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ON A BOUNDARY VALUE PROBLEM 
FOR A NONLINEAR SECOND-ORDER DIFFERENTIAL 

EQUATION 

VALTER SEDA, Bratislava 

I t is shown in the paper by means of Stone's theorem that an assumption 
concerning the Lipschitz continuity in a theorem on the existence of a solution 
of a boundary value problem for a nonlinear second order differential equation 
can be dropped out. 

In papers [1], Theorem 6.3, and [2], Theorem 4.18 the following theorem 
has been proved. 

Theorem 1. Suppose that a < b are two real numbers, f = f(x, y, z) is con
tinuous on E = (a, by x R2 and is such that 

p) f is nondecreasing in y on E for fixed x, z; 
q) there is a constant k > 0 such that \f(x, 0, z) — f(x, 0, 0)| ^ k\z\ on (a, b} 

for all z; 
r) f satisfies a Lipschitz condition with respect to z on each compact subset of E. 
Then the boundary value problem 

(i) y"=f(x,y,y')> y(a) = y(b) = o 

has a unique solution y(x) e C2((a, b}). Furthermore, on (a, b) 

M 
(2) \y(x)\ ^ — [e*(>-*) — e-/2W-a) _ Jjfc(& _ a)] 

k2 

and 

M 
\yf(x)\ fg — [c*<ft-«>_ 1 ] , 

k 
where M = max \f(x, 0, 0) | . 

xe<a,b> 

We are going to show that the condition r) can be removed and Theorem 1 
still remains valid. To that aim we shall need Stone's theorem in the formula
tion given in paper [3], We shall also keep the notations from that paper. 
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Stone's theorem. Let M be a compact set (in a metric space), f e C0(M) and 
let A be a lattice of continuous functions on M with the following property. 

(a) For every pair x, y, x 7^ y of points of M, there exists a function g e A 
such that g(x) = f(x), g(y) =f(y). Then there exists a sequence {fn} of functions 
fn £ A which uniformly converges to f on 31. 

By means of that theorem we shall prove Lemma 1. 

Lemma 1. Suppose that a <b are two real numbers, f = f(x, y, z) is continuous 
on E and satisfies the conditions p) and q). Then there exists a sequence {fn} 
of functions fn e C0(E) satisfying the conditions p) q) and r) which uniformly 
converges to f on each compact subset of E. 

Proof . F\)r each natural ra, let Nm = <«, 6> x < —ra, ra> X < —ra, ra>. 
Fix an arbitrary Nm. Let B be the set of all functions g e C0(E) satisfying 
the conditions p), q) and r). g^x,y,z) = y + z e B, hence B ^ 0. When 
considering the restriction of the functions g e B on Nm, we shall show that B 
is a lattice of continuous functions on Nm having the property (a). Hence, 
by Stone's theorem, this will guarantee that there is a function fm e B such 
that I f(x, y, z) — fm(x, y,z)\ < 1/ra for (x, y, z) e Nm. Then {fm}™ x will 
possess all the required properties. 

Let us first prove that B is a lattice of continuous functions. Since the set 
of all Lipschitz continuous functions forms a lattice of continuous functions 
([3], remark b.), max (g-\, g2) and min (g1, g2) show the property r) whenever 
gi, 92 do so. As to the property p), if g1,g2e B, (x, y\_,z) e Nm, (x, y2,z) e Nm 

and gt(x, yk, z) = gi1c, i, k = I, 2, then in the case when gn <; g2\, g12 ^ g22 

min (g12, g22) = g2<z ^ g2i ^ min (gn, g21) 
and 

max (gn, g21) = g21 ^ g22 ^ max (g12,g22) . 

The same result will be obtained in the other cases. Thus with g1,g2eB 
also min (g1,g2), max(gi ,g 2 ) possess the property p). Now to prove q). Fix 
an x e (a, 6> and denote gt(x, 0, z) = giz, g%(x, 0, 0) = gi0, i = 1, 2. If g10 = g20, 
the proof is trivial. Suppose, next, g10 < g20. By q) we have gi0 — kz ^ giz ^ 
^ gio + kz. When g2z > g10 + kz, then min (giz, g^z) = giz and 

(3) min (glz, g2z) ^ min (g10, g20) + kz . 

When g2z ^ gio + kz, then (3) is true again. Since g20 — kz > £10 — kz, 
both giz ^ gio — kz and thus min (g10, g20) — kz <; min (glz, g2z). Similar 
results can be obtained in the case when gio > g20 and for max (giz, g2z). 
Thus min (g1, g2) e B, max (g1, g2) e B. 

