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Dedicated to Professor Alois Kufner on the occasion of his 65th Ыrthday 

Åbstract. For nonquasianaiytical Carleman classes conditions on the sequences {Mn} 
and {Mn} are investigated wћich guarantee the existence of a function in Cj{Mn} such 
that 

ц W ( a ) = ŕ>„, \bn\^Kn+lMn, n = 0 , l , . . . , aЄJ. 

Conditions of coincidence of the sequences {Mn} and {Mn} are analysed. Some still un-
known cìasses of such sequences are pointed out and a construction of the required function 
is suggested. 

The connection of this classical problem with the probiem of thє existence of a function 
with given trace at the boundary of the domain in a Sobolev space of infinite order is shown. 
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Nonquas iana ly t ica l C a r ł e m a n classes of one reaì variable 

'(1) Cj{Mn} = {f(x) Є C°°( J ) : m a x | / < n ) ( x ) | s: Kn+1Mn, n = 0 , 1 , . . . } 

are considered. T h a t m e a n s t h a t t h e sequence {Mn} satisfies t h e following condì-

t ions: 

(2) Hm MЦn - oo, 

(3) E ^ L < o o , 

where { M „ } is t h e logari thmical ly convex regularizat ion of {Mn} (cf. [1]). 



Definition 1. The indices { n j such that 

Mni = Mn\ 

are called fundamental indices for the logarithmically convex regularization of {M„}. 

Definition 2. The sequence {M„} is called almost logarithmically convex if for 
all its fundamental indices the following condition is satisfied: 

sup (n,+i - nt) = K < oo. 

If K = 1 then the sequence {Mn} is logarithmically convex. 

The family of sequences {&„} such that 

|6„| <.KnMn, n = 0 , l . . . , K = K({bn}), 

is denoted as B{Mn}. 

P r o b l e m . Find conditions on the sequences {M„} and {M„} which guaran
tee for any sequence {&„} 6 J3{M„} the existence of a function f(x) € Cu{Mn} 
satisfying the following conditions: 

(4) /W(0) = &„, n = 0 , l . . . 

It is clear that M„ < M„ for all n = 0 , 1 . . . 
In particular, the conditions of coincidence of {M„} and {M„} are analysed. 
The problem was studied by T. Bang [2], E. Borel [3], T. Carleman [4], L. Carleson 

[5], G.Wahde [6], B.S.Mitiagin [7], L.Ehrenpreis [8], G.S.Balashova [9] and other 
authors. 

Theorem 1. For any sequence {&„} € B{Mn} and any number a > 1 there exists 
the function f(x) e Cu{Mn} satisfying the condition (4), where 

«—-E«i(^r'• ""'-{-• t-i-j--
P r o o f . We construct the desired function. It is known that there exists a 

function i>(x) e CSj satisfying the following conditions: 
1) ip(x) >- 0, max^(a;) = f(0) = 1, f<-n^(0) = 0, n = 1,2,...; 
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2)V(*) = 0 , i f N > 2 E ^ 1 - - * ; 

3) max \i)(n)(%)\ =* PI Mil where nn > 0 is an increasing sequence such that u.0 = 1 
M<<5 ,"=1 

and £ u~ l < oo. 
n=l 

The required function is 

. 6 * 

;*! 
where t/»jt(_) satisfies the conditions l)-3) with 

fc=0 

, # > - . ( n + *)°, rffc = / . ( a ) % i . 

D 

C o r o l l a r y . If the sequence {Mn} has the property that for some a > 1 the 
sequence {Mkk~ak} is almost logarithmically convex, then Mn = Mn. 

E x a m p l e s . 1°. If Mn = nan\xrBnn, a > 1, [3 > 0, then Mn = Mn. When 
ji = 0, we obtain the known result of L. Carleson, L. Ehrenpreis and B. Mitiagin. 

2°. If M„ = a 7 1 " ^ lnTn) n , a, > 1, a > 1, j3 >- 0, 7 > 0, then Mn = M„. 

If the sequence {M„} grows slowlier than n a " , a > 1, then the following is true: 

Theorem 2. If Mn = (n Injn ln f + s n) n , 7 > 0, /? >. 0, r > I, s > I, then 
there exists a function f(x) € Cu(Mn) satisfying the condition (4), where Mn = 
(n l n r

+ 1 n krf+sn)n(\nn In Inn . . Anr~in)n, ln r n means r-times iterated logarithm. 

P r o o f is of a constructive character. The required function looks like f(x) = 

]T) j^xki[>k(dx), v/here the constant d is chosen, and the sequence (/„' is built as 
k=0 
follows u.ik) = (n + k) ln(n + k) In ln(n + k)... ln r_i(n + k) lnj+1(n + k) lnf+s(n + k). 

R e m a r k . When r = 1, 7 = 1, /? = 0, Mn = (nlnn)*1, we obtain Mn = 
(n In2 n ) n , which is the known result of L. Carleson. 

While studying estimates of the norm of the n-th order derivative of a function 
f(x) on the Lebesgue space of p-integrable functions (1 <. p < 00) there was obtained 

Theorem 3. If the sequence {Mn} is logarithmically convex and for some a > 1 
the sequence {Mnn~~an} is almost logarithmically convex, then for any sequence 



function on R such that 

/W(0) = fe„ and | | / (
( ; )

) | | M » ) < / r l + 1 M „ , n = 0 , l , . . . 

