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Matematický časopis 21 (1971), No. 2 

RIGHT PRIME IDEALS AND MAXIMAL RIGHT IDEALS 
IN SEMIGROUPS 

BEDRICH PONDfiLICEK, Podebmdy 

In [1] St . S c h w a r z studies some properties of prime ideals and of maximal 
ideals in a semigroup. In this note we shall study analogous properties of right 
prime ideals and of maximal right ideals. 

A two-sided ideal Q of a semigroup S is said to be prime if AB cz Q implies 
tha t A ^ Q or B c: Q9 A, B being two-sided ideals of S. 

Theorem 1. A two-sided ideal Q of a semigroup S is a prime ideal of S if and 
only if AB n BA cz Q implies that A cz Q or B ^ Q, A, B being two-sided 
ideals of S. 

P r o o f . Let Q be a prime two-sided ideal of S. Let A, B be two-sided ideals 
of S and AB n BA cz Q. Clearly AB, BA are two-sided ideals of S and 
{AB)(BA) cz AB n BA cz Q. From this it follows t h a t AB cz Q or BA cz Q. 
Hence A cz Q or B cz Q. 

Let Q be a two-sided ideal of 8 and let AB n BA cz Q imply t h a t A cz Q 
or B cz Qy A, B being two-sided ideals of S. If A, B are two-sided ideals of S 
and . 4 5 cz Q, then 4 5 n BA cz 4 5 cz $. Thus we have A cz Q 0r B cz Q. 
Hence Q is a prime ideal. 

There is an analogous definition for right ideals of S. 

Definition 1. A right ideal Q of a semigroup S is said to be right prime if 
AB n BA cz Q implies that A cz Q or B cz Qf A, B being right ideals of S. 

R e m a r k . If S is a commutative semigroup, then every prime ideal is 
a right prime ideal and conversely. 

E x a m p l e 1. The following example shows t h a t a right prime ideal need 
not be necessarily a prime ideal. 

Let Si = {a, b} be a semigroup in which xy = x for every x,y e S\. Evidently 
{a}, {&} and S± are all right ideals of S±. Thus Qi = {a} is a right prime ideal 
of Si. But Qi is not a left ideal of Si. Hence Qi is not a prime ideal of Si. 

E x a m p l e 2. The following example shows t h a t a prime ideal need not be 
necessarily a right prime ideal. 

Let $2 = Si U {0}, where xO = 0 = Ox for every x e $2 (#1 is as in Example 
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1). Clearly {0}, S2 are all two-sided ideals of $2. Thus Q2 = {0} is a prime 
ideal of S2. Pu t A = {a, 0}, B = {b,0}. Evidently A, B are right ideals 
of S2. Since AB = A, BA = B, we have AB n BA = A n B = Q2. But 
A <£ Q2 and B 4= $2. Thus $2 i s n ° t a right prime ideal of S2. 

Definition 2. A right ideal R of a semigroup S is called maximal if R c= S 
and there does not exist a right ideal Pi of S such that R ^ Pi ^ S. 

E x a m p l e 3. The following example shows that a maximal right ideal of 
S with S = S2 need not be necessarily a right prime ideal. (See Theorem 1 
in [1].) 

Let S3 = {(i, n — i) j for all positive integers n and for i = 0, 1}. Define 
in S3 a multiplication by 

xy = (i, n + m) 
if x = (i, n) e S3 and y = (j, m) e S3. Then #3 As a semigroup and Si = S3. 
Pu t P3 = {p}, where p = (0, 1). Clearly R3 = S3 — P3 is a maximal right 
ideal of #3. Pu t A = {pn j for all positive integers n}. Evidently A is a right 
ideal of #3 and A A n A A = A2 <= p 3 . But peA £ R3. Thus R3 is not a right 
prime ideal of S3. 

Theorem 2. If R is a maximal right ideal of a semigroup S such that P n P 2 =£ 0 
where P = S — R, then R is a right prime ideal of S. 

Proof . Let R be a maximal right ideal of S. If R is not a right prime ideal 
of S, then there exist two right ideals A, B of S such that AB n BA <-= P 
and A <t R, B 4- P . Since P is maximal, we have A U R = S = B U R, 
hence P c i and P c B. Thus P2 ^ AB n BA a p . Since P n P 2 =£ 0 
we have P n R^ 0. This is a contradiction. Consequently P is a right prime 
ideal of S. 

Corollary. If R is a maximal right ideal of a semigroup S such that S — R 
contains an idempotent, then R is a right prime ideal of S. 

E x a m p l e 4. The following example shows that a maximal right ideal 
R of S where card (S — R) ^ 2 need not be necessarily a right prime ideal. 
(See Theorem la in [1].) 

