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ON THE OSCILLATION OF CERTAIN DIFFERENCE EQUATIONS 
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(Received September 25, 1998) 

Abstract. In this paper we study the oscillation of the difference equations of the form 

A2xn+PnAxn + / (n, Xn-ff, A-„-h) = 0, 

in comparison with certain difference equations of order one whose oscillatory character is 
known. The results can be applied to the difference equation 

A2xn+pnAxn + 9 n | x -_ s | * |Ax n _ A | ' ' sgnx„-.9 = 0, 

where A and \i are real constants, A > 0 and p. ̂  0. 
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1. INTRODUCTION 

Consider the difference equation 

(E) A2_n + pnAxn + f{n, Xn-g, Ax„_h) = 0, 

where {pn} is a nonnegative real sequence, 0 ^ pn < 1, / : N x i 2 -+ R is continuous 

for each fixed n, N = {0,1,2,...}; g and h are in N, A is the first order forward 

difference operator, Axn = IE„+I - xn. 

We assume that there exist an eventually positive real sequence {gn} and real 

numbers A > 0 and /_ ̂  0 such that 

(1) f{n,x,y)sgnx'^qn\x\x\y\'i for n > 0 and xy^O. 
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By a solution of Eq. (E), we mean a non-constant sequence {xn} satisfying (E) for 

n >- 0. A solution {xn} is said to be oscillatory if it is neither eventually positive nor 

eventually negative, and nonoscillatory otherwise. 

In recent years there has been an increasing interest in studying the oscillatory 

behavior of difference equations of special cases of type (E) when pn = 0 and con

dition (1) holds with p, = 0. For recent contributions to this study we refer to the 

papers [4]-[9] and the references cited therein. It seems that very little is known 

regarding the oscillation of Eq. (E) when / satisfies condition (1) with fi ^ 0 and 

p„ ^ 0. Therefore, the purpose of this paper is to present some new criteria for the 

oscillation of Eq. (E). Theorems 1 and 2 are concerned with the oscillation of Eq. (E) 

via its comparison with the oscillatory character of first order difference equations. 

Theorem 3 deals with the oscillation of a special case of Eq. (E) when condition (1) 

holds with A = 1 and /. = 0 and the condition on {pn} introduced in Theorems 1 

and 2 is not required or else violated, and Theorems 4 and 5 are concerned with 

the oscillatory behavior of the difference of two eventually positive solutions of the 

difference equation 

(Le) A2xn + pnAxn + qng(xn-g) = e„, 

where g(x)x > 0 for x # 0, g'(x) >- k and {en} is a sequence of real numbers. 

Finally, we remark that this paper is motivated by the analogy between functional 

differential equations of the form 

d2x(t) ,.dx(t) , / , , dx(t-h)\ , 

where p : [£Q,OO) -+ [0, oo) and / : [£o,oo) x R 2 - 4 R are continuous and g and h are 

real constants, and difference equations of type (E). In fact, discrete versions of some 

of the results in [l]-[3] for second order equations have been developed. 

2. PRELIMINARIES 

We need the following two lemmas. The first is extracted from Lemma 5 in [8] 

and the other is Theorem 7.5.1 in [6]. 

L e m m a 1. Assume h: R -> R is continuous, xh(x) > 0 and h(x) is nondecreasing 

for x ^ 0. Let {qn} be a sequence of nonnegative real numbers and k a positive 

integer. If the difference inequality 

Axn + qnh(xn-k) «C 0 



Jjas an eventually positive solution, then the difference equation 

Axn + qnh{xn~k) = 0 

has an eventually positive solution. 

Lemma 2. Suppose that {an} is a nonnegative sequence of real numbers and let 
k be a positive integer. Then 

is a sufficient condition for every solution of the equation 

Axn + anxn~k - 0 

to be oscillatory. 

3. MAIN RESULTS 

Now, we are ready to establish the following criterion for the oscillation of Eq. (E): 

Theorem 1. Let condition (1) hold, Jet 

n - l , k~\ s 

(2) nlim Y, ( n ( 1 - P * ) ) = 0 0 

n~*°° k-na^O ^i=n0 ' 

(3) 2 J Qi > 0 for sufficiently large n. 
i=n+l 

If for every v > 0 the equation 

(4) Awn + vqn\wn^hT sgn wn-h = 0, 

is oscillatory, then Eq. (E) is oscillatory. 

Proof . Let {xn} be a nonoscillatory solution of Eq. (E), say xn > 0 for n ^ 
no ~>- 1. First, we claim that {Aa;„} is eventually of one sign. To this end, we assume 



that {Axn} is oscillatory. There exists N -> rig +max{h,g} such that AxN < 0. Let 
n = N in Eq. (E) and then multiply the resulting equation by Ax# to obtain 

A2aivAa;iv = -pjv(Axw)2 - f(N, xN^g, AxN-h)AxN 

>- -pN(AxNf 

or 
As/v+xAiiv -> (1 -pN)(AxNf > 0, 

which implies that 
Aiiv+i < 0 

By induction, we obtain Axn < 0 for n >• N, contradicting the assumption that 
{Axn} is oscillatory. 