I t remains to prove that B satisfies the condition (a). Consider the functions h 
defined on E by 
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(4) h(x, y, z) = <p(x) + <o(z)v(y) + x(z) 

where ^p(0) = #(0) = 0, <p e Co((a, b>), y) e Oo((—oo, oo)) and is nondecreasing 
while <JO and % are defined in (—00, 00), 0) ^ 0, both of them satisfy a Lipschitz 
condition on each compact interval and \x(z)\ <, k\z\ for each z. Clearly each 
heB. 

Let (xi,yi,Zi)eNm, (x\, y\, z3) ^ (x2,2/2, z2) and denote f(xt, yt, zt) = a, 
i 1, 2. We shall show that there is a function h given by (4) which satisfies 
the conditions 

(5) <p(xi) + co(zity(yi) + x(Zi) = ct, i = 1, 2 . 

If the constants gp(a;«), oj(zt), y)(yt), x(zi) = d — <p(xi) — o>(zi)y)(yi), i — J, 2, 
are such that w(z$) ^ 0, |c* —- oj(xf) — co(zs)y(^)| <j k |z*| or (a — <p(xt) — 

k \zi\)lco(zi) < rp(yCj <, (a — <p(xt) + k |z*|)/co(z*) and y(y<) g y ( ^ ) if ^ <; 
<i yk, i,1e = 1, 2, 3, where 1/3 = 0, ^(0) = 0, then they form an admissible 
solution of the system (5), from which the functions <p, ip, x a n ( i °J with the 
above mentioned properties can be constructed by linear intra- and extra
polation. Hence B satisfies the condition (a). 

If x\ 7-- X2, we choose <p(xi), i = 1, 2, such that \a — <p(xt)\ <, k | z+ Then 
<p(xi), co(zt) = 1, y>(yt) = 0, #(z*) = a — <p(Xi), i = 1,2, gives an admissible 
solution of (5). 

In the case x\ = x2, z\ = z2, by the property p) of/, yi <, yk implies a <, a , 
i, k 1, 2. Then by putting co(zi) = 1 and choosing <p(xi) properly, we can 
obtain that y>(yt) <, y>(yic) is satisfied for yt <i yk also if i, k = 1, 2, 3. 

The case xi = £2, zi 7^ z2 remains to be investigated Here some subcases 
are possible: 1. If sgn y\ = sgn?/2, then by a suitable choice of <p(xi) we can 
get sgn tp(yi) -= sgn y(H2) = sgn ^ and then, by taking co(zt) properly we get 
that yi <I yk implies y)(yi) <, y)(yk) even for i, k = 1,2, 3. 2. Consider now 
the case sgn y\ =£ sgn?/2, e. g. ?/i <; 0 <; H2. Then again, if ci <; 0 <I c2 or 
c\C% ^ 0, everything can be properly arranged. In the case Ci > 0 > c2 we 
must have that s = (c\ — k \z\\, C\ + k |zi|> C\ <c2 — k |z2|, c2 + k |z2|> ^ 0. 
If not, then by p) f(x\, 0, zi) ^ ci and so by q) we would have f(x\, 0, 0) ^ 
^ C] — k \z\\ and at the same time f(x\, 0, z2) rg c2 and thus, / (# i , 0, 0) <, 
<i c2 + k |z2|. Since s 7^ 0, we also get by a suitable choice of <p(xt) and co(zi) ^ 0 
that ip(yi) satisfies the required conditions. 

From Theorem 1, by Lemma 1, we shall prove 

Theorem 2. If all hypotheses of Theorem 1 are satisfied except the condition r), 
then the boundary value problem (1) has at least one solution y(x) e C2(<fa, 6>) 
satisfying the inequalities (2) where M and k are as in Theorem 1. 

Proof . By Lemma 1, there is a sequence {fn} of functions fn e Co(E) 
satisfying the conditions p), q), and r) which uniformly converges t o / o n each 
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compact subset of E. Theorem 1 gives the existence of a sequence {yn} of the 

solutions of the boundary value problem 

(6) y" = fn(x, y, y'), y(a) = y(b) = 0 . 

Each yn satisfies the inequalities (2) where instead of M the constant Mn = 

= max \fn(x, 0, 0)| appears. Therefore the set of all points (x, yn(x), yn(x)), 
a-e<a,b> 

a ^ x ^ b, n = 1, 2, 3, . . . , lies in a compact subset of E. Hence the sequence 

of y"n is uniformly bounded and thus both sequences {yn}, {y'n} satisfy the 

hypotheses of Ascoli's Lemma. Therefore there is a subsequence {ynk}^=l 

which is uniformly convergent, together with {^J*-i t o a f u n c ^ i ° n y a n ( i 

its derivative y', respectively. From (6) it follows that y"nic converge uniformly 

to y" and y satisfies the conditions (1) and (2). 
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