |cn+i|rj. PVom (34) we obtain finally 
n=l 

t= i * 

n=2 

í = l t = l 

< Є 
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whenever 0 < f] < rn is chosen sufficiently small, e.g. such that 

l?Me-1«(i.iv)(i+/: n.4(t)iido A + fb \\A{m dt\ є 

< 2 -

EQUIVALENCE OF THE BOCHNER PRODUCT INTEGRAL 

AND THE CLASSICAL PRODUCT INTEGRAL 

Assume that B: [a, 6] -r B(X) is a step-function, i.e. that there is a finite system 

of points 

a = So < s\ < ... < Sm-l < s m = 6 

such that B is constant on each (sk-i,Sk) with the value Bk £ B(X), k = 1 , . . . ,ra. 
For a given step-function B: [a, b] ->• S(.K) define 

Jg «. gBm(»m— «m- l )g f lm- l ( -m- l -«m-2J gBl(*l—*o) 

In this way the product integral of a step-function is defined. In the monograph 
[1, p. 54] the following definition of the product integral is given. 

Definition 17. Assume that A G L([a,b];B(X)) is given. The (Lebesgue type) 

product integral (L) f ] eAW dt is defined by 

(35) ( L ) T T e A « d * = \imEAn 
------ n-too 

a 

where An, n = 1,2, . . . is any sequence of step-functions convergent to A in the L1 

sense, i.e. 

lim / l |A n (s ) -A(s) | |ds = 0 
n-*°° Ja 

and EA„ is the product integral of the step-function An. 

It should be mentioned that if A E L([a,b]\B(X)) then there exists a sequence 
6 

of step-functions converging to A in the L1 sense and therefore (L) \\ eA^ dt is well 
a 

defined since in this case the sequence of products EAn converges for n -> oo (see 
[1, pp. 54, 83] for more details). 
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Now we will show that the product integral given by Definition 17 for .A G 
L([a,b]\B(X)) is equivalent to the Bochner product integral given by Definition 7 
for the case 

V(t,J) = eAW^ J ' . 

First let us prove the following result. 

Lemma 18. Assume that Ai,A2 G L([a,b]\B(X)) are given. 
Then for every [c, d\ C [a, 6] the inequality 

(36) 

holds, where 

J J И - r ø л - J J e Л l W d ť ^ K í \\A2(s) - Ax(s)\\ds 

K = (ej« Иi(->fl«.-+-)а(eL M-WN-+1) 

Proof . By Proposition 6 the functions ||-4i||, ||-42||: [a,6] -* R are Lebesgue 
integrable over [a, 6]. Since A2 - Ai € L([a,6];B(K)) we get by Proposition 6 that 
also the function ||-42(s) - -4i(s)|| is Lebesgue integrable over [a, 6]. 

Let us fix an interval [c, d] C [a, 6]. The functions ||-4i||, ||A2||: Kfo] -• R a r e 

Lebesgue integrable over the interval [c,d\ C [a, 6]. Therefore by Definition 3 (see 
also Remark 5) there is a gauge Sx on [a, 6] such that 

m pd 

52WMTÍ)MJÍ)- WMs)\\ds 
i=l Jc 

< 1 

for / = 1,2 and every uvfine L-partition {(r,-, Jj),j = 1,... ,ra} of [c,d]. Hence we 
have 

m *d fb 

(37) £ | |^(r i) | |M(^) < / \\Ms)\\ ds + 1 < / ||.4.(-)|| ds + 1 
j-=l ^C ^ a 

for J = 1,2 and every <$i-fine L-partition {(TJ, JJ), j = 1, . . . , m} of [c, d]. 
Assume that e > 0 is given. 
Since the Lebesgue integral / a \\A2(s) - Ai(s)||ds exists, there exists a gauge 

S2 < Si on [c, d] such that 

m pd 

J2 WMTÍ) - AX(TJ)\\M(JJ) - / \\A2(s) - Ax(s)\\ ds 

j=i Jc 
<є 
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and therefore also 

m -d 

(38) Yl H^fo) " MTAUVJ) < / WMs) - A_(-)|| ds 
j=i J c 

+ Є 

for every <$2-firie L-partition {(TJ, JJ), j = 1,... ,m} of [c, d]. 
_ 

By Theorem 14 the Bochner product integral J\eAlMdt G B(X) exists for I = 1,2. 
c 

Hence there is a gauge (5 < <$2 on [a, 6] such that 

m d! 