Next, suppose there exists N\ > no+max{A, g} such that AxNl = 0. Then setting 
n = N\ in Eq. (E) leads to 

A2xNl = -f(Nu xNl-g, AxNl~h) sg 0, 

which implies that 
A-'E/Vj+i <. AxNl = 0. 

As in the above case, we have seen that this contradicts the assumption that {Axn} 
is oscillatory. 

Now, we consider the following two cases: 
(I) Axn < 0 eventually, (II) Axn > 0 eventually. 
(I) Suppose that Axn < 0 for n >-n\>- max{At, JVj}. From Eq. (E) it follows that 

A2xn+pnAxn <. 0 for n>-n\. 

Set zn = — Axn for ?i •> nj. Then 

Azn + pnzn > 0 

Zn+l>(l-Pn)Zn> J[ (I - Pi)^ , 
i=ni 

where zni is an arbitrary constant. Thus, 

Jt-i 

-Axk>- H(l-Pi)zni. 
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Summing this inequality from n-i to n — 1, we get 

n - l , k-l . 

Xni — Xn >- Zni 2_, ( TT (1 — Pi) J ~*• °° 8* n ~> °°> 
_>m ^i=m ' 

which is a contradiction. Next, we consider the other case 
(II) Suppose that Axn > 0 for n >• n% >• max{iV, JVj.}. There exist n2 >• n\ and 

a > 0 such that 

(5) xn-g >• a for n>- n2. 

Using conditions (1) and (5) in Eq. (E) we obtain 

(6) A2xn + axqn{Axn-hY «$ 0 for n > n2. 

Set zn = Axn, n>, n2. Then (6) assumes the form 

Azn + axqn{zn-hY ^ 0, n >- n2. 

Therefore, by Lemma 1, Eq. (4) has an eventually positive solution, which is a con
tradiction. This completes the proof. D 

Next, we present an oscillation theorem for Eq. (E). 

Theorem 2. Let conditions (1) and (2) JioJd and let 
n+r 

(7) 2_, _i > 0 for all sufficiently large n, 
i-n+l 

where r = min{g, h}. If the equation 

(8) AVn + (__Zl)Ag„|Fn_T|A+^ sgn V„_T = 0 

is oscillatory, then Eq. (E) is oscillatory. 

Proof . Let {xn} be a nonoscillatory solution of Eq. (E), say xn > 0 for n >. 
n0 >. 1. As in the proof of Theorem 1, we see that {Axn} is eventually of one sign 
and case (I) is impossible. Next, we consider 
Case (II). Suppose that Axn > 0 for n >. n% ^ no. From the fact that Axn is 
nonincreasing, we see that 

xn — xni = y , &xk ^ {n — ni)Axn-i, 
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which implies that 
xn ^ - Д i n for n >- n-2 ~ž 2ni + 1. 

Then 

(9) xn~9 > (^z--)Aa;n_9 ^ (I-z-?)A-n_T for n > n2 +ff. 

Using conditions (1) and (9) in Eq. (E) yields 

A?/„ + ( ^ y ^ ) ?n|2/n-r|A+M < 0 for n > n2 + g, 

where yn = Axn, » >- n2 + g. The rest of the proof is similar to that of Theorem 1 
(II) and hence is omitted. D 

As an application, we apply Lemma 2 to the equations (4) and (8) appearing in 
Theorems 1 and 2 respectively and obtain the following immediate corollaries: 

Corollary 1. Let conditions (l)-(3) hold. If 
(i) for every constants v > 0, h > 1 we have 

lf^ [l £ qi\ > (T+A)wr wbm ^ = 1 wd A > ° 

or 

(ii) 

^ 9 i = oo when 0 < u < 1 and A > 0, 

then Eq. (E) is oscillatory. 

Corollary 2. Let conditions (1), (2) and (7) hold. If 
(i) r = min{g>, /i} > 1, and 

1™i
ts

f [~ £ ( L r ) *] > (T+TF^
 wi2efl A+M=* 

__/ (~T^) 9 i ~ °° waen ° < ^ + M<l> 

then Eq. (E) is oscillatory. 
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The following theorem is concerned with the oscillation of a special case of the 
equation 

A2xn + pnAxn + q^Xn-g^Axn-hy1, sgnxn-3 = 0 

when \x = 0 and A = 1, namely, the linear difference equation 

(L) A2xn + pnAxn + qnxn-g = 0, 

provided condition (2) is not required. 

