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Abstract. This paper deals with the relations between graph automorphisms and direct 
factors of a semimodular lattice of locally finite length. 
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1. INTRODUCTION 

Each lattice dealt with in the present paper is assumed to be of locally finite length 

(i.e., all its bounded chains are finite). 

For a lattice L let G(L) be the corresponding unoriented graph. 

An automorphism of the graph G(L) is called also a graph automorphism of the 

lattice L. The graph isomorphism of lattices is defined analogously. 

We denote by C the class of all finite lattices L such that each automorphism of 

G(L) turns out to be a lattice automorphism. 

In connection with Birkhoff's problem 6 from [1], the following result has been 

proved in [5] (by using the results of [2] and [6]): 

(*) Let £ be a finite modular lattice. Then the following conditions are equivalent: 

(i) L belongs to C. 

(ii) No direct factor of L having more than one element is self-dual. 

The natural question arises whether in (*) the assumption of modularity can be 

replaced by the assumption that L is semimodular. 

In Section 3 we show by an example t h a t the answer is "No". 

We define the notions of an interval of type (C) in L and of a graph automorphism 

of type (C) (cf. Definitions 2.1 and 2.2). 
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Let A be a direct factor of a lattice L and 0 ^ X C L. We say that A is orthogonal 

to X if for,any X\,X2 £ X, the components of x\ and x2 in the direct factor A are 

equal. 

Let C\ be the class of all lattices L such that each graph automorphism of type 

(C) of L is a lattice automorphism. 

We prove (by applying the results and the methods of [3], [5] and [6]): 

(*\) Let L be a semimodular lattice. Then the following conditions are equivalent: 

(i) L belongs to C\. 

(ii) If A is a direct factor of L such that A is self-dual and orthogonal to each 

interval of type (C) in L, then A is trivial (i.e., card A = 1). 

2. PRELIMINARIES 

In what follows, £ is a lattice. For the notion of the unoriented graph G(L) of L 

cf., e.g. [1], [2]. 

If x, y € L, x < y and if the interval [a;, y] of L is a two-element set, then we write 

x -< y or y y x. 

Hence a graph automorphism of L is a one-to-one mapping ip of L onto L such 

that, whenever x,y ~ L and x <y, then 

(i) either <p(x) -< ip(y) or (p(y) < ip(x), 

(ii) either <p~l(x) -< <p~x(y) or ip~1(y) ~< (p~1(x). 

2 . 1 . Defini t ion. Let L0 be a sublattice of L such that L0 is isomorphic to the 

lattice in Fig. 1; then the convex closure £o of £o in L is said to be an interval of 

type (C) in L. 

Fig. l 

2.2. Defini t ion. A graph automorphism ip of L is said to be of type (C) if, 

whenever L\ is an interval of type (C) in L and x,y 6 L\, x •< y, then ip(x) ~< ip>(y) 

and f~l(x) -< ip~1(y). 
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It is easy to verify that if L is modular, then it has no sublattice of type (C); 
consequently, in this case each graph automorphism of L is of type (C). Therefore 
(*) is a corollary of (*i). 

We denote by L~ the lattice dual to L. If L and L~ are isomorphic, then L is 
said to be self-dual. 

3. AN EXAMPLE 

Let us recall that if L can be expressed as a direct product L\ x L2 and if x = 
(x\,x2) € L, y = (t/1,1/2) € L-, then x X y if and only if either x\ X |/i and X2 — 1/2, 
or x\ = x2 and j/i X 2/2-

From this we immediately obtain 

3.1. Lemma. Let L\,L^ be lattices and let ip be a graph isomorphism of L\ onto 
L2. Put L = L\ x Li. For each x = (x\,x%) 6 L we set 

{p(x) = (<p~"1(x2),ip{x\)). 

Then ip is a graph automorphism of L. 

Consider the lattices L\ and L2 in Fig. 2 or Fig. 3, respectively. Both L\ and L2 
are semimodular. 

Fig.2 

3.2. Lemma, Both L\ and L2 are directly indecomposable. 

Proof . The assertion for L\ was proved in [5], pp. 164-165. The proof for L2 
is similar. D 

3.3. Lemma. Let i e {1,2}. Then,the lattice Li fails to be self-dual. 

Proof . It is easy to verify that L~ fails to be semimodular. Therefore L~ is 
not isomorphic to L,-. D 



Put L = L\ x L%. 
Since any two direct product decompositions of L have a common refinement and 

since L\,L% are directly indecomposable by 3.3, we conclude 

3.4. Lemma. Let A be a direct factor of L having more than one element. Then 
the lattice A is isomorphic to some of the lattices L, L\,L%. 