Let G be an arbi t rary group. Let S4 = S3 X G, P4 = P3 x G, P 4 = P3 x 
X G = S4 — P 4 and B = A X G, where $3, P3, P3 and A are as in Example 
3. Then P 4 , B are right ideais of the semigroup S±, Si = and card P 4 = 
= card G. Clearly B * P 4 and BB n BB = B2 c P 4 . Thus P 4 is not a right 
prime ideal of S4. Finally, we prove that P 4 is a maximal right ideal of # 4 . 
Let R' be a right ideal of S4 such tha t P 4 ^ P ' cz #4. Then there exists # e 6? 
such tha t (p, g) e P ' , where peP3. IfheG, then (p, A) = (p, gr)(m, gr1^) e R' 
where meS3 and m = (1, 0). Thus R' = S4. 

Theorem 3. If S is a semigroup with S = eS for some ee S, then every maximal 
right ideal of S is a right prime ideal of S. 



Proof . Let R be a maximal right ideal of S. Denote P = S — R. First 
we prove that xS = S (for some x E S) implies x e P. Indeed, if x e R, then 
S = xS c: RS <= p . This contradicts R^ S. Now eS = S implies eeP and 
e2 6 P 2 . Since e2S = eS = S, hence e2 e P . Then e 2 e P n P 2 ^ 0 and it follows 
from Theorem 2 that R is a right prime ideal of S. 

Corollary. If S is a semigroup with a left identity element, then every maximal 
right ideal of S is a right prime ideal of S. 

R e m a r k . Example 3 shows tha t the semigroup S3 has a right identity ele
ment m = (1, 0) and the maximal right ideal P3 of £3 is not a right prime 
ideal of £3. 

Theorem 4. Let {Ra / ocsA} be the set of all different maximal right ideals 
of a semigroup S. Suppose card/1 ^ 2 and denote Pa = S — Ra and J?* = 
= n Ra. We then have: 

o&A 

a) PanP^ = 0 / o r a ^ / 3 . 
b) 8 = [ U Pa] U R*. 

«.eA 

c) For every <x^ fi we have Pa <= Rp. 
d) If A is a right ideal of S and A n Pa^ 0, £/fcew P a c: A. 
e) Por a tve have PaS <= n P/?. 

R e m a r k . The case card/1 = 1 is trivial. 
Proof , a)—d). The proof is similar to the proof of Theorem 2 in [1]. 
e) If /3 z£ a (a, fie A), then from c) it follows tha t Pa d P ^ . Thus P a £ <= 

a RPS <= P ^ . Hence PaS <= n Rp. 

R e m a r k . Example 1 gives a semigroup in which P * = {a} n {b} = 0. 
(See Theorem 2d in [1].) 

Let R = {Ra / a e A} be the set of all maximal right ideals of £ and (as above) 
P* = n i . 

oceA 

Theorem 5. Let S be a semigroup containing maximal right ideals. Then every 
right prime ideal of S containing P * and different from S is a maximal right 
ideal of S. 

Proof . The proof is an easy adaptation of the proof of Theorem 3 in [1], 
Let Q be a right prime ideal of S and P * c. Q -^ S. We use the notations of 
Theorem 4. By b), d) we have 

Q = s - [ u Pa] = n (S - Pa) = n Ra, 
<xeH oceH aeH 

where 0 ^ H c A. 
If c a rd i J ^ 2, then Q = R' nRp, where P ' = n P a . Thus P 'P# n 
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n RpR' cz R' n Rp = Q. Since Q is right prime, we have R' cz Q or i ^ c $ . 
Thus JB' C R0 or i ^ c jR'. If R' a Rp, then by Theorem 4c we have 
Pp <= n Ra = R'. Hence Pp ^ Rp, a contradiction with Pp n Rp = 0. 

aeLT, a ^ B 

If ^ c .#', then it follows from Definition 2 that Rf = Rp. Thus Pp a R' =, 
= Rp. This is a contradiction. I t follows that card H = 1. Thus Q = Ra, i. e. 
$ is a maximal right ideal of S and our Theorem is proved. 

Theorem 6. Let S be a semigroup containing maximal right ideals. A rihgt 
prime ideal Q ^ S is a maximal right ideal of S if and only if R* <= Q. 

P r o o f follows from Theorem 5. 
Let now be Q = {Qa I oce A} the set of all right prime ideals of S and different 

from S and Q* = n Qa. 

Theorem 7. Let S be a semigroup containing maximal right ideals. Then every 
right prime ideal of S {and =£ S) is a maximal right ideal of S if and only if 
R* c Q*. 

P r o o f follows from Theorem 6. 

Theorem 8. Let S be a semigroup with S = eS for some e e S, containing 
maximal right ideals. Then Q = R if and only if Q* = R*. 

Proof . This follows from Theorem 3 and Theorem 7. 
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