Theorem 3. Let Apn < 0 for n Js n0 > 0, g > 1, and 

n+g n+g 

^10) Yl ®i > ° and ]C (* ~ 9^qi > ° for aiJ J a r & e n> 
i=n+l fcn+1 

where Qn = ( ~ ?; —pn-g. If the equation 
\i=n-g J 

(11) Az„ + C„«n_9 = 0, 

where 

(12) ^=min{g„, —^5„}, 

is oscillatory, then Eq. (L) is oscillatory. 

Proof. Let {a;„} be a nonoscillatory solution of Eq. (L), say xn > 0 for n ^ 
no > 1. As-in the proof of Theorem 1, we see that {Axn} is eventually of one sign. 
Next we consider the two cases (I) and (II) as in Theorem 1. 

(I) Suppose that Axn < 0 for n ^ ni ^ no- Summing both sides of Eq. (L) from 
n - g to n — 1, we obtain 

7 1 - 1 7 1 - 1 

Axn - Axn-g + Y2 Pi&Xi + >̂~ (kxi-g ~ 0. 

Axn + VPnXn - Pn-gXn-g - ^2 xi+l&Pi\ + xn-g V^ 1i <S ° f ° r I ^ W i -

Since Apn ^ 0, we have 

Ax„+ ( VJ qi \ - p„_s I xn-g ^ 0, n > m , 



and hence, by (12), we get 

Axn + CnXn-g ^ 0, n >• 111. 

The rest of the proof is similar to that of Theorem 1 Case II, and hence will be 
omitted. 

(II) Suppose that Axn > 0 for n >- n\ >- n0. Then Eq.- (L) assumes the form 

(13) A2xn + qnxn-g <,0, n Js nx. 

As in the proof of Theorem 2 Case II, there exists an n2 ^ n% such that (9) holds 
for n>- n2. Using (9) in (13), we have 

Ayn + cnyn-g sj Ayn + (~^)qnyn-g ^ 0 for n >• n2 

where yn = Axn, n>- n-i. The rest of the proof is similar to the proof of the above 
case and hence is omitted. This completes the proof. D 

Finally, we present results for the forced difference equations of the form (Le). 

Theorem 4. Let the conditions of Theorem 3 hold with qn being replaced by 
kqn. If {un} and {vn} are eventually positive solutions of Eq. (Le), then {un — vn} 
is oscillatory. 

Proof . Let {«„} and {vn} be two positive solutions of Eq. (Le) for n >. no ^ 1, 
and let wn = un — vn for n ^ n0. From Eq. (Le) we can obtain 

A2wn + pnAwn + qn [g(un-g) - g(vn-g)] = 0. 

To show that {wn} is oscillatory we will assume that {wn} is eventually positive. 
The negative case follows analogously. 

So, let us suppose that wn > 0 for n Js no ^ 1. The Mean Value Theorem implies 
that 

A2w„ +pnAwn + k qnAwn-g ^ 0. 

The rest of the proof is similar to that of Theorem 3 and hence we omit the details. 

• 
In the case when condition (2) is satisfied, we have the following immediate result. 

Theorem 5. Let condition (2) hold and assume that Eq. (8) is oscillatory for 
X = 1, u = 0, g = T and qn is replaced by kqn. If {un} and {vn} are two eventually 
positive solutions of Eq. (Le), then {un - vn} is oscillatory. 

Proof . The proof of this theorem follows the lines of proofs of Theorems 4, 3 
and 1, and hence is omitted. • 



R e m a r k 1. The results of this paper remain valid when pn = 0. On the other 
hand, if pn = p is a positive constant, the series in condition (2) is a convergent 
geometric series and hence condition (2) is violated. In this case we are (only) able 
to describe the oscillatory behavior of the linear difference equation (L) which is a 
special case of Eq. (E). 

As an application, we present the following criteria for the oscillation of Eq. (L) 
when {pn} and {qn} are constant sequences, i.e., for the difference equation 

(Lc) A2xn + pAxn + qxn-g - 0 

where p >• 0 and q > 0 are real constants, p < 1 and g is a positive integer, g > \. 

Corollary $. If 

(14) gq-V> 
(\ + g)l+9' 

then Eq. (Lc) is oscillatory. 

Corollary 4. If condition (14) holds, {un} and {vn} are two eventually positive 
solutions of Eq. (Lc), then {un — vn} is oscillatory. 

R e m a r k 2. From Corollary 3 we see that the characteristic equation associated 
with Eq. (Lc), namely 

(15) ( m - l ) 2 + p ( m - l ) + } m - ! = 0 

has no positive roots provided that condition (14) holds. 

R e m a r k 3. It would be interesting to obtain results similar to Theorems 1 and 
2 without imposing condition (2). Also, to extend Theorems 3-5 to more general 
equations of type (E). 

A c k n o w l e d g m e n t . The authors are very grateful to the referee for his valu
able suggestions. 
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