R e m a r k . Theorem 3 makes sense only for such sequences {M„}, for which 
the ratio M^~l grows in n faster than the geometrical progression (for example, 
Mn = 2n", 5 > 2 , n = l , 2 . . . ) . 

R e m a r k . When p = 1 we have M„ = M n + i . That result gives the best 
estimation for M„ as it is evident that M n + i >. M„. In fact, Kn+2Mn+i >. 

ll/ (n+1)WIU l (R) > J|/<n+1>(*)|dx' > | J/<n+1>(a')da-| = |/W(0)| = |6„|. 
o o 

The problem of the existence of a function with the given trace at the boundary 

of the domain G € R in the space 

(5) w°°{a„,p}(G) = {«(*) 6 q g , : «?(«) = f>„ | |J5 n u(í 'Æ ІЬ,(G) 

is very closely related to the one mentioned above (see [10], [11]). Here an >. 0, 

1 < p < co. These spaces are the energy spaces for the differential equations of 

infinite order the model example of which is the following 

(6) ^ ( - l ) n j D n ( a n | D n w | p - 2 j D n « ) = h(x), xeG = (0,a) 

(7) Dnu(0) = bn, Dnu(a) = cn, n = 0,l , . . . 

For the solvability of the problem (6), (7) we should first of all investigate the 

conditions of existence of a function in the space (5), satisfying the conditions (7). 

We will suppose that the space (5) is nontrivial which means that the space 

W°°{an,p}{0,a) = {u(x) e C™(0,a),e(u) < oo} 

contains at least one function other than that which is identical to zero. Yu. Dubinskij 

[11] showed that-this is the case if and only if the sequence {M„} defined by Mn = 

an

 l v for o n # 0 and M„ = oo for a„ = 0, specifies a nonquasianalytic Carleman 

class (1), i.e., the conditions (2), (3) hold for {M„}. 



Theorem 4. A necessary and sufficient condition for the sequence {bn} to be 

extendable in any space w°°{a„,p}(o,a) is 

(8) Tm7i|fc„|1/n = K < oo. 

We shall call a trace satisfying the condition (8) analytical. 

R e m a r k . For any space VK00{a„, p}(o,a) there exists a nonanalytic trace extend

able in this space. 

Theorem 5. For the sequence {bn} to be extendable in the space W°°{on,p}(o,o), 
the following condition is necessary: 

(9) f^&o^lM^oo-

Theorem 6. Let the sequence {an} be such that 

(10) l > a n ^ a „ + 1 , n = 0 , l , . . . , a 0 > 0 , 

for some q > 1. Then for the existence of a function u(x) € w°°{a„,p}(o,a) with the 
given trace {bn}, the condition 

(U) J2 \Ьn\ЧMnГ{1-ЇЧмUi)^ < °° 

is necessary and sufficient. 

R e m a r k . If the sequence {a„} satisfies the condition (10) and the sequence 

{a"1} is almost logarithmically convex, then M„" = a " 1 and the condition (11) 

coincides with the condition (9). 

R e m a r k . Proofs of Theorems 4-6 can be found in the paper [10], 



References 

[1] Mandelbroit S.: Adjoinìng Series. Regularization of Sequences. Applications. Izdat. In-
ostrannoj Literatury, Moskva, 1995. (In Russian.) 

[2] Bang T: On quasi-analytiskє funktioner. Thèse, Kyøbenhavn, 1946. 
[3] Borel E.: Sur les fonctions ďune variable réelle indéfiniment dérivables. C.R. Acad. Sci. 

ľЦ (1922). 
[4] Carleman T.: Les fonctions quasi-anaiytiques. Paris, 1926. 
[5] Carleson L.: On universal moment problems. Math. Scand. 9 (1961), no. 2, 197-206. 
[6] Wahde G.: Inteгpolation on non-quasi-analytic classes of infinitely differentiable func-

tions. Math. Scand. 20 (1967), no. 1, 19-31. 
[7] Miiiagin B.S.: On infinitely differentiaЫe function with the values of its derivates given 

at a point. Dokl. Akad. Nauk SSSR 138 (1961), 289-292. 
[8] Ehrenpreis L.: The punctual and local images of quasi-analytic and non-quasi-analytic 

classes. Institute for Advanced Study, Pгinceton, N. J., 1961. Mimeographed. 
[9] Balashova G.S.: On extension of infinitely differentiable functions. Izv. Akad. Nauk 

SSSR, Ser. Mat. 51 (1987), no. 6, 1292-1308. (In Russian.) 
[10] Balashova G.S.: Conditions for the extension of a trace and an embedding for Banach 

spaces of inflnitely differentiable functions. Mat. SЬ. 18Ą (1993), no. 1, 105-128. (In 
Russian.) 

[11] Dubinskij Yu. A.: Traces of functions fгom Soboìev spaces of infinite order and inhomo-
geneous problems for nonlinear equations. Mat. Sb. ЮfЦlĄS) (1978), no. 1, 66-84. (In 
Russian.) 

Auihor's address: G. S. Balashova, Department of Mathematics, Power Engineering In-
stitute, Krasnokazarmennaja 14, 111 250 Moscow, Russia, e-maíi: Ь a l a s h o v Ф c s . i s a . a c . r u . 


		webmaster@dml.cz
	2020-07-01T13:38:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




