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JONSSON'S LEMMA FOR NORMALLY PRESENTED VARIETIES 

IVAN CHAJDA, Olomouc 

(Received May 28, 1996) 

Varieties presented by normal identities were treated in [1]. Let us recall the basic 

concepts. Let r be a similarity type and {x\,x2,. ..} a set of variables. For an n-ary 

term p(x%,..., xn) of type r we denote by varp = [xi,...,xn] the set of all variables 

occuring in p. For n-ary terms p, q of type r the identity 

p(x1,...,xn) = q(x1,...,xn) 

is said to be normal if it is either trivial, i.e. X\ = x\, or p $ varp and q $ varg, 

i.e. neither p nor q is a single variable. A variety y of type r is normally presented 

if l&y contains only normal identities. 

If y is a variety of type r, denote by N{V) the variety satisfying all normal 

identities of y. Hence, y is a subvariety of N(y) and if y ^ N(y) then N(y) 

covers y in the lattice of all varieties of type r , see [3]. 

Since every congruence identity is characterized by a Mal'tsev condition (see [4]) 

and because every Mal'tsev condition contains an identity which is not normal, we 

obtain the following 

O b s e r v a t i o n . For every variety y, the variety N(y) satisfies no congruence 

identity. 

In particular, N(y) is never a congruence distributive variety. Despite of this 

fact, N(y) satisfies the assertion of Jonsson's Lemma provided y is congruence 

distributive: 

Theorem. Let y be a congruence distributive variety of type r and let N(y) be 

generated by a class X of algebras of type r . Then Si(N(y)) = H S P u P O and, 

therefore, N(y) = I P s H S P u P O -

P r o o f . Let y be a congruence distributive variety of type r. Denote by SS = 

({0,1}, F) an algebra of type r such that f(xi,... ,xn) = 0 for every xi,...,xn of 
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{0,1}. 28 is the so called constant algebra in the sense of [1]. As was pointed out in 

Theorem 3 of [1], Si(N(Y) = Si(Y) U 38. By Jonsson's Lemma, we have 

Si(N(Y)) = H S P u ( ^ ) U 28. 

USSi H S P u W then 28 i HSP(X) and thus, by [1], HSP(JT) is not normally 

presented, a contradiction with N(f) = HSP(JT). Hence 28 e H S P u ( ^ ) and 

Si(N(T)) = HSPu(JT)- • 
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