(39) J J e

A « < T ' M J ' > - _ - * ' < * > « " < e 
i=i c 

for / = 1,2 and for every (5-fine L-partition {(TJ, J J ) , J = 1,.. . ,m} of [c,d]. Hence 

by (39) we get 

Д еА*)<ь _ Д е А ' ( < ) а * < Щ е А * ( 1 > а < - Д е А 2 ( т ІЫJІ) 

i=i 

TT eA2 (TJ M Ji) _ T T e

A i ( r i M Ji) 

i=i Í = I 

TT QAIÍTJMJJ) _ TT^Wát 

j = l c 

(40) < TT QMІTJMJJ) _ TT ЄAI(TІ)M(JІ) 

i=i i=i 

+ 2є 

for every 5-fine L-partition {(r,-, J j ) , j = 1,.. . ,m} of [c,d\. For the first term on the 

right hand side of (40) we have by Lemma 11 

m m 
TTe>-2(Ti)/z(Ji) _ TT ei4l(Ti)/i(Ji) 

i=i i=i 
І - 1 

( 4 1 ) = V ( TT e A 2 ( r ^ / z ( J ^ J [e

A*lT*MJ*) - e A l ( T < ) ^ ( J i ) ] ( J J eAl^^J^ ) . 
t=i S=_+i / S = i ' 

Further by (37) 

TT e A | ( r ' M J ' > <r: TT QWMTi)\MJj) = eEJ_._ II-A. to)llM('i) 

i=i i=i 
^eE7LillA«(Ti)||MJi) ^ e / e

a | |A,(.) | |d-+l ^ e/ a

6 | |-4iWI|d.+l 

and analogously 

TT ^{riMJi) 

j=i+i 
^ e J.У.4. (-)!.«»+-
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for I = 1,2 and every t = 1,..., m and therefore (41) yields 

TTe>-2(ri)/x(Ji) _ TT e A i ( r i )p(J i ) 

І = l i = i 
7ÍI 

(42) ^e^ , , A l ( f i ) , , d 5 + 1 e^ , , A 2 ( 5 ) , , d s + 1 V l l e ^ 7 ^ ^ - e ^ ^ ^ l 
i = l 

Using the estimate given in Lemma 13 we have 

| |eA2(rO>"(Ji) _ e A i ( r O M ( J i ) | | 

^ \\A2{rMJi) - i4i(rOM^)l |e ( l l^ ( r | ) l l + l | A l ( T° , I M J O 

< p 2 ( r 0 - Al{ri)MJi)efa\\Ms)\\^+ie^ | |Aa W | |d .+i 

for every i = 1, . . . , m. Hence by (42) we get 

íeM(r3)џ(Jj) _ TTeAl(ri)м(Ji) 

i = i І = I 

< (e£l*<->l-.+-)a(e/r•^wi-+1)aX;||il-(n)-Mn)\HJi) 
i= l 

m 

(43) = K^WMn) - Aiir^WniJi), 
1 = 1 

where 
i f = (e/.fcl|Ai(.)||d.+lj2je/B

fc ||Aa(.)||da+lj2# 

Finally the relation (38) yields 

(44) 

II j=i j=i 

< # / | |Л 2 (s)-Лi(s) | |ds + Kє. 

Therefore by (40) we get 

d d 

J[eM(t)dt _JJ eA i(t)d<| < R f \\A2(8)-A1(s)\\d8+(K + 2)e 
c c I J c 

and this proves (36) because e > 0 can be taken arbitrarily small. 
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Theorem 19. If A € L([a,b];B(X)) then both the product integral (L)f[eA^dt 

a 
b 

and the Bochner product integral f\ eA^ d t exist and 
a 

(L)HeA^dt = r j y <«><". 
a a 

Proof . The existence of the product integrals is clear by Definition 17 and by 
Theorem 14. 

Assume that e > 0 is given and let An, n = 1,2,... be a sequence of S(X)-valued 
step-functions such that 

lim / \\An(s)-A(S)\\dS = 0 
n—•oo / ** a 

and 

lim EAn = (L)f[e A(t)át 

(see Definition 17). 
There exists an ran £ r\l such that 

(45) 

and 

/ \\An(S)-A(S)\\dS 
J a 

(L)ПeA W d t-/äU. 

<є 

<є 

for every n > no. FVom the definition of EAn it is easy to observe that 

EAn = (L)Y[eA"Wdt = JJe*-«* 
a a 

for every n EN. 
Then 

(L) TJ eAW dt - ГJ eлW dt < (L) TJ e д « dt - EAn + \\EAП - П e л ( t ) dt 

< £ + ГJe л »W d ť -IJe Л(ť)dt 
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for any n > n 0 . Using Lemma 18 for the second term on the right hand side of this 
inequality we get 

(L)f[eA^dt -f[e

AWdt 

a a 

(46) <e + Kn f \\An(s)-A(s)\\ds 
J a 

where 
R n _ ( e / a NlAn(5) | |d5- f l j2( e / a

b | |A( S ) | |d5+ l j2 

Since clearly 
\\\An{»)\\-\\A{.a)\\\<t\\An(s)-A(a)\\ 

for every s G [a,b] we obtain that by (45) 

/ | | |.-Ma)||-|MW|||d* < f\\An(s)-A(s)\\ds <e, 

J a J a 

holds for all n > no, therefore 

rb + є 

and 

This inequality yields 

/ \\An(a)\\d8< i \\A(s)\\ds 
J a J a 

e /a I|i4«(.)| |d.+1 < gXÍ | |A( . ) | |d .+ l+e 

lf„<(eI .I^WIId '+ 1)4€- I = L 

for every n € N, n > no- Hence by (45) and (46) we get 

l(L)l[eA^dt -Y[eA^dt 

" a a 

<e + L f \\An(s) - A(s)\\ds <(L + l)e. 
J a 

This inequality leads to the conclusion of the theorem because e > 0 can be chosen 
arbitrarily small. • 
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