By the same argument as in 3.3 we obtain 

3.5. Lemma. The lattice L is not self-dual. 

Now, 3.3, 3.4 and 3.5 yield 

3.6. Corollary. Tiie lattice L satisfies the coadition (ii) from (*). 

It is easy to verify that there exists a graph isomorphism tp of L\ onto L% such that 
<p fails to be a lattice isomorphism. Hence there are x\, y\ in L\ such that x\ -< y\ 
and <p(x\) >- <p(y\). Consequently, if ip is defined as above, then tp is not a lattice 
automorphism of L. 

In view of 3.1 we conclude that in (*), the assumption of modularity cannot be 
replaced by the assumption of semimodularity of the lattice L. 

We also remark that tp is an example of a graph automorphism on a semimodular 
lattice such that tp is not of type (C). 

4. PROOF OF (*\) 

In this section we assume that the lattice L is semimodular. 

4.1. Lemma. Suppose that B is a direct factor of L such that 
(i) B is self-dual; 

(ii) B is orthogonal to each interval of type (C) in L; 
(iii) cardB > 1. 
Then L does not belong to C\. 

Proof. There is a lattice A such that there exists an isomorphism ip of L onto 
A x B. Further, in view of (i), there is an isomorphism \ of the lattice B onto J3~. 
For each i € l w e put <p(x) = y, where 

# r ) = (a.6), y = ^1((a,X(h))). 

Then tp is a graph automorphism of the lattice L (cf. [5], Lemma 1.1). Moreover, (ii) 
yields that tp is of type (C). By applying Lemma 1.2 of [5] we conclude that tp fails 
to be a lattice automorphism. Therefore L does not belong to C\. D 
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Let L\ and £2 be semimodular lattices. Suppose that </? is a graph isomorphism 
of L\ onto Li such that 
(a) if X is an interval of type (C) in L\ and x\,x2 <= X, x\ -< X2, then <p(x\) -< 

<fi(x2)l 

(b) if y is an interval of type (C) in Li and yi,y2 € Y, y\ -< 2/2, then f~1(y\) -< 
V1(V2). 

We apply similar steps as in Section 2 of [5]. For the sake of completenes, we recall 
the corresponding notation. 

Let A\ be the set of all intervals [x, y] of L\ such that 

x <y and p(x) < <p(y). 

Further, let B\ be the set of all intervals [u,v] of L\ such that 

u<v and </>(«)>- <p(v). 

Similarly we define the sets A2 and B2 of intervals of L2 (with p~l instead of p). 
Choose X\ e L\, x°, & L2. We denote by A° the set of all elements x e L\ such 

that either x = x\, 01 there exist y\,yi,-..,yn€ L\ such that 
(i) y\ =x1, yn-x, 

(ii) for each » £ {l ,2, . . . ,n — 1}, the elements y<5 y*+i are comparable and the 
corresponding interval belongs to A\. 

Similarly we define the set B° (taking B\ instead of A\). The subsets A° and B° 
axe defined analogously (taking x% and ip~1 instead of X\ and <p). 

We apply the notion of the internal direct product decomposition of a lattice L 
with the central element x° in the same sense as in [5] (cf. also [6]). By using this 
notion and by applying the assumption given above we conclude that the results of 
[3] (cf. Theorem 2 in [3] and the lemmas applied for proving this Theorem) yield 

4.2. Proposition. Under the assumptions as above, there exist internal direct 
product decompositions 

ip\: L\ -> A°x B° (with the central element x°), 

1P2: Li -> A% x B% (with the central element x\) 

such that 
(i) the lattices A° and A° are isomorphic, 

(ii) the lattice B° is isomorphic to (B^ • 

Now suppose that the lattice L satisfies the condition (ii) of (*i). 
Let ip be a graph automorphism of type (C) of the lattice L. 
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Choose x° G L. We put L = L\ - L2 and x° = x\ = x%. The fact that <p is of 

type (C) yields that the conditions (a) and (b) are satisfied. Hence we can apply 

Proposition 4.2, 

The further steps are the same as in Part 3 of [5]. By using them we obtain 

4 .3 . L e m m a . Let L be a semimodular lattice satisfying the condition (ii) of(*i). 

Then the condition (i) of (*j) is valid. 

In view of 4.1 and 4.3, we infer that (*i) holds. 

If L\ is a sublattice of L and a,b £ L\, a < b, then we denote by [a,b]t the 

corresponding interval of L%. We put a -<i b if [a, b]\ is a two-element set. 

We say that L% is a c-sublattice of L if, whenever a,b e Li and a <i b, then a -< b. 

We remark that Theorem 2 in the paper [7] by Ratanaprasert and Davey (this 

theorem solved a problem proposed in [4]) implies that in Definition 2.1 above it 

suffices to consider only those sublattices LQ of L which are c-sublattices of L. 
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